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ABSTRACT

Target speaker extraction (TSE) acts as a front-end processing tech-
nology for various speech applications, such as automatic speech
recognition. However, TSE has long faced challenges from under-
determined environments and in the presence of noise. In this
paper, we propose a dual-channel system for directional TSE under
noisy underdetermined conditions. In our approach, we utilize two
source models that integrate conditional variational autoencoders
(CVAEs) with global style tokens (GSTs) to learn representations
of the noisy single speech and the noisy mixed speech within a
geometric source separation framework, where GSTs generate con-
ditional variables for CVAEs. To address residual noise in the
extracted target signal under various noisy conditions, we intro-
duce a conditional neural postfilter with a GST to estimate a
complex Time-Frequency (T-F) mask for denoising. Additionally,
we propose a joint network, where a conditional neural postfilter is
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jointly trained with a CVAE and a shared GST module. The exper-
imental results demonstrate that our proposed dual-channel TSE
method achieves better performance under noisy underdetermined
conditions.

Keywords: Target speaker extraction, multichannel source separation, condi-
tional variational autoencoder (CVAE), speech enhancement

1 Introduction

In daily speech communication, numerous factors such as interfering speakers
and background noise often hinder the clarity of the desired sound. Although
the human brain can naturally focus on sounds of interest [25, 36], significant
efforts have been dedicated to developing engineering solutions, leading to
research on target speaker extraction (TSE). TSE is a specialized form of
speech separation that aims to isolate and enhance the speech of a specific
individual from a complex acoustic mixture. TSE has become a crucial front-
end processing technique in speech signal processing applications, such as
automatic speech recognition and speaker verification [8].

Unlike traditional blind speech separation (BSS), TSE only focuses on the
desired target in the observed mixture. This technology is essential under
complex multi speaker conditions where the clarity of a specific speaker’s voice
is critical, despite the presence of other interference speakers, background
noise, or various sound sources. The TSE process often involves several
stages, beginning with the identification of the target speaker, often using
prior knowledge or auxiliary information of the target, followed by feature
computation and separation processes. Among various types of auxiliary
information, extracting speaker information from audio samples has proven
effective. Frequency-domain methods such as SpeakerBeam [7] and VoiceFilter
[28] isolate the target speaker using an adaptation utterance or a reference
signal. Time-domain methods such as SpEx+ [14] adapt speaker encoders.
Additionally, visual features like lip movements [12, 17, 2, 41] and facial frames
[9, 1] are widely used to enhance speaker isolation.

In a spatial sound field, the spatial information of sound sources like
the direction of arrival (DOA) is a clearly distinguishable feature of different
sources. Utilizing spatial information is an effective way of target identification,
which has shown the potential of TSE in combination with traditional BSS
frameworks. Geometric source separation (GSS) [30, 23, 42, 33, 4] is an
implementation that use geometric constraints (GCs) in BSS frameworks to
separate a target source from the mixture. Classical methods like geometrically
constrained independent vector analysis (GCIVA) [24] have been proposed. In
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GCIVA, a linear GC based on the target’s DOA is integrated into the IVA
framework [20]. GCIVA employs a generalized sidelobe canceller (GSC) [15,
13] structure, utilizing a fixed beamformer to enhance the target signal and
a null beamformer to suppress the target and estimate interferences. GSS
methods do not require a large amount of training data and do not need
prior spatial audio information during training. It only requires target spatial
information to generate GCs to achieve target person selection in the inference
stage.

Most classical methods such as GSS and spatial TSE methods, including
GCIVA, are designed for determined and clean conditions, where the number of
microphones is equal to that of sources, and the background diffuse noise is not
considered. In contrast to these ideal conditions, real-world applications often
face noisy underdetermined environments owing to hardware limitations and
environmental noise. A major challenge under such conditions is the limitation
of a source model. Traditional source models like the Laplace distribution
in the IVA framework, are usually used for modeling a single source. Under
underdetermined conditions, a more robust source model is essential, as it
must handle not only the target speech but also a mixture of interfering
speakers. Several efforts have been made to enhance source modeling. For
independent Low-Rank Matrix Analysis (ILRMA), a flexible non-negative
matrix factorization was introduced to improve the model’s capacity [22].
Furthermore, in a recently proposed Bayesian-based GSS method, a background
source model derived by independent vector extraction (IVE) was utilized to
isolate the source of interest [5]. Recently, deep neural networks (DNNs) have
been leveraged to model spectral features owing to their robust capabilities [29,
26]. Notably, the multichannel variational autoencoder (MVAE) [18] approach
employs a conditional variational autoencoder (CVAE) [21] as the source model
within an IVA framework, which was proved effective for determined cases. In
contrast, in [37], a dual-channel TSE method was proposed for underdetermined
cases, by introducing the target CVAE (TarCVAE) and interference CVAE
(IntCVAE) within a GC-based framework. TarCVAE is designed to model a
target speaker’s speech and trained on clean, individual speech samples with
one-hot labels representing the speaker’s identity. IntCVAE, on the other
hand, models mixed speech using the number of speakers as a condition, and
is trained on clean mixed speech with one-hot labels indicating the number of
speakers. The reliance on clean speech data and discrete labels limits their
effectiveness in noisy environments.

