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ABSTRACT

This study proposes a high-precision fast approximation method
for the ℓ2-norm evaluation of 2-tuple data arrays using a rotated
ℓ1-norm evaluation with fixed-point arithmetic. In several signal
processing applications, such as image restoration with isotropic to-
tal variation (TV) and one with complex ℓ1-norm regularization, a
large number of calculations for the 2-tuple ℓ2-norm are frequently
required. To achieve a hardware (HW)-friendly calculation, the
square and square root operations involved in the ℓ2-norm calcula-
tion should be adequately approximated. However, several existing
techniques have been challenged with respect to approximations.
Thus, in this paper, a HW-friendly approximation algorithm is pro-
posed. The proposed method uses the fact that the upper bound
of the surface of a first-order rotational cone traces a second-order
cone, that is, the ℓ2-cone. As a result, less variable multiplication
is required, and parallel implementation is easily achieved using
fixed-point arithmetic. To demonstrate the effectiveness of the
proposed method, it was applied to image restoration, and then its
performance on field programmable gate arrays (FPGA) is evalu-
ated in terms of the quality, circuit area, latency, and throughput.
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The effectiveness of the proposed method is verified by comparing
it with typical implementations using commercial circuits.

Keywords: Sparse representations, Fixed point implementation, Soft-thresholding,
Embedded vision, FPGA

1 Introduction

The Internet of Things (IoT) plays a significant role in the development of
the information society infrastructure [27, 7]. IoT refers to the concept of
Internet applications in which many things (devices) are connected through
the Internet and physical data are collected by servers. Examples of IoT
applications include smart homes, health monitoring, agricultural support, life
support, and driving support. These examples are built based on a sensor
network that connects a variety of things to the Internet. Because the network
processes a large amount of traffic and the server needs to manage a huge
amount of general-purpose data within a limited response time, it is necessary
to reduce the communication and computation load of the entire system [41,
31, 30, 1].

IoT applications that handle large amounts of data, such as driver assistance
technology with cameras and radar to detect require low-power and high-
speed systems owing to their nature [16, 12, 15, 40, 20]. As well, medical
applications require high performance computing systems for processing large
amount of high quality images and high dimensional data [19, 26]. These
issues are expected to be solved through hardware (HW) implementation.
For example, Xilinx’s Alveo, an adaptive accelerator card that accelerates
data center workloads, provides high-performance, low-latency, power-efficient
computation acceleration for media processing, e.g. deep neural network
(DNN)1 [18]. In IoT applications and medical applications, image acquisition is
often performed in severe environments; therefore, image restoration techniques
are indispensable. These factors call for image restoration techniques suitable
for HW implementation.

Recently, many image restoration methods have utilized the power of sparse
modeling. Sparse modeling is a technique that provides a mathematical repre-
sentation of prior knowledge available for optimization, under the assumption
that the essence of the target unknown data can be represented sparsely in
some mapped domain. Typical examples to promote sparse representation of
images include TV regularization and ℓ1-norm regularization [38, 35, 29, 8,

1Accelerating DNNs with Xilinx Alveo Accelerator Cards can be viewed at https:
//docs.amd.com/v/u/en-US/wp504-accel-dnns (Oct 2018).

https://docs.amd.com/v/u/en-US/wp504-accel-dnns
https://docs.amd.com/v/u/en-US/wp504-accel-dnns
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6, 37, 4, 10, 17, 11]. TV can be solved using primal-dual splitting (PDS) [28,
24]. In the HW implementation for high speed processing, we must consider
the arithmetic operations in the PDS. However, certain cases require opera-
tions that consume circuit resources, for example, variable multiplications and
non-linear operations. Image restoration using isotropic TV regularization
demands a 2-tuple ℓ2-norm evaluation. The ℓ2-norm evaluation requires square
root and square operations. These minor expenses results in costs that cannot
be ignored, particularly when large amounts of data are involved.

In HW, parallel processing, constant scaling, and fixed-point arithmetic
are preferred over serial processing, variable multiplication, and floating-point
arithmetic [14, 13, 36]. Let us illustrate examples of partly adopting some
of the above strategies. An approach for realizing square root arithmetic is
the piecewise constant approximation (PCA). Another approach is coordinate
rotation digital computer (CORDIC) [23, 2]. However, these approaches do
not allow constant scaling, owing to the calculation of the square operations
inside the square root for the ℓ2-norm computation.

In this study, we focus on the approximation of the ℓ2-norm for 2-tuple
arrays, because it appears in sparsity-promoting solvers with the isotropic
TV regularization for image restoration and those with complex ℓ1-norm
regularization. We propose an algorithm for approximating a 2-tuple ℓ2-norm
evaluation. The main contributions of this study are summarized as follows:

• The proposed algorithm reduces the ℓ2-norm evaluation to simple calcu-
lations such as constant scaling, where we introduce the fact that the
upper bound of a rotated first-order, or ℓ1-cone traces a second-order, or
ℓ2-cone [5].

• The performance assessment of the proposed method is conducted using
image restoration simulations and hardware implementation reports.

This study extends and reorganizes our previous conference paper [21] by
focusing on the evaluation aspects, where the algorithm is revised, evaluation
for FPGA is enhanced, and experiments are improved. In [21], a 2-tuple ℓ2-
norm approximation operation was implemented in hardware using high-level
synthesis (HLS). In this paper, we model it in register transfer level (RTL) for
HW implementation. This allowed us to optimally customize the circuits. In
addition, we leverage commercially available IPs from a vendor to speed up
and minimize the usage of resources and conduct detailed evaluation in terms
of latency and throughput is newly evaluated.

The remainder of this paper is organized as follows. In Section 2, we
describe an algorithm that uses the 2-tuple ℓ2-norm for image restoration
and summarize the problems for embedded implementation. In Section 3,
we propose an approximation method for the fixed-point implementation of
the 2-tuple ℓ2-norm operation as a solution to the problem in Section 2. In
Section 4, we evaluate the performance of our proposed method and show the
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results of the approximation error for floating-point arithmetic, appropriate
arithmetic word length for fixed-point arithmetic, and circuit area for the
FPGA implementation. In Section 5, we conclude this study and discuss future
prospects.

2 Review of Image Restoration

Let us review the problem settings relating to image restoration that use the
ℓ2-norm evaluation of 2-tuple elements. For context setting, we briefly describe
the isotropic TV regularization and the complex ℓ1-norm regularization. In
this paper, the term “2-tuple array” refers to an array of 2-tuple elements.
Note that we refer to an element in R2 and C as a 2-tuple element in common.

2.1 Isotropic TV Regularization

Figure 1(a) shows a sparsity promoting image restoration model with an analy-
sis dictionary ∆ ∈ Rn×m. A problem concerning isotropic TV regularization is
categorized in the model in Figure 1(a), where u ∈ Rm is an unknown original
image and d ∈ Rn is a vector consisting of the first-order differences of u
analyzed through ∆ in the vertical and horizontal directions, v ∈ Rq is an
observation of u and assumed to be measured through the process P ∈ Rq×m

with Additive White Gaussian Noise (AWGN) w ∈ Rq. Their relation can be
formulated as

d = ∆u, (1)
v = Pu+w. (2)

An image restoration problem based on the isotropic TV regularization is
formulated as

û = arg min
u∈[umin,umax]n

1

2
∥Pu− v∥22 + λ∥∆u∥1,2, (3)

where ∥ · ∥2 and ∥ · ∥1,2 denote the ℓ2-norm and mixed ℓ1-ℓ2-norm, respectively,
umin and umax are the minimum and maximum values of elements in u, and λ
is a regularization parameter [29]. The mixed ℓ1-ℓ2-norm is defined by

∥x∥1,2 :=
∑
i

√∑
j

x2
i,j , (4)

where xi,j denotes the j-th element of the i-th tuple. Note that ∥∆u∥1,2 is
refered to as the isotropic TV of u.
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Figure 1: Typical sparsity promoting image restoration models, where (a) is an analysis
dictionary model and (b) is a synthesis dictionary model.