To overcome this limitation, we have proposed a noise-robust source model
for modeling noisy mixed speech signals by introducing global style tokens
(GSTs) embedded within IntCVAE, which is called GIntCVAE [38]. GSTs is a
set of embeddings that captures global acoustic features and can be trained in
an unsupervised manner [39]. In the GIntCVAE framework, a GST functions
as an embedding layer to capture the latent representation of noisy mixed
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speech. The GST output serves as the conditional variable for the CVAE.
During training, the GST and CVAE are jointly trained across varying numbers
of speakers and noise environments, forming a robust source model for noisy
interference mixtures.

Although our proposed GIntCVAE has already demonstrated its noise
robustness under noisy underdetermined conditions, some issues remain. In
our evaluations, it has been observed that under lower signal-to-noise ratio
(SNR) conditions with background diffuse noise, the final extracted target still
contains some residual noise. This is because, within the GSS framework, the
target selection is based on the generated beamformer. When the number of
microphones is limited, the diffusion noise from the target speaker in the same
direction and within a certain range around the speaker will inevitably be
retained with the generated beamformer. This is a common issue in research on
directional speech extraction, separation, and enhancement [44, 16]. Generally,
this problem can be solved by using a postfilter. In our previously proposed
framework, we designed an ideal ratio mask (IRM) by utilizing the estimated
interference mixture as the postfilter to enhance the final extracted target.
Such a simple Time-Frequency (T-F) mask is however weak in dealing with
diffuse noise. In addition, for our trained GIntCVAE, the types of information
and representation have been learned by its GST module as an embedding
layer during the training of the entire network are still unknown.

To overcome the limitation in our previous work, we proposed a noise-
robust TSE method for noisy underdetermined conditions based on our former
framework. A research has shown that the complex mask estimated by a neural
postfilter significantly outperforms the traditional T–F mask [19]. Recently, a
DNN-based speech enhancement method that employs a CNNBLSTM network
to generate a complex T–F mask has been shown to be effective [11]. In this
paper, we still focus on the dual-channel GSS framework using the minimum
number of microphones to leverage spatial information, where we assume the
target DOA is known as prior information. We introduce a neural postfilter
to estimate a complex T–F mask as instead of the IRM-based T–F mask in
the framework. To better model the initial extracted target signal with noise,
we jointly train a conditional neural postfilter with a new TarCVAE source
model called GTarCVAE, where a GST module is shared by the TarCVAE
and neural postfilter. Note that this paper is an extended full journal version
of the previous conference paper [38]. Our new contributions are as follows:

(1) We investigated how the number of speakers and SNR affect the
discrimination capability of GST in mixed speech and what the GST module
learns by visualizing the embedding space generated by the GST in GIntCVAE.

(2) We introduced a conditional neural postfilter to estimate a denoising
complex T–F mask to reduce the residual diffuse noise in the extracted target
signal. This postfilter is jointly trained with a new TarCVAE and has a shared
GST module for the TarCVAE and postfilter.
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Compared with our previous method [38], which incorporated GST only
in the interference channel through GIntCVAE, this study extends GST to
model both the interference and target channels, enhancing the representation
of noisy target speech. Unlike the discrete one-hot vector used previously,
GST generates a continuous latent representation, serving as a more effective
conditional variable for CVAE under noisy underdetermined conditions. Ad-
ditionally, the IRM-based postfilter previously used has limited performance
in handling diffuse noise. The newly introduced CNNBLSTM-based neural
postfilter leverages complex T-F masking, providing superior noise suppression
and improving robustness in challenging environments. These advancements
collectively strengthen target speaker extraction in noisy underdetermined
conditions.

In addition, to provide a clear comparison between this work and our
previous methods [37] and [38], we have summarized the key differences in
Table 1.

Table 1: Comparison between previous methods and the proposed method.

Method Source model
for target

Source model for
interference mixture Postfilter

Previous method 1 [37] TarCVAE IntCVAE IRM
Previous method 2 [38] TarCVAE GIntCVAE IRM

Proposed GTarCVAE GIntCVAE Neural postfilter

The rest of the paper is organized as follows. The problem formulations of
the underdetermined GSS and CVAE are described in Sections 2. After that,
we review the related work for noisy underdetermined conditions in Sections 3,
in which Sectionss 3.2 and 3.3 provide a complete and detailed description of the
proposed framework and source model for noisy underdetermined conditions. In
Sections 4, we propose our conditional neural postfilter for complex T–F mask
estimation and the joint network with TarCVAE. Experimental evaluations
are presented in Sections 5. The conclusion is made in Sections 6.

2 Directional TSE Based on Dual-Channel System

2.1 Problem formulation

Let us consider a TSE problem using a dual-channel microphone array. The
STFT coefficients of the source and observed signals are denoted as s(f, n)
and x(f, n), where f and n are the frequency and time indices respectively.
The vectors containing s1(f, n), s2(f, n) and x1(f, n), x2(f, n) at two channels
can be respectively represented as
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s(f, n) = [s1(f, n), s2(f, n)]
T , (1)

x(f, n) = [x1(f, n), x2(f, n)]
T , (2)

where s1(f, n) is the target with a known DOA and s2(f, n) is the interfer-
ence mixture excluding the target, including other interference speakers and
additional noise. x1(f, n) and x2(f, n) are the observed signals of two input
microphones, and (·)T denotes transpose. We use a separation system based
on the demixing matrix W(f) as

s(f, n) = WH(f)x(f, n), (3)
W(f) = [w1(f),w2(f)], (4)

where W(f) is the demixing matrix and (·)H denotes a Hermitian transpose.
Here, w1(f) is a linear filter for enhancing the target and w2(f) is a linear
filter for estimating the interference by suppressing the target. Under underde-
termined conditions, using a linear filter to estimate the interference mixture
by suppressing the target is feasible.

Next, we assume that source signals follow the local Gaussian model, i.e.,
sj(f, n) follows a zero-mean complex Gaussian distribution with the variance
vj(f, n) = E[|sj(f, n)|2], where j = 1, 2. The source signal s(f, n) then follows

sj(f, n) ∼ NC(sj(f, n)|0, vj(f, n)). (5)

Furthermore, we assume that s1(f, n) and s2(f, n) are independent of each
other. s(f, n) then follows

s(f, n) ∼ NC(s(f, n)|0,V(f, n)), (6)

where V(f, n) = diag[v1(f, n), v2(f, n)]. From Eqs. (3) and (6), we can show
that x(f, n) follows

x(f, n) ∼ NC(x(f, n)|0, (WH(f))−1V(f, n)W(f)−1). (7)

The log-likelihood of the demixing matrices W = {W(f)}f and source
model parameters V = {vj(f, n)}j,f,n for the observed mixture signals X =
{x(f, n)}f,n is given by

log p(X|W,V) c
= 2N

∑
f

log|detW(f)|

−
∑
f,n,j

(log vj(f, n) +
|WH

j (f)x(f, n)|2

vj(f, n)
), (8)
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where c
= denotes equality up to constant terms. It means the equation holds

except for an irrelevant constant, which does not affect the outcome of the
optimization.

Note that Eq. (8) is a common objective function for BSS. To achieve
target speaker selection, additional cues of the target are necessary. Here,
we assume that the target DOA α is known. GCs [31] restrict the far-field
response of the demixing filters in the target direction given by

Jgc(W) = λ1

∑
f

|wH
1 (f)d(f, α)− 1|2

+ λ2

∑
f

|wH
2 (f)d(f, α)|2, (9)

d(f, α) = exp[−j(p/c)fcos(α)], (10)

where λ1 and λ2 control GCs of two channels and d(f, α) is a steering vector
towards α. p = [p1, p2] are the positions of two microphones, and c is the
wave propagation speed. The first term on the right-hand side of Eq. (9) uses
delay-and-sum (DS) beamforming to preserve the target source [6]. In contrast,
the second term creates a null beamformer towards α, acting as a blocking
matrix (BM) [43] that suppresses the target while estimating a mixture of all
interferences. The overall objective function to be minimized is

J(W,V) c
= − log p(X|W,V) + Jgc(W). (11)

2.2 GSS framework with CVAE

When a dual-channel system addresses underdetermined conditions, the signal
s2(f, n) in Eq. (2) represents a mixture of multiple interfering speakers. When
applying GCs based on Eq. (9), the goal is for the estimated demixing matrix
W (f) to effectively separate the target s1(f, n) and the interference mixture
s2(f, n) across the two channels. In [37], a dual-channel GSS framework that
integrates GCs, CVAE’s representation capabilities, and linear postprocessing
has been proposed. Figure 1 shows the illustration of the framework of this
dual-channel system. On channel 1, referred to as the target channel, a
preliminary estimation of the target is obtained using the DS beamforming
generated by calculating Eq. (9). On channel 2, the interference channel, a
BM from Eq. (9), suppresses the target and preserves all other interferences.
We can respectively estimate s1(f, n) and s2(f, n) from the output of two
channels as
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Figure 1: Proposed framework of directional target speaker extraction based on dual-channel
system.

ŝ1(f, n) = wH
1 (f)x(f, n), (12)

ŝ2(f, n) = wH
2 (f)x(f, n). (13)

In the estimation of demixing matrix based on the objective function given
by Eq. (11), the set of matrices W can be iteratively updated on the basis
of the updated source model parameters V. The source model is represented
by a CVAE, which iteratively updates V. After that, a T–F mask-based
postprocessing is performed to obtain the final extracted target.

2.3 CVAE source model

For the TSE under underdetermined conditions, it is essential to accurately
model both the target speaker’s speech and the interference mixture. In
[37], two CVAEs were proposed to model these two parts, which were called
the target CVAE (TarCVAE) and the interference CVAE (IntCVAE). Let
S = {s(f, n)}f,n be the spectrogram of a sound source. A CVAE consists of
the encoder qϕ(z|S, c) and the decoder pθ(S|z, c), where z is a time sequence
of latent feature vectors and c represents the conditional variable of S. The
encoder network generates a set of parameters for the conditional distribution
qϕ(z|S, c) of z given the input data S, whereas the decoder network generates
a set of parameters for the conditional distribution pθ(S|z, c). The network
parameters ϕ and θ are trained jointly using a set of labeled data samples
{S, c}. In the inference stage, only the decoder is used to produce the source
model parameters of S.