We can adopt the PDS algorithm to solve the problem in (3) (see Ap-
pendix B for the details) [9, 28]. In the PDS solver, the generalized soft-
thresholding expressed by[

prox 1
τ ∥·∥1,2

(x)
]
i
= [x]i ⊙max (1− τ1⊘ ∥[x]i∥2 ,0) , (5)

is used as the proximity operator of ∥ · ∥1,2, where [·]i denotes the i-th tuple
consisting of the vertical and horizontal differences at the i-th position, τ ∈
[0,∞) denotes the threshold value. The setting of the regularization parameter
τ is an important factor that affects the quality of the image restoration, and
its optimal value depends on the characteristics of the image and the noise
level. ⊙ and ⊘ denote element-wise multiplication and division, respectively,
max(·, ·) denotes a vector consisting of greater elements between the first and
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second argument elementwisely, 0 and 1 denote the vectors of zeros and ones,
respectively. (5) performs the soft-thresholding for every element in the i-th
tuple. In the isotropic TV case, each tuple has two elements and consists of
differences between adjacent pixels in the vertical and horizontal directions.
The proximity operator and (5) are shown in Figure 2(a) and Figure 2(b),
where τ = 0.5 respectively.

(a) (b)

Figure 2: (a) The ℓ2-norm evaluation of ∥(x1, x2)⊺∥2, (b) Generalized soft-thresholding of
max(1− τ/∥(x1, x2)⊺∥2, 0) in (5), where τ = 0.5.

2.2 Complex ℓ1-norm Regularization

Figure 1(b) shows a sparsity promoting image restoration model with a synthe-
sis dictionary D ∈ Km×n, where K is a field such as R and C. The observation
image v ∈ Kq is assumed to be

v = Pu+w, (6)

where P ∈ Kq×m is the measurement process, w ∈ Kq is AWGN, and u ∈ Km

is an unknown original image represented by

u = Ds. (7)

The least absolute shrinkage and selection operator (Lasso) problem is catego-
rized in the model in Figure 1(b) [10], and the problem setting is formulated
as

ŝ = arg min
s∈Kn

1

2
∥PDs− v∥22 + λ∥s∥1, (8)
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where ∥ ·∥1 denotes the ℓ1-norm. To solve (8), we can adopt iterative shrinkage
thresholding algorithm (ISTA).

In this study, we are interested in the complex-valued case when u ∈ Cm.
In complex ISTA, the complex soft-thresholding expressed by[

prox 1
τ ∥·∥1

(x)
]
i
= xi ·max (1− τ/ |xi| , 0) (9)

is used as the proximity operator of ∥ · ∥1, where [·]i denotes the i-th element
of its argument and xi = [x]i ∈ C [25].

2.3 Identification of Norm Calculations

In the generalized soft-thresholding in (5), it is necessary to calculate the
ℓ2-norm of the 2-tuple element, i.e.,

∥[x]i∥2 =
√
x2
i,1 + x2

i,2. (10)

It is also necessary to take the absolute of complex element in the complex
soft-thresholding in (9), i.e.,

|xi| =
√
ℜ2(xi) + ℑ2(xi). (11)

The calculations of two formulas are the same in that both of them take
the square root of the sum of the squares of two components. Figure 3
illustrates how all tuples should be evaluated in every iteration of the restoration
algorithms.

Gen. soft-thresh.

ℝ 𝑛𝑛×𝑚𝑚 ×2

Gen. soft-thresh.

Gen. soft-thresh.

Gen. soft-thresh.

Gen. soft-thresh.

Gen. soft-thresh.
ℝ 𝑛𝑛×𝑚𝑚 ×2 ℝ 𝑛𝑛×𝑚𝑚 ×2

A lot of 
iterations

Figure 3: How the soft-thresholding process is applied to each iteration of PDS and ISTA.
This diagram illustrates that a number of 2-tuple ℓ2-norm calculations are required for the
process.

2.4 Problems for Embedded Implementation

In an embedded implementation, it is desirable to use fixed-point arithmetic
from the viewpoint of circuit resources and calculation speed. As well, constant
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scaling is preferable to variable multiplication to reduce circuit resource usage
through sophisticated approaches such as canonical signed digit (CSD) repre-
sentation, reduced adder graph (RAG), and distributed arithmetic (DA) [3, 22,
36]. For the square root function, the calculation can be approximately realized
by several existing methods such as piecewise constant approximation (PCA)
and CORDIC [33, 34]. The following is an overview of PCA and CORDIC for
reference.

2.4.1 PCA

PCA is a method of converting the relationship of the output signals to the
input signals into a truth table. This method is equivalent to predefined
memoization in programming, which has the advantage of converting complex
functions into a simple truth tables. However, when the accuracy of the output
signal is increased, the scale of the truth table becomes very large, which
increases the amount of resources used in the HW implementation.

2.4.2 CORDIC

CORDIC is an algorithm that can calculate trigonometric functions (sin, cos,
tan, arctan, sinh, cosh, tanh, and arctanh), logarithmic functions, exponential
functions, and square roots only by shift operations, addition and subtraction
operations, and calling predefined constants. Therefore, it has the advantage of
low resources usage in HW implementation. However, in the ℓ2-norm operation,
CORDIC can be applied to the square root operation, but not to the square
operation. Thus, we cannot avoid to consume circuit resources for the square
operation. In addition, parallel processing is not possible because the shift
and addition/subtraction operations are performed sequentially.

3 2-tuple ℓ2-norm Fixed-point Approximation

In this section, we propose a direct approximation method for the 2-tuple
ℓ2-norm evaluation with fixed-point arithmetic to solve the problems discussed
in the previous section.

3.1 Second-order Cone via Rotational First-order Cone

Let us first express a key idea of our proposed approximation. We identically
represent (10) and (11) in a form without the square root and square operations.
We express the real and imaginary part of a complex value xi as xi,1 = ℜ(xi)
and xi,2 = ℑ(xi), respectively. As a result, the right-hand sides of the two
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equations became equal. Thus, in the following section, we discuss the two
cases in common.

Our proposed method has the basis of the following theorem:

Theorem 1 (Second-order cone via first-order rotational cone). Let a rotated
first-order cone function aθ : R2 → R be

aθ([x]i) :=
1√
2

(
|xi,1 cos θ + xi,2 sin θ| + |xi,1 sin θ − xi,2 cos θ|

)
, (12)

where [x]i = (xi,1, xi,2)
⊺ ∈ R2. Then, aθ(·) relates to the ℓ2-norm of 2-tuple

element [x]i as
∥[x]i∥2 = sup

θ∈[0,π2 )

aθ([x]i). (13)

Proof. Let ∠[x]i = tan−1 xi,2

xi,1
. Then,

we see aθ([x]i) =
∥[x]i∥2√

2
(| cos(∠[x]i − θ)|+ | sin(∠[x]i − θ)|).

When θ = ∠[x]i − π
4 , we have the relation

a∠[x]i−π
4
([x]i) =

∥[x]i∥2√
2

(∣∣∣cos π
4

∣∣∣+ ∣∣∣sin π

4

∣∣∣) = ∥[x]i∥2. (14)

In order to show θ = ∠[x]i− π
4 gives the maximum value for 0 ≤ ∠[x]i−θ < π

2 ,
we can equate the derivative to zero as

∂aθ
∂θ

=
∥[x]i∥2√

2
(− sin(∠[x]i − θ) + cos(∠[x]i − θ)) = 0. (15)

As a result, (13) holds from the fact that aθ(·) = aθ+π
2 k(·) always holds for

any k ∈ Z.