In the training stage, TarCVAE is trained with clean speech of different
speakers, where c is a one-hot vector to represent the speaker index. IntCVAE
is trained with mixed speech with c being a one-hot vector to represent the
number of speakers in the mixture. In the inference stage, only the decoder is
used to model the source spectrogram by estimating the latent space variable
z and the conditional variable c as the source model parameters. The output
of the decoder is then used in the estimation of the demixing matrix.
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The goal of training these two CVAEs is for them to learn the parameters of
the encoder and decoder networks so that the encoder distribution qϕ(z|S, c)
becomes consistent with the posterior pθ(z|S, c) ∝ pθ(S|z, c)p(z). In the
training of CVAEs, the objective function to be maximized is

J (ϕ, θ) = E(S,c)∼pD(S,c)[Ez∼qϕ(z|S,c)[log pθ(S|z, c)]
−KL[qϕ(z|S, c)||p(z)]], (14)

where E(S,c)∼pD(S,c)[·] represents the sample mean over the labeled data set
and KL[·||·] is the Kullback–Leibler divergence. Here, pD(S, c) is approximated
as the empirical distribution of sample S, c. The output distribution of the
encoder qϕ(z|S, c) and the prior distribution of z are given by the Gaussian
distributions:

qϕ(z|S, c) = N (z|µϕ(S, c), σ
2
ϕ(S, c)), (15)

p(z) = N (z|0, I), (16)

where µϕ(S, c) and σ2
ϕ(S, c) are the encoder outputs denoting the mean vector

and the variance vector of z, respectively. The decoder output pθ(S|z, c, g) is
designed to be a complex Gaussian distribution:

pθ(S|z, c, g) =
∏
f,n

NC(s(f, n)|0, v(f, n)), (17)

v(f, n) = g · σ2
θ(f, n; z, c), (18)

where σ2
θ(f, n; z, c) represents the (f, n)th element of the decoder output

σ2
θ(z, c) and g is a global-scale parameter.

2.4 Postprocessing based on T–F mask

Under underdetermined conditions with multiple interferences, our GC-based
method generate the DS beamformer that serves as the initial extraction of
the target. On the other hand, the null constraint towards the target direction
functions as a BM, allowing the extraction of the interference mixture excluding
the desired target on the corresponding channel. However, underdetermined
conditions often lead to the initial target extraction being disturbed by the
presence of multiple interfering speakers. To enhance the final extraction
result, a T–F mask was developed for postprocessing [37]. This T–F mask is
an IRM, which calculates the ratio between the spectrogram energies of the
interference and the observed mixtures. The extracted target ŝtar(f, n) is

ŝtar(f, n) = ŝ1(f, n)(1−
|ŝ2(f, n)|2

|x(f, n)|2
). (19)
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3 Related Work on TSE under Noisy Underdetermined Conditions

3.1 Overview

In realistic applications, environmental noise is a significant factor alongside
interference speakers. The performance of a TSE system is easily degraded by
such noise. Although the IntCVAE source model proposed in [37] has shown
its effectiveness under underdetermined conditions, it still has limitations in
modeling noisy mixed speech when environmental noise exists. The main
reason comes from the one-hot vector-based labels in the training of IntCVAE.
Under clean underdetermined conditions without environmental noise, the
objective of IntCVAE training is for the IntCVAE to learn source models from
mixed signals with varying numbers of speakers. The number of speakers
in mixtures of clean multi speaker signals can be effectively represented by
discrete one-hot vectors. However, when noise is present, its varying levels are
continuous variables. In this case, it is more straightforward to use continuous
representations to model mixed speech with different numbers of speakers and
noise levels.

3.2 GST-IntCVAE network

To address this issue, we proposed a new source model called GST-IntCVAE
(GIntCVAE for short) for modeling noisy interference mixture signals. GIntC-
VAE introduces GSTs [39] to generate embeddings of noisy mixed speech as
conditional variables in the CVAE. A GST is a set of embeddings that cap-
tures global acoustical characteristics observed over an utterance, such as the
expressiveness of speech and it is trained in an unsupervised manner. Figure 2
illustrates both TarCVAE and the proposed GIntCVAE. TarCVAE, as in [37],
models a single target speaker’s voice on channel 1, whereas GIntCVAE models
the interference mixture with noise on channel 2. Different from the former
IntCVAE, GIntCVAE incorporates a GST module to generate embeddings
of noisy mixture speech. Therefore, in the training stage, there is no need
to prepare labels for the training dataset. Since the GST can be trained in
an unsupervised manner without additional labels, the GST and CVAE are
jointly trained using only the training loss of the CVAE.

The GST module consists of a reference encoder and a noisy mixture token
layer. The input audio is initially compressed into a fixed-length vector. This
vector then serves as the query for the attention module in the noisy mixture
token layer, which calculates a set of weights to measure its similarity to each
token. The weighted sum of tokens serves as the noisy mixture embedding,
which is incorporated into the encoder and decoder as the conditional variable c.
This embedding captures the acoustic conditions of noisy interference mixture,
such as the number of speakers and noise level.



Target Speaker Extraction under Noisy Underdetermined Conditionss 11

Figure 2: Illustration of TarCVAE and GIntCVAE.

In the inference stage, only the decoder is used to model the source and
output distribution parameters, with GST weights being updated while fixing
the noisy mixture tokens.

3.3 TSE algorithm

The crucial step in implementing TSE within the GSS framework outlined in
Sections 2.2 is estimating the demixing matrix W(f). During the inference
stage, the source model parameters on two channels are updated iteratively
using the trained TarCVAE and GIntCVAE. This allows the demixing matrix
to be refined iteratively through the objective function described in Eq. (8).

The update rule for W(f) is derived using the principles of vectorwise
coordinate descent (VCD), known for its fast convergence and low computa-
tional cost, and the elimination of the need for a step-size parameter. Details
of derivation can be referred to [27]. Assuming only a dual-channel case as in
Sections 2.1, the derived update rules are summarized as
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uj = D−1
j W(f)−1ej (j = 1, 2), (20)

û1 = λ1D
−1
1 d, (21)

hj = uH
j Djuj (j = 1, 2), (22)

ĥ1 = uH
1 D1û1, (23)

wj(f) =

{
ĥ1

2h1
[−1 +

√
1 + 4h1

|ĥ1|2
]u1 + û1 (j = 1),

1√
h2
u2 (j = 2),

(24)

where Dj = E[x(f, n)xH(f, n)/vj(f, n)] + λjdd
H and ej is the jth column

of the identity matrix (j = 1, 2). The global-scale parameter G = {gj}j is
updated as

gj ←
1

FN

∑
f,n

|wH
j (f)x(f, n)|2

σ2
θ(f, n; z, c)

(j = 1, 2). (25)

where F and N refers to the number of frequency indices f and time indices
n. In the training stage, θ, ϕ, and the parameters of GST are trained using
Eq. (14). In the inference stage, the algorithm of demixing matrix estimation
is summarized as follows:
1. Initialize W and Ψ = {z, c}.
2. Iterate the following steps for each j:
(a) Update wj(f) by calculating Eqs. (20) to (24).
(b) Update z and c by backpropagation, where only GST weights

are updated while fixing the noisy mixture tokens.
(c) Update gj by calculating Eq. (25).
(d) Update v by calculating Eq. (18).

4 Proposed Method for Enhancing the Extracted Target

4.1 Overview

For a TSE problem under noisy underdetermined conditions, the observed
signal can be considered a combination of three components: the desired target
speaker, a mixture of interfering speakers, and environmental noise. The work
in [37] focuses on clean underdetermined TSE without environmental noise,
using TarCVAE and IntCVAE to model clean target speaker signals and clean
interference mixtures, respectively. Building on this, GIntCVAE was proposed
to model noisy interference mixtures on channel 2 while continuing to use
TarCVAE as the source model for channel 1, aiming to extend the dual-channel
directional TSE system to noisy underdetermined conditions.
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In [37], it is assumed that the GC-based framework can divide the observed
signal into two components: the clean target speaker on channel 1 and the noisy
interference mixture on channel 2. The latter includes all interfering speakers
and environmental noise. On the basis of this assumption, the proposed
framework enables TarCVAE and GIntCVAE to model these two components
separately. However, the extracted target speaker signal often contains residual
noise. This issue arises because environmental noise is diffuse rather than a
point source. Consequently, with a limited number of microphones, diffuse
noise from sources in the same direction as the target speaker and nearby
areas is inevitably retained by the beamformer on channel 1.

An effective way to reduce the noise component in the extracted signal is
by applying the postfilter. In our previously proposed framework, an IRM-
based T–F mask was used as the postfilter. Although effective under clean
underdetermined conditions, this mask struggles with diffuse environmental
noise. Additionally, a TarCVAE trained on the clean speech of different
speakers is limited in modeling the noisy target speaker with residual noise
on channel 1. In this research, we adopted a complex T–F mask estimation
network as our neural postfilter, and we jointly trained a new GTarCVAE
source model with the neural postfilter.

4.2 Neural postfilter for estimating complex T–F mask

Recent studies have shown that the complex T–F mask generated using a
neural postfilter is more effective for speech enhancement than traditional T–F
masks [19]. CNNBLSTM is a widely used architecture for complex T-F mask
estimation in DNN-based speech enhancement tasks [10]. Recent studies, such
as [11], have demonstrated its effectiveness in generating complex ideal ratio
masks (cIRM) for speech enhancement [40]. Compared with the traditional
IRM in our previous method, the cIRM can simultaneously enhance both the
magnitude and phase responses of noisy speech. In the case of using a neural
postfilter, the real and imaginary components of the cIRM are always jointly
estimated by the trained DNN. In this paper, we adopt this CNNBLSTM-based
T–F mask estimation network as our neural postfilter.

Here is a brief review of the neural postfilter based on our problem formula-
tion in Sections 2.2. ŝ1(f, n) is the initial extracted target signal on channel 1,
which contains residual interferences in channel 1. Then, the neural postfilter
can be represented as

ŝtar(f, n) =M(ŝ1(f, n);β)ŝ1(f, n), (26)

where M is the network for estimating the complex T–F mask, and β is the
set of its parameters. The objective of this neural postfilter is to estimate the
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complex T–F mask from the input noisy speech signal for denoising, ensuring
that the denoised signal closely resembles the original clean target signal.

4.3 Proposed joint network of TarCVAE and neural postfilter

On the other hand, for the source model on channel 1, we used to keep using
TarCVAE to model a clean target speaker. In the absence of environmental
noise, TarCVAE can effectively model channel 1. However, in the presence
of environmental noise, the diffuse noise mixes with the single target signals,
posing a challenge for TarCVAE, which is trained solely on clean speech data
with one-hot labels representing only the identity of a clean speaker. Therefore,
on the basis of our previously proposed GIntCVAE, a feasible approach is to
introduce a GST into TarCVAE and train it using noisy speech data. This
new source model for modeling a noisy single speaker is called GST-TarCVAE
or GTarCVAE for short.