3.2 Approximation of 2-tuple ℓ2-norm Evaluation

Let us derive an approximation method for the ℓ2-norm evaluation of 2-
tuple elements. From Theorem 1, we see that (13) can be approximated by
discretizing the angle θ. From this consideration, we propose to approximate
2-tuple ℓ2-norm as follows:

AN ([x]i) := max
θ∈Θ

aθ([x]i),Θ = {θ0, θ1, . . . , θN−1}, θk =
π

2N
k. (16)

Algorithm 1 shows the procedure to realize (16). To visualize the approxi-
mation, some plots of (16) are shown in Figure 4. Figure 4(a), (c), and (e)
confirm the validity of (16) with N = 2, N = 3, and N = 4, respectively.
Figure 4(b), (d), and (f) show the approximation error compared to Figure 2(a).
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(a) (b)

(c) (d)

(e) (f)

Figure 4: Approximation of ℓ2-norm evaluation with (16), where (a) N = 2, (b) Error of
(a), (c) N = 3, (d) Error of (c), (e) N = 4, and (f) Error of (e).
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Algorithm 1 Approximated 2-tuple ℓ2-norm evaluation.

Input: (x1, x2)
⊺ ∈ R2, τ > 0, N ∈ N

Output: a ∈ R
for each k ∈ {0, 1, 2, · · · , N − 1} do

ck, sk ← 1√
2
cos π

2N k, 1√
2
sin π

2N k

ak ← |ckx1 + skx2|+ |skx1 − ckx2|
end for each
a← max(a0, a1, a2, . . . , aN−1)

No approximation error is observed in the direction where θ = 0 and π/4 for
Figure 4(b), as indicated by the proof of Theorem 1. The maximum error in
the range shown in Figure 4(b) is approximately 0.075541, those shown in
Figure 4(d) and (f) are approximately 0.036828 and 0.020862, respectively.
One can verify that the error decreases as N increases.

Note that it is possible to calculate {ck} and {sk} in Algorithm 1 in
advance and store them as fixed-point constants. In addition, {ak} can be
computed independently, allowing parallel processing. Finally, we obtain
a simple approximation procedure for the 2-tuple ℓ2-norm evaluation with
fixed-point constant scaling.

3.3 Approximation of Soft-thresholding

Let us derive an approximation method for the generalized
soft-thresholding in (5). From Theorem 1 and (16), we propose to approximate
(5) as follows:[

prox 1
τ ∥·∥1,2

(x)
]
i
≈ [x]i ⊙max (1− τ1⊘AN ([x]i),0) . (17)

Algorithm 2 shows the procedure to realize (17). To visualize the approxi-
mation, some plots of (17) are shown in Figure 5. Figure 5(a), (c), and (e)
confirm the results of (17) with N = 2, N = 3, and N = 4, where τ = 0.5
respectively. Figure 5(b), (d), and (f) show the approximation error compared
to Figure 2(b).

The approximation error results in Figure 5(b), where it is observed that
there is no approximation error in the direction where θ = 0 and π/4, as
indicated by Theorem 1. The maximum error in the range shown in Figure 5(b)
is approximately 0.041182, those in Figure 5(d) and (f) are approximately
0.017626 and 0.009690, respectively. One can verify that the error decreases
as N increases.

As with Section 3.2, note that it is possible to calculate {ck} and {sk} in
Algorithm 2 in advance and store them as fixed-point constants. In addition,
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(a) (b)

(c) (d)

(e) (f)

Figure 5: Soft-thresholding function of the generalized soft-thresholding in (17) with τ = 0.5,
where (a) N = 2, (b) Error of (a), (c) N = 3, (d) Error of (c), (e) N = 4, and (f) Error of
(e).
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Algorithm 2 Approximated 2-tuple generalized soft-thresholding.

Input: (x1, x2)
⊺ ∈ R2, τ > 0, N ∈ N

Output: (y1, y2)
⊺ ∈ R2

for each k ∈ {0, 1, 2, · · · , N − 1} do
ck, sk ← 1√

2
cos π

2N k, 1√
2
sin π

2N k

ak ← |ckx1 + skx2|+ |skx1 − ckx2|
end for each
a← max(a0, a1, a2, . . . , aN−1, τ)
y1, y2 ← x1

(
1− τ

a

)
, x2

(
1− τ

a

)
{ak} can be computed independently, allowing parallel processing. Finally,
we obtain a simple approximation procedure for the 2-tuple generalized soft-
thresholding with fixed-point constant scaling.

3.4 Application to Fixed-point Implementations

The evaluation values ck and sk of the trigonometric function used in Algo-
rithms 1 and 2 can be constant in advance. As a result, the

∣∣∣ckx1 + skx2

∣∣∣+∣∣∣skx1 − ckx2

∣∣∣ in line 5 of the Algorithms 1 and 2 can be realized by constant
multiplication with fixed-point representation.

A comparison of the existing and proposed methods is summarized in
Table 1. In contrast to CORDIC and PCA, the proposed method is feasible
in terms all of the fixed-point arithmetic, parallel processing and constant
scaling.

Table 1: Comparison of existing and proposed methods.

Method CORDIC PCA Proposal
Fixed-point Feasible Feasible Feasible

Parallel Process Difficult Feasible Feasible
Constant scaling Impossible Difficult Feasible

3.5 Analytical Comparison

Let us analyze and compare the complexity of algorithms from an abstract
point of view. To give an overview of the performance of the proposed method,
the required combinational circuit resources, storage capacities, latency and
throughput are formulated as functions of architectural configurations and
target device parameters for an abstract performance evaluation. Several
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functions are derived for the proposed method, CORDIC without pipeline,
CORDIC with pipeline, and PCA. The derived functions are shown in Table 2
(see Appendix A for the derivation).

Table 2: The performance estimation functions for the proposed method, CORDIC without
pipeline, CORDIC with pipeline, and PCA, where A, R, L, and T denote the combinational
circuit resources, register capacities, latency, and throughput, respectively.

Proposed method: ·pro CORDIC without pipeline: ·nop

A(b) (3N − 2)α
(b)
add + 2Nα

(b)
scaling 2α

(b)
add + 2α

(b)
mult

R(b) ρ
(b)
ff ρ

(b)
ff

L(b) 2ξ
(b)
add + ξ

(b)
scaling + δff (b + 1)ξ

(b)
add + ξ

(b)
mult + δff

T (b) 2ξ
(b)
add + ξ

(b)
scaling + δff (b + 1)ξ

(b)
add + ξ

(b)
mult + δff

CORDIC with pipeline: ·pip PCA: ·pca

A(b) (b + 1)α
(b)
add + 2α

(b)
mult (n + 4)α

(b)
add + α

(b)
scaling + α

(b)
mult

R(b) bρ
(b)
ff ρ

(b)
ff

L(b) (b + 1)ξ
(b)
add + ξ

(b)
mult + bδff (n + 3)ξ

(b)
add + ξ

(b)
scaling + ξ

(b)
mult + δff

T (b) ξ
(b)
add + ξ

(b)
mult + δff (n + 3)ξ

(b)
add + ξ

(b)
scaling + ξ

(b)
mult + δff

In Table 2, A, R, L, and T denote the combinational circuit resources, stor-
age capacities, latency, and throughput, respectively. The following summarize
the meaning of subscripts:

• ·pro: Proposed method

• ·nop: CORDIC without pipeline

• ·pip: CORDIC with pipeline

• ·pca: PCA

Since the circuit area and processing time are dependent on the target device
and data expressions, we define some meta variables as follows:

• α: Combinational circuit resources

• ρ: Registers (storage resources)

• ξ: Processing time

• δff : Setup and hold time of flip-flops (FFs)

The following summarize the meanings of subscripts and superscripts:

• ·add: Adder

• ·scaling: Constant multiplier
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• ·mult: Variable multiplier

• ·ff : Registers

• ·(b): Input bit width b

In Table 2, A(b) shows that the proposed method is highly dependent on
the composite number of ℓ1-cones N , the CORDIC is mainly dependent on the
input bit width b, and the PCA is mainly dependent on the number of nodes
n. On the other hand, the result in Table 2 shows that the proposed method is
independent of N except for the combinational circuit resources. This means
that increasing the accuracy of the proposed method is independent of the
time cost.

3.6 Register Transfer Level Modeling

Let us model our proposed 2-tuple ℓ2-norm approximation operation in RTL
for HW implementation, which was built by HLS in the previous work [21]. We
propose an RTL model for HW implementation of (16). The RTL modeling is
expected to reach a higher performance than that of the previous high-level
synthesis approach [21].