To model the noisy target speaker on channel 1, the new GTarCVAE
source model should be trained using noisy speech signals. Similarly, the
neural postfilter aims to estimate the complex T–F mask from noisy speech
for denoising, using the training data of noisy speech and corresponding
clean ground truth. Additionally, the GST in GTarCVAE learns the latent
representation of noisy single speakers, which can be introduced into the neural
postfilter to provide the conditional variable, potentially enhancing the noise
robustness in various noise environments. Therefore, we propose a joint trained
network of GTarCVAE and the neural postfilter with a shared GST module.

Figure 3 shows the illustration of the training process of the joint network.
There are three main parts: GTarCVAE, the shared GST module, and the
neural postfilter. The illustration of GTarCVAE is shown in Figure 4. Similar
to GIntCVAE in Sections 3.2, the shared GST module outputs the token
weight as the noisy single speaker embedding from the input of a noisy single
speaker’s speech, which serves as the conditional variable for both GTarCVAE
and the neural postfilter. The network architecture of the CNNBLSTM-based
neural postfilter is the same in [19], and we will describe it in detail latter.

Figure 3: Illustration of joint training of GTarCVAE and postfilter.
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Figure 4: Illustration of GTarCVAE.

In the training of the original TarCVAE, the format of the training dataset
is the normalized magnitude spectrogram, while in the training processing
of the neural postfilter in [19], the format is the log-amplitude spectrogram.
Therefore, we added two different calculation processes to obtain two types
of training dataset from the same data source. In addition, for the neural
postfilter, we adopted the clean-target training strategy, where the clean
ground truth is required to calculate the loss in the training. Following the
loss function Eq. (14) of the CVAE , we assume that S is the noisy training
dataset and Ŝ is the corresponding clean ground truth. The overall objective
function of the training to be maximized is

J (ϕ, θ, β) = E(S,c)∼pD(S,c)[Ez∼qϕ(z|S,c)[log pθ(S|z, c)]

−KL[qϕ(z|S, c)||p(z)]]−D[M(S|β)S, Ŝ], (27)

where D is the function that measures the difference between the denoised
signal and the clean ground truth. Here, we followed [19] to set D as the
mean-squared-error (MSE).

4.4 Inference processing of the new proposed method

In the inference stage, the decoder of the trained GTarCVAE and GIntCVAE
serves as the source model on channels 1 and 2, where the source model
parameters of the noisy target speaker and noisy interference mixed speakers,
the weight sum of GSTs tokens, and the demixing matrix are updated as
iteratively as the algorithm described in Sections 3.3. Then, the trained neural
postfilter is used to denoise the initially extracted target speaker on channel
1 ŝ1(f, n). Different from the training stage, the conditional variable for the



16 Wang et al.

postfilter is generated by the trained shared GST in the joint network with
the input of the internal extracted target ŝ1(f, n).

5 Experimental Evaluation

5.1 Training setting of CVAEs and neural postfilter

In our experiments, we trained the joint network of GTarCVAE and the
neural postfilter on 25 hrs of noisy audio data. The clean source data was
obtained from the si_tr_s folder of the Wall Street Journal (WSJ0) corpus
[32], which includes recordings from 101 speakers (50 male and 51 female),
each contributing 141 sentences. We mixed the clean speech with four types
of diffuse noise at varying SNR levels from the DEMAND dataset [34], which
contains six types of diffuse noise. GIntCVAE was trained on 20 hrs of noisy
mixed audio data, where the clean source for 19 groups of mixed speech with
2–20 speakers was generated by linearly mixing multiple speakers from the
WSJ0 si_tr_s folder and then mixing it with the same noise sources as those
used for the joint network of GTarCVAE and the neural postfilter.

The architectures of our networks are described as follows. The CVAE in
both GTarCVAE and GIntCVAE has the same architecture as in [18], designed
with an encoder, a latent space, and a decoder. The encoder consists of three
convolutional layers: two 2D gated CNN layers followed by a regular 2D
CNN layer. These layers incrementally encode the input spectrogram with a
conditional variable, converting it into the latent space. The decoder mirrors
the encoder with two 2D gated CNN layers and a final 2D convolutional
transpose layer, enabling it to reconstruct the input spectrogram.

For the GST module, the architecture follows [39], containing a reference
encoder and a token layer. The reference encoder processes the spectrogram
input through six 2D CNN layers with progressively increasing channels,
followed by a 128-unit GRU. The output of the reference encoder serves as
the reference embedding, which is passed to the token layer to interact with
the 10-token embedding bank via a multi-head attention module. The final
output style embedding is a 128-dimensional vector.

The neural postfilter employs the CNNBLSTM architecture as described in
[19]. The CNNBLSTM consists of an initial batch normalization and two 1D
CNN layers, followed by a depthwise 2D CNN layer. A linear layer transforms
the input dimension to a hidden dimension of F × N . The BLSTM layers
include 2 bidirectional layers. After that, a final linear layer maps the BLSTM
output back to dimension of 2F ×N . Finally, the output was divided into two
F ×N matrices, which constitute the real and imaginary parts of the cIRM.

The CVAE, GST, and CNNBLSTM were trained using the Adam optimizer,
with learning rates of 0.0001 for the CVAE, GST and the CNNBLSTM.
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GIntCVAE was trained 1000 epochs. GTarCVAE, CNN-BLSTM, and the
joint network were all trained 800 epochs. All implementations are based
on PyTorch 1.8.1, with hardward conditionas of a computer with Intel(R)
Xeon(R) Gold 6248 CPU@ 2.50GHz, 32GB RAM, and one NVIDIA RTX 3090
GPU.

5.2 Investigation of embedding space of GIntCVAE

5.2.1 Evaluation conditions

In this evaluation, we investigated the embedding space of the trained GIntC-
VAE by visualizing the latent representations produced by its GST. We aim to
analyse what the GST learnt regarding different aspects. Since GIntCVAE was
trained on a dataset of noisy mixed multi speaker signals and models the noisy
multi-interference mixture during inference, we want to determine the impact
of the number of speakers and SNR on GST’s capability to discriminate noisy
mixed speech.

In the evaluation, we used different SNR conditions of noisy mixed signals
from different numbers of speakers as inputs for the trained GIntCVAE.
The dataset for this evaluation is constructed as follows. This dataset was
generated by mixing different numbers of speakers and noise with different
SNR conditions. There are seven categories of numbers of speakers, following
a log scale: 2, 4, 8, 16, 32, 64, and 128. The SNR conditions are divided
into eight categories: -20, -10, 0, 10, 20, 30, 40, and 50 dB. There are 50
samples for each number of speakers and SNR condition. Therefore, there are
8x7x50 samples in this evaluation. We used t-distributed stochastic neighbor
embedding (t-SNE) [35] to compress all the 128-dimensional GST embedding
outputs to 2D representations.

5.2.2 Evaluation results

We visualized the features compressed by t-SNE with the same input 8×7×50
samples, using eight colors to represent different SNR conditions and seven
colors to represent varying numbers of speakers. Figures 5 and 6 show the
results. The GST embedding space shows clear clustering under different SNR
conditions, indicating that the trained GIntCVAE effectively captures noise
level information in noisy mixed speech. For varying the number of speakers,
the clustering effect is less pronounced, although certain patterns can still be
observed in each SNR cluster. This suggests that the trained GST finds SNR
information in mixed speech easier to learn and distinguish than information
on the number of speakers.
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Figure 5: t-SNE visualization of GST by SNR conditions.

Figure 6: t-SNE visualization of GST by numbers of speakers.
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5.3 Evaluation of TSE under noisy underdetermined conditions

5.3.1 Evaluation conditions

In this evaluation, we assessed our proposed method and baselines on three-
source mixtures with a fixed reverberation time of 150 ms. Using the image
source method (ISM) [3], we synthesized two-channel recordings of three
speakers with noise in a simulated room, as shown in Figure 7. Speakers
were randomly positioned at angles from 0° to 180°, with at least 10° between
them, and each speaker was 1 m from the microphone array center. The ISM
was chosen for its computational efficiency and ability to accurately simulate
essential room acoustic characteristics, such as reflections and reverberation.
This approach also provides acoustics control over variables like speaker and
noise positioning, making it suitable for our controlled experimental setup
under noisy underdetermined conditions. Speakers were randomly selected
from the WSJ0 folders si_dt_05 and si_et_05, and noise data came from
another two types of DEMAND noise, excluding training data. We tested under
SNR conditions of -10 dB, 10 dB, and 30 dB, with 30 tests per condition. Each
test utterance averaged 5–8 s. Performance was evaluated using the signal-to-
distortion ratio (SDR), source-to-interference ratio (SIR), sources-to-artifacts
ratio (SAR), and SNR, with higher values indicating higher performance.

Figure 7: Configurations of evaluation, where △ and × denote the target and two interfer-
ences, and α is the DOA of the target.

We selected several related methods as our baselines, including GCIVA [24],
MVAE [18], and IntCVAE [37]. For our ablation study on different components
of the proposed source models incorporating GSTs, we trained a joint network
of GST and TarCVAE without the neural postfilter. We evaluated two systems:
TarCVAE + GIntCVAE and GTarCVAE + GIntCVAE, both using an IRM as
the postfilter. To assess the new neural postfilter, we trained an independent
CNNBLSTM-based neural postfilter without a GST and a joint network of
GST and CNNBLSTM without TarCVAE, called the GST-Neural postfilter.
Additionally, we evaluated GTarCVAE + GIntCVAE + Neural postfilter,
GTarCVAE + GIntCVAE + GST-Neural postfilter, and the joint network
of GTarCVAE-Neural postfilter + GIntCVAE. For GC-based methods, the
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extracted target was the output from the corresponding channel. For the
MVAE without target selection, we calculated the metrics of all separated
signals with the ground truth of the target and chose the one with the best
result as the extracted target. Categorization of each baseline and proposed
method is summarized in Table 2.

Table 2: Comparison between baselines and proposed methods.