4 Performance Evaluation

To evaluate the performance of the proposed method, we first conduct a
comprehensive comparison by using abstract equations in Table 2, and then
assess the approximation performance of the ℓ2-norm. Next, we demonstrate
the simulation results of image restoration with double precision arithmetic.
In addition, we compare the precision of fixed-point arithmetic with those of
the existing method. The bit width of the fractional part of the fixed-point
implementation is changed, and the mean squared error (MSE) of the output
response is compared among the existing and proposed methods. Then, we
evaluate each design in terms of the latency, maximum operable frequency,
and resource usage of the fixed-point HW implementation and compare the
proposed method to other approximation methods. Table 3 summarizes the
experimental specifications.

Table 3: Experimental specifications.

Simulation tool MATLAB R2021b

CPU Intel(R) Core(TM)
i9-10980XE CPU @ 3.00GHz

OS Linux Ubuntu 20.04.6 LTS
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4.1 Abstract Evaluation

Let’s compare the performance in terms of the equations shown in Section 3.5
to estimate the HW implementation performance. As an example, we assume
the following conditions for meta variables:

• α
(b)
scaling = βα

(b)
add, α

(b)
mult = γα

(b)
add

• ξ
(b)
scaling = βξ

(b)
add, ξ

(b)
mult = γξ

(b)
add,

where β and γ are the ratios of HW cost of a constant multiplier and a variable
multiplier for an adder, respectively. For convenience, the following will share
the ratios of resources and delay time. In general, variable multipliers are
more expensive than constant multipliers, and constant multipliers are more
expensive than adders. Therefore, we will proceed with the discussion here
under the assumption that 1 < β < γ. β and γ are variables that depend on
the respective HW and cannot be simply defined. Therefore, we evaluate the
combinational circuit area, latency, and throughput as functions with variables
β and γ. The composite number of ℓ1-cones for the proposed method was set
to N ∈ {2, 3, 4}, the number of PCA nodes was set to n ∈ {10, 50}, and the
input bit width was set to 16. On our assumptions, the following estimations
are given by substituting the numbers to the meta variables of equations in
Table 2.

Figure 6 shows the evaluation of the combinational circuit area, latency,
and throughput with β and γ as variables (see Section 4.5 for the definitions of
latency and throughput in this paper). Because of the condition of 1 < β < γ,
the outside of the domain is shown in gray. For the sake of convenience, α(b)

add

and ξ
(b)
add are normalized to unit so that it is sufficient to know their relative

relationships. The setup and hold time of the register, δff , is assumed to be
negligible compared to the delay time of the adder, ξadd, and so is ignored.

From Figure 6, we see that the proposed method is independent of γ, i.e.,
the cost of variable multipliers, and the HW performance is influenced mainly
by β, i.e., the cost of constant multipliers.

4.2 Evaluation of ℓ2-norm Approximation

Let us evaluate the arithmetic part of computing the ℓ2-norm in terms of MSE.
We compare the results for all approximation methods (proposed method,
CORDIC, and PCA) with the reference in the double precision. The compu-
tation and MSE results for each algorithm are shown in Figure 7. CORDIC
has the smallest approximation error, followed by the proposed method with
N = 4, N = 3, and N = 2, and PCA. Although the approximation perfor-
mance of CORDIC is high, the approximation of the proposed method shows
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(a)

(b)

(c)

Figure 6: Functions of HW costs with metavariables β and γ, which are the ratios of the
costs of a constant multiplier and a variable multiplier for an adder, respectively. On the
assumption that 1 < β < γ, the outside of the domain is shown in gray. (a) Circuit area, (b)
Latency, and (c) Throughput.
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(a) (b) (c) (d)

(e) (f) (g)

Figure 7: Function plots of the reference and the approximation algorithm, where (a)
reference, (b), (c), and (d) the proposed approximation w/ N = 2 (MSE: 6.60688× 10−4),
N = 3 (MSE: 1.43639×10−4) and, N = 4 (MSE: 4.74456×10−5), respectively. (e) CORDIC
(MSE: 3.39324 × 10−8), (f), (g) PCA w/ Np = 10 (MSE: 0.018177) and Np = 50 (MSE:
8.39594× 10−4), respectively.

moderate performance for the image restoration and HW implementation. The
details are described in the following sections.

4.3 Image Recovery by TV Regularization

We evaluate the validity of the proposed method through the applications
of image restoration. First, we evaluated the TV calculation for restoring
a grayscale image. Table 4 summarizes the simulation conditions for the
image restoration with the isotropic TV regularization. To find optimal values
for the parameters of the image restoration process, the greedy method is
commonly used [32]. However, we experimentally searched for the optimal
value by manually adjusting the parameters step by step. The choice of τ is
important in setting any image restoration problem, and the choice of step
sizes γ1 and γ2 also have impact for the convergence characteristics of the
algorithm. However, since τ , γ1 and γ2 do not significantly contribute to the
difference between computation process with and without approximation, a
simple method was adopted in this study. The simulation was conducted on
five images by varying the standard deviation of AWGN. The original five
images are shown in Figure 8, which are Cameraman, Barbara, Kodak Image
02, 08 and 19 (Kodim02, Kodim08, and Kodim19).

Let us show the restoration performance of the proposed method with
double precision arithmetic. Table 5 shows the MSE for each image and noise
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Table 4: Simulation conditions of image restoration modeled by the isotropic TV regulariza-
tion.

Image size 256× 256
Bit depth 8bpp

Scale [0, 1]
Standard deviation of AWGN σ ∈ {5/255, 10/255, 15/255, 20/255}

Pixel loss rate 50%
Regularization parameter λ 0.012

Step size parameter γ1 0.0050
Step size parameter γ2 37.6984

# of angles N ∈ {2, 3, 4}

Table 5: Simulation results of image restoration by means of the isotropic TV regularization.
The experiments are conducted by varying the noise level for the five images in Figure 8.
The MSE for the original images of all algorithms are listed. Reference shows the restoration
performance without approximation.

Img Reference
Proposal

N = 2

Proposal

N = 3

Proposal

N = 4
CORDIC

PCA

Np = 10

PCA

Np = 50

σ =5/255, MSE

Cameraman 0.001920 0.001938 0.001920 0.001922 0.001920 0.001954 0.001912

Barbara 0.001582 0.001595 0.001585 0.001584 0.001582 0.001729 0.003993

Kodim02 0.000523 0.000529 0.000526 0.000524 0.000523 0.000543 0.000537

Kodim08 0.004331 0.004345 0.004338 0.004332 0.004331 0.004147 0.004434

Kodim19 0.001636 0.001639 0.001642 0.001638 0.001636 0.001616 0.009918

σ =10/255, MSE

Cameraman 0.002175 0.002183 0.002174 0.002175 0.002175 0.002438 0.002389

Barbara 0.001912 0.001917 0.001911 0.001912 0.001912 0.002100 0.002176

Kodim02 0.000733 0.000730 0.000732 0.000733 0.000733 0.001117 0.001085

Kodim08 0.004707 0.004714 0.004710 0.004708 0.004707 0.004599 0.005584

Kodim19 0.001915 0.001912 0.001917 0.001914 0.001915 0.001992 0.002503

σ =15/255, MSE

Cameraman 0.002813 0.002808 0.002807 0.002810 0.002813 0.003299 0.003090

Barbara 0.002617 0.002613 0.002612 0.002614 0.002617 0.002955 0.002781

Kodim02 0.001352 0.001337 0.001344 0.001347 0.001352 0.002109 0.002048

Kodim08 0.005461 0.005460 0.005460 0.005459 0.005461 0.005444 0.005535

Kodim19 0.002577 0.002566 0.002574 0.002574 0.002577 0.002791 0.002551

σ =20/255, MSE

Cameraman 0.003845 0.003829 0.003833 0.003839 0.003845 0.004532 0.004265

Barbara 0.003706 0.003691 0.003696 0.003700 0.003706 0.004145 0.003847

Kodim02 0.002402 0.002376 0.002388 0.002395 0.002402 0.003502 0.003395

Kodim08 0.006609 0.006596 0.006604 0.006605 0.006609 0.006640 0.006612

Kodim19 0.003668 0.003646 0.003658 0.003662 0.003668 0.004053 0.003554
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(a) (b)

(c) (d)

(e)

Figure 8: Original images for restoration simulation with the isotropic TV regularization,
where (a) is Cameraman, (b) is Barbara, (c) is Kodim02, (d) is Kodim08, and (e) is Kodim19.

level. It is important to note that the MSE of each algorithm is close to
the MSE without approximation (reference). CORDIC performs as well as
the non-approximation for all patterns. However, the proposed method with
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N = 4 also shows moderate performance with an average MSE about 10−6. As
an example, Figure 9 shows the results in terms of the MSE from the original
image of Figure 8(a), where the standard deviation is σ =10/255. In Figure 9,
(a) and (b) show the original and observation image, respectively, (c) is a
restored image with the original ℓ2-norm evaluation, and (d) represents the
result with the proposed approximation. Figure 9(d), (e), (f) are, respectively,
the restored image for N = 2, 3, and 4 in (16). Comparing Figure 9(c) and (d),
the difference in MSE is about 4.3× 10−6, indicating a good approximation
by the proposed method.

As shown in Figure 9, the approximation by the proposed method performs
higher than the original method. In some cases, our approximation shows a
higher restoration performance than the original. Let’s discuss the reasons.
First, the cost function of the problem setting does not necessarily much to
the quality assessment function, there is no guarantee of consistency between
the optimality of the two functions. Second, the regularization term (priors) of
the problem setting is not always appropriate for given images. The original
regularization is isotropic, while our proposed approximation process slightly
deviates from the isotropic. It cannot be denied that this anisotropy works
appropriately as a prior for certain types of images, and it is possible that the
restoration performance might improve contrary to our expectations. Figure 10
illustrates an example of image restoration by TV regularization in which this
flipping phenomenon occurs. In this demonstration, we rotated an artificial
stripe pattern image from 0 to π/2 radian and performed image restoration.
This phenomenon suggests that deviating slightly from the isotropic process
may be advantageous for anisotropic images.

4.4 FPGA implementation

Table 6 summarizes the FPGA implementation specifications in this study,
where Xilinx’s tools are used. The target board is Alveo U250 Data Center
accelerator card that is designed to accelerate compute-intensive applications
such as machine learning, data analytics, and video processing.2 We use only
the programmable logic (PL) unit of FPGA in this evaluation. The complie
strategy to synthesize the logic circuit from Vitis Model Composer was partially
changed, where the amount of BRAM used in FPGA, and the DSP utilization
were changed to 0. The target FPGA is equipped with DSPs and BRAMs
that can accelerate operations, however, DSPs and BRAMs that can only be
used for specific tasks, there is no guarantee of availability when coexisting
with other processes, and also it is not expected to be available in other HW

2Alveo U200 and U250 Data Center Accelerator Cards Data Sheet can
be viewed at https://www.avnet.com/opasdata/d120001/medias/docus/190/
XLX-A-U200-P64G-PQ-G-Datasheet.pdf (Oct 2018).

https://www.avnet.com/opasdata/d120001/medias/docus/190/XLX-A-U200-P64G-PQ-G-Datasheet.pdf
https://www.avnet.com/opasdata/d120001/medias/docus/190/XLX-A-U200-P64G-PQ-G-Datasheet.pdf
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(a) (b)

(c) (d)

(e) (f)

Figure 9: Simulation results of image restoration by means of isotropic TV regularization.
(a) Original image, (b) Observation image (MSE: 0.132132), (c) Restored image without
approximation (MSE: 0.002175), (d), (e), (f) Restored image with the proposed approxi-
mation for N = 2 (MSE: 0.002183), N = 3 (MSE: 0.002174) and, N = 4 (MSE: 0.002175)
respectively.
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(a)

(b) (c)

Figure 10: Simulation results of image restoration for an artificial stripe pattern image
rotated from 0 to π/2 radian, where the image size is 256× 256, the standard deviation of
AWGN is 10/255 and the pixel loss rate is 5. (a) Comparison of MSEs, (b) Original image,
and (c) Observation image.

implementations. Therefore, we set Vitis Model Composer block parameter
implementation option not to use these resources in our experiments.

PCA and CORDIC are implemented as existing methods for references.
The size of the truth table per input of PCA is shown as the number of nodes
Np. Since this implementation has 2-tuple inputs, the size of the truth table
is the square of the number of nodes. In this implementation of the 2-tuple
ℓ2-norm operation, x1 and x2 can be swapped as

√
x2
1 + x2

2 =
√

x2
2 + x2

1.
Therefore, the scale of the final implemented truth table can be reduced to
about half of the square of the number of nodes. The CORDIC IP has the
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Table 6: FPGA implementation specifications.

FPGA Implementation Environment Xilinx Vivado 2022.1
Target Board Alveo U250 Data Center Accelerator Card
Target card Virtex UltraScale+ FPGA

Synthesis strategy Vivado Synthesis Default
Implementation strategy Vivado Implementaion Default

HDL Verilog
HDL code generation Vitis Model Composer 2022.1
Vitis Model Composer

Library block HDL library block

Vitis Model Composer
implementation Option no DSP and BRAM

following implementation options: No Pipelining, Optimal, and Maximum.
CORDIC options are as follows: 3

• In No Pipelining, CORDIC core is implemented without pipelining.
• In Optimal, CORDIC core is implemented with as many stages of

pipelining as possible without using any additional LUTs.
• In Maximum, CORDIC core is implemented with a pipeline after every

shift-add sub stage.

Using Vitis Model Composer, we can automatically generate synthesizable
HDL code mapped to the Xilinx optimized algorithms.4

Let us compare the accuracy in fixed-point arithmetic among the proposed
method and the existing approximation methods (CORDIC and PCA). The
proposed and existing methods were applied to (10), a 2-tuple signal in the
range [−0.9, 0.9], and the output results were compared with the computation
results of the square root function of MATLAB in double precision data. The
evaluation was performed in terms of MSE. The relation between the bit width
and MSE for each method is shown in Figure 11. PCA with Np = 10 has a
small number of nodes and, its accuracy is lower than that of the other methods.
The MSE of PCA with Np = 10 is about 0.018, which is unacceptable for
8-bit image processing. Since the MSE of the methods other than PCA with
Np = 10 are not evaluated in Figure 11, Figure 12 shows the MSE for methods
other than PCA with Np = 10.

For the proposed method, the MSE decreases as the bit width increases
from 8 to 12 bits, and for CORDIC the MSE decreases from 11 to 16 bits. No
significant change was observed for any of the methods beyond 16 bits. For
CORDIC, the MSE is close to zero due to the high arithmetic precision. The

3CORDIC IP Product Guide can be viewed at https://docs.amd.com/v/u/en-US/
pg105-cordic (Aug 2021).

4Vitis Model Composer User Guide can be viewed at https://docs.amd.com/r/en-US/
ug1483-model-composer-sys-gen-user-guide (Nov 2024).

https://docs.amd.com/v/u/en-US/pg105-cordic
https://docs.amd.com/v/u/en-US/pg105-cordic
https://docs.amd.com/r/en-US/ug1483-model-composer-sys-gen-user-guide
https://docs.amd.com/r/en-US/ug1483-model-composer-sys-gen-user-guide
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Figure 11: Simulation results of the computational accuracy of the proposed method and
the fixed-point implementation of the existing method evaluated in terms of MSE, where
N denotes the composite number of ℓ1-cones of the proposed method, Np of PCA is the
number of nodes.
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Figure 12: Enlarged view of part of Figure 11, where simulation results of the computational
accuracy of the proposed method and the fixed-point implementation of the existing method
other than PCA with Np = 10 are shown in terms of MSE. N denotes the composite number
of ℓ1-cones of the proposed method, Np denotes the number of nodes of PCA.

proposed method with N = 3 or 4 approaches to the CORDIC accuracy. The
error between CORDIC and the proposed method with N = 3 is less than
2.0× 10−4, which we consider sufficient for 8-bit image processing.
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4.5 Synthesis Report for FPGA

Let us report the synthesis result of (10) with the proposed method and
existing methods for FPGA, and measure the performance.