Method Application
scenario

Source
model Postfilter

GCIVA [24] Determined Laplace N/A
MVAE [18] Determined TarCVAE N/A

Previous method 1 [37] Clean
underdetermined

TarCVAE
+IntCVAE IRM

Previous method 2 [38] Noisy
underdetermined

TarCVAE
+GIntCVAE IRM

Proposed method 1 Noisy
underdetermined

GTarCVAE
+GIntCVAE IRM

Proposed method 2 Noisy
underdetermined

GTarCVAE
+GIntCVAE Neural postfilter

Proposed method 3 Noisy
underdetermined

GTarCVAE
+GIntCVAE GST-Neural postfilter

Proposed method 4 Noisy
underdetermined

Jointly trained
GTarCVAE
+GIntCVAE

Jointly trained
GST-Neural postfilter

5.3.2 Evaluation results

Tables 3, 4, and 5 present a summary of the evaluation results obtained under
different noisy conditions. The average SDR, SIR, SAR, and SNR indicate
that our proposed methods consistently achieves improvements over baselines
across various noisy conditions, particularly in terms of SIR and SDR, with
statistical differences observed based on a paired one-sided t-test (p < 0.05).
For example, at a low SNR of -10 dB, Previous method 2 achieves a 4.31 dB
improvement in SIR over Previous method 1 (p < 0.05). Proposed method
4 achieves a further 1.57 dB improvement in SIR over Previous method 2
(p < 0.05). These results underscore the advantage of introducing GSTs into
the source model for noisy interference mixtures, suggesting that, in noisy
underdetermined conditions with a dual-channel system, refining the source
model is important for TSE.

Furthermore, the introduction of the CNNBLSTM-based neural postfilter
has also shown clear improvement in the TSE performance, with the cIRM
estimated by the neural postfilter surpassing the traditional IRM. For instance,
at a low SNR of -10 dB, Proposed method 4 achieves an average SDR of 3.28
dB, which is an improvement of 1.73 dB over Previous method 2 and 1.45
dB over Proposed method 1 (p < 0.05). The experimental results show that
the cIRM estimated by neural postfilter suppresses residual noise better than
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Table 3: Average SDR, SIR, SAR, and SNR [dB] of the extracted target under noisy
underdetermined environment of SNR = -10 dB.

Method SIR SDR SAR SNR
GCIVA [24] -3.68 -8.25 -6.39 -5.31
MVAE [18] -3.12 -7.12 -2.44 -4.78

Previous method 1 [37] 1.03 -3.24 1.25 -2.23
Previous method 2 [38] 5.34 1.55 3.79 2.03

Proposed method 1 5.63 1.83 3.92 2.34
Proposed method 2 6.34 2.61 4.11 3.03
Proposed method 3 6.87 3.22 4.33 3.25

Proposed method 4 6.91 3.28 4.36 3.32

Table 4: Average SDR, SIR, SAR, and SNR [dB] of the extracted target under noisy
underdetermined environment of SNR = 10 dB.

Method SIR SDR SAR SNR
GCIVA [24] 2.41 1.78 5.06 1.08
MVAE [18] 4.68 2.14 6.59 2.13

Previous method 1 [37] 8.76 4.43 6.15 4.37
Previous method 2 [38] 13.32 9.53 10.15 7.27

Proposed method 1 13.61 9.88 10.56 7.81
Proposed method 2 14.21 10.73 11.16 8.51
Proposed method 3 14.54 11.31 11.55 9.02

Proposed method 4 14.62 11.40 11.52 9.13

Table 5: Average SDR, SIR, SAR, and SNR [dB] of the extracted target under noisy
underdetermined environment of SNR = 30 dB.

Method SIR SDR SAR SNR
GCIVA [24] 6.53 4.38 9.38 4.53
MVAE [18] 9.48 7.18 10.47 5.82

Previous method 1 [37] 15.11 9.61 11.19 8.89
Previous method 2 [38] 21.12 14.27 12.56 11.81

Proposed method 1 21.45 14.65 12.97 12.21
Proposed method 2 21.74 15.16 13.42 12.76
Proposed method 3 21.98 15.53 13.54 13.02

Proposed method 4 22.03 15.61 13.53 13.10

IRM, and the joint network approach is effective under noisy underdetermined
conditions.

6 Conclusion

In this paper, we propose a dual-channel TSE method for noisy underdeter-
mined conditions. Using a GSS framework, we integrate the GST module into
the IntCVAE source model to develop GIntCVAE, a new model for noisy mixed
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speech. To better model the target signal with noise, we also incorporate the
GST module into the TarCVAE source model, creating GTarCVAE. Addition-
ally, we analyze the embedding space of the GST in the trained GIntCVAE by
visualizing the GST output embedding features to understand the information
learned by the GST. We introduce a CNNBLSTM-based neural postfilter to
address residual diffuse noise in the extracted target signal. We train a joint
network of GTarCVAE and the neural postfilter with a shared GST module.

The experimental results highlight several points: (1) Introducing a GST
into the CVAE source model enhances the GSS framework-based TSE method
under noisy undetermined conditions. (2) The GST in GIntCVAE effectively
learns the mixing conditions and spatial acoustic information of the inter-
ference mixture in noisy mixed speech, especially the noise level. (3) The
CNNBLSTM-based neural postfilter more effectively enhances the extracted
target signal with residual noise than the traditional IRM, and the joint
network of GTarCVAE and the neural postfilter performs well under noisy
undetermined conditions. Note that all current works are based on simulated
mixed signals, and the proposed method is very time-consuming. In the future,
we will further investigate its application to real recorded signals and develop
an online algorithm.
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