Since the proposed method and PCA can approximate (10) directly, each
method was implemented with a dedicated stand-alone circuit. In contrast,
CORDIC is a method that can calculate square roots, but cannot calculate
square. Therefore, we evaluate CORDIC combined with a circuit for the square
operation.

The amount of resources used in the FPGA and the timing report were
obtained from the output reports produced after the synthesis by Vivado. Let
us use vendor-supplied IPs for CORDIC as an existing method, and allow for
a fair performance comparison with the proposed method. For the proposed
method and the existing PCA have no existing IPs and, thus we use the
Vitis Model Composer, which allows RTL design within MATLAB/Simulink
environment. The output HDL code is checked and compared among the RTL
model of the above three methods, CORDIC, PCA and the proposed method
to evaluate the performance.

4.5.1 Composition of the Proposed Method

The components of the proposed method are described in detail. The design
model consists of a circuit based on Algorithm 1 and implements on FPGA. A
schematic block diagram of the proposed algorithm designed from Simulink is
shown in Figure 13. First, we discuss the parameter values used within the
proposed method, i.e., ck and sk in Algorithm 1, which can be computed in
advance. The parameters for N = 2, 3, and 4 are as follows:

• For N = 2,
c0 = 1/

√
2, c1 = (1/

√
2) cosπ/4, s0 = 0, s1 = (1/

√
2) sinπ/4.

• For N = 3,
c0 = 1/

√
2, c1 = (1/

√
2) cosπ/6, c2 = (1/

√
2) cos 2π/6,

s0 = 0, s1 = (1/
√
2) sinπ/6, s2 = (1/

√
2) sin 2π/6.

• For N = 4,
c0 = 1/

√
2, c1 = (1/

√
2) cosπ/8, c2 = (1/

√
2) cos 2π/8,

c3 = (1/
√
2) cos 3π/8, s0 = 0, s1 = (1/

√
2) sinπ/8,

s2 = (1/
√
2) sin 2π/8, s3 = (1/

√
2) sin 3π/8.

These constants are calculated in advance, and ak in Algorithm 1 is obtained
only by constant multiplication (scaling), addition, subtraction, and absolute
operation. The proposed method consists only of constant multiplication,
addition/subtraction, absolute operation, and MAX calculations, no matter
how much the composite number of ℓ1-cones N is increased. All operations
can be computed in one clock cycle. The number of operations is 2N for
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(a)

(b)

(c)

Figure 13: A schematic block diagram of the proposed algorithm. (a), (b), and (c) are the
proposed approximation for N = 2, N = 3, and N = 4, respectively.
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constant multiplications, 3N − 2 for additions or subtractions, 2N for absolute
operation, and one MAX operation for N values.

Next, let us explain the bit width of each stage for the 16 bit inputs. In
the followings, the bit widths are represented in the Q-format, where

Qm,n Format with the m-bit signed integer part and n-bit fractional part.

UQm,n Format with the m-bit unsigned integer part and n-bit fractional part.

The design model with FPGA implementation from Vitis Model Composer is
shown in Figure 14. In Figure 14, boxes in the same color share the same bit
widths for all N ∈ {2, 3, 4}. The constant multiplication, addition/subtraction,
absolute operation, and multiplexing were computed with the Simulink Full
precision. The bit width from the input to the output is as follows:

• The input values x1 and x2 are assumed to be xi ∈ [−1, 1]: Q1.14

• The first constant multiplication (green box): Q2.29

• The addition/subtraction (purple box): Q3.29

• The absolute value (blue box): Q4.29

• The addition (purple box): Q5.29

• In the process of computing c0, s0, the absolute value (blue box): Q3.29,
and the addition (purple box): Q4.29

• The slice block to cut a sequence of bits from the input data and the
scale block to scale the input by a power of 2: UQ1.15

• The multiplexer and the comparison function: UQ1.15

In this way, the proposed algorithm performs norm computation for a 16-bit
input.

4.5.2 Latency

This paper defines latency as “the time from the first input to the first output.”
Low latency is preferable, meaning little delay time.

First, we obtain the number of clocks taken from the first input to the
first output from the Integrated Logic Analyzer (ILA) waveform observation
results. The proposed method and the existing methods; CORDIC and PCA,
are implemented with 16 bit width. Figure 15 illustrates the waveform. The
ILA waveforms were obtained based on the architecture shown in Figure 14.
The waveform at the top of the Figure 15 shows the clock signal with period
50 ns. The proposed method, PCA and CORDIC (option: No Pipelining)
takes 1 clock to output. CORDIC (option: Optimal) takes a total of 9 clocks
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(a)

(b)

(c)

Figure 14: The design model with FPGA implementation from Vitis Model Composer. (a),
(b), and (c) are the proposed approximation for N = 2, N = 3, and N = 4, respectively. The
red line indicates the critical path.
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Figure 15: Waveform observation results by Integrated Logic Analyzer (ILA) when input
signal is supplied to FPGA. The proposed method, PCA and CORDIC are modeled for
FPGA with 16 bit width. The clock period was set to 50 ns. The 1st line is the clock,
the 2nd and 3rd lines are the input signals x1 and x2, the lines from the 4th to 6th are
the waveforms of the proposed method (N = 2, 3, and 4), the 7th and 8th lines are the
waveforms of the PCA (Np = 10, 50), and the lines from the 9th to 11th are the waveforms
of CORDIC (option: Maximum, No Pipelining, Optimal).

to output. CORDIC (option: Maximum) takes a total of 17 clocks to output.
Therefore, the proposed method can output the results with fewer or equivalent
number of clocks compared with the other methods.

Next, we evaluate the maximum operating frequency of the proposed and
existing methods using Fmax. Fmax is calculated as

Fmax =
1

T − TW
, (18)

where T is the FPGA clock period and TW is the worst negative slack [39].
We implemented each method separately on FPGA with fixed T = 50 ns. The
result of TW is obtained from the synthesis report, and calculated Fmax using
(18). The higher Fmax is, the higher frequency the method can run on FPGA.
The critical paths are labeled by red lines in Figure 14. The critical paths were
drawn based on the FPGA timing report available after the implementation
of Vivado. The Fmax values of the proposed method and existing methods
are shown in Figure 16 for the 16-bit width case. Np in PCA is the number of
nodes. Figure 16 shows that CORDIC with Optimal or Maximum has higher
Fmax than the other methods, followed by the proposed method, CORDIC
with No Pipelining and PCA.

Finally, we calculated the latency from the ILA waveform in Figure 15 and
the Fmax in Figure 16 using the following equation:

Tlatency =
Pclks

Fmax
, (19)

where Pclks is the number of clocks taken from the first input to the first
output. Figure 17 summarizes the latencies, where we see that the proposed
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Figure 16: The bars show Fmax, which is the maximum operable frequency of FPGA. The
proposed method and existing method are implemented with 16-bit width. Np in the PCA
method indicates the number of nodes. No Pipelining, Optimal, and Maximum in CORDIC
label indicate the implementation options of Xilinx LogiCORE CORDIC IP.
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Figure 17: The bars show latency, which is the time taken from the first input to the first
output. The proposed and existing methods are implemented with 16-bit width.

method has smaller latency than the existing methods for all N , followed by
CORDIC and PCA.
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4.5.3 Throughput

This paper defines a throughput as “the reciprocal of the maximum processing
time to consume from one output to the next one.” A high throughput is
preferable, meaning that processing speed is high.

First, we evaluate the number of the clocks from one output to the next
one. Figure 18 shows the resulting waveforms, which are examined. All
of the proposed and existing methods take one clock for the successding
outputs. CORDIC usually operates a coarse rotation. However, the square
root function does not require any coarse rotation. This is because, in the
square root configuration, the CORDIC algorithm performs operations only in
the first quadrant.

Figure 18: Waveform results by Integrated Logic Analyzer (ILA). The proposed method,
PCA and CORDIC are modeled for FPGA with 16 bit width. The clock period was set to
50 ns. The 1st line is the clock, the 2nd and 3rd lines are the input signals x1 and x2, the
lines from the 4th to 6th are the waveforms of the proposed method (N = 2, 3, and 4), the
7th and 8th lines are the waveforms of the PCA (Np = 10, 50), the lines from the 9th to
11th are the waveforms of CORDIC (option: Maximum, No Pipelining, Optimal).

Next, the throughput is calculated from the maximum operable frequency
Fmax shown in Figure 16 with (18) by

Tthroughput =
Fmax

Rclks
, (20)

where Rclks is the number of clocks between successive outputs. The throughput
results are shown in Figure 19. Figure 19 shows the reciprocal of the throughput
defined in (20). CORDIC Maximum and CORDIC Optimal take the least
amount of time, followed by the proposed method for all N , CORDIC No
Pipelining, and PCA.

4.5.4 Circuit Area

Let us compare the circuit area among the proposed and existing methods.
We summarize the arithmetic part of (10) for each method in Figure 20(a)
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Figure 19: The bars show the evaluated maximum time from one output to the next one,
i.e., the reciprocal of throughputs, where the throughput is defined by (20). The proposed
and existing methods are implemented with 16-bit width.

and 20(b). A look up table (LUT) is a truth table in FPGA. The lesser the
amount of LUTs, the lesser the power consumption of the circuit can work.
PCA with Np = 10 has the lowest LUTs utilization, however its low arithmetic
accuracy makes itself impractical as discussed in Section 4.4. Comparing with
Figure 20(a), when N = 2 and N = 3, the proposed method requests less circuit
area than the other practical existing methods. For N = 4, the proposed
method requires a comparable amount of circuit resources as the existing
CORDIC and PCA with Np = 50. A FF is a storage element for sequential
circuits in FPGA. Comparing with Figure 20(b), the proposed method and
PCA uses no FF for any composite number N or Np. The amount of FFs used
in CORDIC is large because CORDIC requires repetitive computation and
uses FFs as storage resource.

4.6 Comprehensive Evaluation

Since the relationship among calculation accuracy and circuit area, latency, and
throughput has a trade-off, we visualize the performances and comprehensively
evaluate the characteristics of each method to clarify the contribution of our
proposed method. Table 7 summarizes their parformances at 16-bit fixed-
point. The resuls are collected from Sections 4.4, 4.5.2, 4.5.3, and 4.5.4.
Values in Table 7 are ideal if they are close to zero. CORDIC has high
arithmetic accuracy for any of the three methods. CORDIC Maximum and
CORDIC Optimal implement pipelined processing with FF to achieve the
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Figure 20: Synthesis reports with respect to the circuit area, where (a) shows the usage of
look-up tables (LUTs) and (b) plots that of flip-flops (FFs) for the proposed and existing
methods on FPGA, respectively. N indicates the composite number of ℓ1-cones of the
proposed method. Np indicates the number of nodes in the PCA method. No Pipelining,
Optimal, and Maximum in CORDIC label indicate the implementation options of Xilinx
LogiCORE CORDIC IP. Proposal’s FFs usage is zero for all bit widths.

lowest throughput compared to the other methods. CORDIC No Pipelining
consists of only LUTs and offers low latency and moderate throughput. PCA
with Np = 10 has a small circuit area, moderate latency, and moderate
throughput, however it shows a large MSE and low arithmetic accuracy. PCA
with Np = 50 has a higher accuracy than that with Np = 10, while the
LUT, latency, and throughput are worse significantly. Although increasing
the number of nodes Np to 50 or more is expected to improve the calculation
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Table 7: Comparison among the proposed and existing methods, where all methods are
configured with the 16 fixed-point bits. Each evaluation is taken from the results of the
previous sections.

MSE Latency 1/Throughput LUT FF

Proposal N = 2 5.17 × 10−4 0.0095 0.0095 410 0

Proposal N = 3 1.27 × 10−4 0.0119 0.0119 933 0

Proposal N = 4 4.81 × 10−5 0.0132 0.0132 1100 0

CORDIC Maximum 6.89 × 10−10 0.1401 0.0082 909 356
CORDIC No Pipelining 6.87 × 10−10 0.0289 0.0289 1013 0

CORDIC Optimal 6.86 × 10−10 0.0788 0.0088 923 192
PCA Np = 10 1.83 × 10−2 0.0207 0.0207 364 0

PCA Np = 50 6.47 × 10−4 0.0472 0.0472 1811 0

accuracy, other performance indices are not favorable. In contract, the proposed
method has moderate arithmetic accuracy with less circuit resources. Since the
implementation does not use pipelining, it achieves low latency with moderate
throughput. From the above discussion, CORDIC is appropriate when high
calculation accuracy is required, however, while the proposed method can
achieve high processing speed with low resource usage when a certain degree
of error is tolerated.

5 Conclusions

In this paper, we proposed an ℓ2-norm evaluation method for 2-tuple arrays,
which is suitable for fixed-point arithmetic. We assessed the application by
applying it to image restoration and evaluated the HW resource utilization and
processing speed through the FPGA design. The degradation of the proposed
approximation is verified to be insignificant with lower resource utilization
and faster response time than other conventional techniques. The 2-tuple
ℓ2-norm evaluation method is used not only for TV regularization but also for
complex ℓ1-norm. Therefore, it has a wide range of applications. Our proposed
algorithm focuses on 2-tuple elements. On the other hand, we are aware that
there are important applications for higher tuples, such as 3-dimensional total
variation. For example, it is possible to apply our method to the computation
of the high-tuple ℓ2-norm by implementing the approximation in (16) in a
hierarchical manner, but there is no guarantee that this approach is efficient,
and a new architecture needs to be proposed, analyzed, and evaluated. Since
this is beyond the scope of this paper, we leave it as an open problem. In the
future, we will apply the proposed 2-tuple ℓ2-norm method to image restoration
problems other than denoising and extend it to 3-tuples and more.
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Appendix

A Derivation of Performance Estimation Functions

In the following, we summarize the derivation process of the equations in
Table 2.

A.1 Proposed Method

Let us derive A(b)
pro, R(b)

pro, L(b)
pro, and T (b)

pro in Table 2.

Derivation of A(b)
pro

The arithmetic operations required for the norm calculation are listed as
follows, where Figure 13 is used as a reference.

• α
(b)
add: 3N − 2 modules

Three adders are required to obtain ak in Algorithm 1. When k = 0,
only one addition is needed, so 3N − 2 adders (addition modules) are
required.

• α
(b)
scaling: 2N modules

Looking at Algorithm 1, it appears that constant multiplier is required
4N modules, but the circuit can be reused when the results of sin and cos
calculations match. Therefore, 2N multipliers (multiplication modules)
are required.

As a result, we have A(b)
pro = (3N − 2)α

(b)
add + 2Nα

(b)
scaling.

Derivation of R(b)
pro

The proposed method does not use any register during the norm calculation.
We only assume one register after the norm calculation. As a result, we have
R(b)

pro = ρ
(b)
ff .

Derivation of L(b)
pro

The arithmetic operations required to reach to the output are shown below,
where Figure 13 is used as a reference.

• ξ
(b)
add: 2 modules

• ξ
(b)
scaling: 1 module
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From Algorithm 1 and Figure 13, the input requires one multiplication and
two additions to reach to the output. Assuming one register after the norm
computation, the setup and hold time is required before output. As a result,
we have L(b)

pro = 2ξ
(b)
add + ξ

(b)
scaling + δff .

Derivation of T (b)
pro

The arithmetic operations required to reach to the output are shown below,
where Figure 13 is used as a reference.

• ξ
(b)
add: 2 modules

• ξ
(b)
scaling: 1 module

From Algorithm 1 and Figure 13, the input requires one multiplication and
two additions to reach to the output. Assuming one register after the norm
computation, the setup and hold time is required before output. As a result,
we have T (b)

pro = 2ξ
(b)
add + ξ

(b)
scaling + δff .

A.2 CORDIC without Pipeline

Let us derive A(b)
nop, R(b)

nop, L(b)
nop, and T (b)

nop in Table 2.

Derivation of A(b)
nop

CORDIC computes the norm by combining with the square operation. The
arithmetic operations required for the norm calculation are as follows.

• α
(b)
add: 1 module

• α
(b)
mult: 2 modules

Functions required for performing a square operation, x2
i,1 + x2

i,2.

• α
(b)
add: 1 module

CORDIC internal operation to calculate the square root. CORDIC
requires addition and shifting of input bits. Repeated use of one adder.

As a result, we have A(b)
nop = 2α

(b)
add + 2α

(b)
mult.

Derivation of R(b)
nop

CORDIC without Pipeline does not use any register during the norm calcula-
tion. We assume only one register after the norm calculation. As a result, we
have R(b)

nop = ρ
(b)
ff .
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Derivation of L(b)
nop

The path required to reach to the output are shown below.

• ξ
(b)
add: 1 module

• ξ
(b)
mult: 1 module

The path of the process of computing a square operation.

• ξ
(b)
add: b modules

It must be passed through adders with an input bit width of b inside
CORDIC before reaching output.

Assuming one register after the norm computation, the setup and hold time is
required before output. As a result, we have L(b)

nop = (b+ 1)ξ
(b)
add + ξ

(b)
mult + δff .

Derivation of T (b)
nop

The path required to reach to the output are shown below.

• ξ
(b)
add: 1 module

• ξ
(b)
mult: 1 module

The path of the process of computing a square operation.

• ξ
(b)
add: b modules

It must be passed through adders with an input bit width of b inside
CORDIC before reaching output.

Assuming one register after the norm computation, the setup and hold time is
required before output. As a result, we have T (b)

nop = (b+ 1)ξ
(b)
add + ξ

(b)
mult + δff .

A.3 CORDIC with Pipeline

Let us derive A(b)
pip, R

(b)
pip, L

(b)
pip, and T (b)

pip in Table 2.

Derivation of A(b)
pip

CORDIC computes the norm by combining with the square operation. The
arithmetic operations required for the norm calculation are as follows.

• α
(b)
add: 1 module

• α
(b)
mult: 2 modules

Functions required for performing a square operation, x2
i,1 + x2

i,2.
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• α
(b)
add: b modules

Adders are lined up b modules on the pipeline.

As a result, we have A(b)
pip = (b+ 1)α

(b)
add + 2α

(b)
mult.

Derivation of R(b)
pip

CORDIC with pipeline requires b internal pipeline registers of input bit widths
b. The number of the registers should be the number of pipeline stages. If
all the adders are pipelined, the number will be b. As a result, we have
R(b)

pip = bρ
(b)
ff .

Derivation of L(b)
pip

The path required to reach to the output are shown below.

• ξ
(b)
add: 1 module

• ξ
(b)
mult: 1 module

The path of the process of computing a square operation.

• ξ
(b)
add: b modules

Adders are lined up b modules on the pipeline.

Assuming that the pipeline has a number of bit- width stages, b setup and hold
times are required before output. As a result, we have L(b)

pip = (b+ 1)ξ
(b)
add +

ξ
(b)
mult + bδff .

Derivation of T (b)
pip

The path required to reach to the output are shown below.

• ξ
(b)
add: 1 module

• ξ
(b)
mult: 1 module

The path of the process of computing a square operation.

Consider the setup and hold times of the pipeline process. As a result, we
have T (b)

pip = ξ
(b)
add + ξ

(b)
mult + δff .
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A.4 PCA

Let us derive A(b)
pca, R(b)

pca, L(b)
pca, and T (b)

pca in Table 2.

Derivation of A(b)
pca

The arithmetic operations required for the norm calculation are as follows.

• α
(b)
add: n+ 1 modules

PCA uses n additions to identify the breakpoint vectors for input values.
It is estimated to be n + 1, taking into account the fact that the cost
increases in stages for the two inputs as 2

n (1 + 2 + · · ·+ n)αadd.

• α
(b)
add: 3 modules

• α
(b)
scaling: 1 module

• α
(b)
mult: 1 module

PCA requires three additions, one constant multiplication, and one
variable multiplication to obtain table data.

Since PCA’s input values are used only for comparison operations, addition
and multiplication do not depend on the input bits as much as other methods.
As a result, we have A(b)

pca = (n+ 4)α
(b)
add + α

(b)
scaling + α

(b)
mult.

Derivation of R(b)
pca

PCA does not use any register in the norm calculation. We assume only one
register after the norm calculation. As a result, we have R(b)

pca = ρ
(b)
ff .

Derivation of L(b)
pca

The path required to reach to the output are shown below.

• α
(b)
add: n modules

PCA uses n additions to identify the breakpoint vectors for input values
x.

• α
(b)
add: 3 modules

• α
(b)
scaling: 1 module

• α
(b)
mult: 1 module

PCA requires three additions, one constant multiplication, and one
variable multiplication to obtain table data.
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Assuming one register after the norm computation, the setup and hold time is
required before output. As a result, we have L(b)

pca = (n+ 3)ξ
(b)
add + ξ

(b)
scaling +

ξ
(b)
mult + δff .

Derivation of T (b)
pca

The path required to reach to the output are shown below.

• α
(b)
add: n modules

PCA uses n additions to identify the breakpoint vectors for input values
x.

• α
(b)
add: 3 modules

• α
(b)
scaling: 1 module

• α
(b)
mult: 1 module

PCA requires three additions, one constant multiplication, and one
variable multiplication to obtain table data.

Assuming one register after the norm computation, the setup and hold time is
required before output. As a result, we have T (b)

pca = (n + 3)ξ
(b)
add + ξ

(b)
scaling +

ξ
(b)
mult + δff .

B PDS Algorithm for the TV Regularized Image Restoration

In the following, we describe the PDS algorithm in detail [9, 28]. First,
transformation of (3) using the indicator function ιC(·) can be formulated as

û = argmin
u

1

2
∥Pu− v∥22 + λ∥∆u∥1,2 + ı[umin,umax]n(u). (21)

The problem in (21) is applicable to PDS. PDS is an algorithm that solves an
optimization problem in the form

û = arg min
u∈[umin,umax]n

f(u) + g(u) + h(Lu), (22)

where f : Rn → R∪ {∞}, g : Rn → R∪ {∞}, and h : Rn → R∪ {∞} are lower
semicontinuous closed proper convex function, f is differentiable, and ∇f is
β-Lipschitz continuous, where L ∈ Rl×n. To apply the PDS algorithm to
problem (21), we define

f(u) =
1

2
∥Pu− v∥22, (23a)

g(u) = ı[umin,umax]n(u), (23b)
h(Lu) = λ∥∆u∥1,2, (23c)



42 Abe et al.

where L = ∆. The PDS algorithm steps are derived as

u(k+1) = PC

(
u(k) − γ1

(
λP⊤(Pu(k) − v) +∆⊤z(k)

))
, (24)

z̃(k+1) = z(k) + γ2∆
(
2u(k+1) − u(k)

)
, (25)

z(k+1) = z̃(k+1) − S
(
z̃(k+1)

)
, (26)

with some initial state, e.g., k ← 0, u(0) = v and z(0) = ∆v, where PC(·) de-
notes the metric projection onto C = [umin, umax]

n, z and z̃ denote intermediate
variables, γ1 and γ2 are step sizes that should satisfy γ−1

1 −γ2(σmax(∆))2 ≥ β
2 .

σmax(∆) denotes the maximum singular value of ∆. S(·) in (26) represents
soft-thresholding for magnitude of 2-tuples in x as in (5), i.e.,

[S(x)]Ii
= [x]Ii

⊙max

(
1− 1

∥[x]Ii
∥2

1,0

)
,

where Ii denotes the index set of the 2-tuple of the i-th pixel, i.e., the indices
of the horizontal and vertical gradient components.
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