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ABSTRACT
Surface reconstruction from point cloud scans is crucial in 3D
vision and graphics. Recent approaches focus on training deep-
learning (DL) models to generate representations through learned
priors. These models use neural networks to map point clouds
into compact representations and then decode these latent rep-
resentations into signed distance functions (SDFs). Such meth-
ods rely on heavy supervision and incur high computational costs.
Moreover, they lack interpretability regarding how the encoded
representations influence the resulting surfaces. This work pro-
poses a computationally efficient and mathematically transparent
Green Learning (GL) solution. We name it the lightweight point-
cloud surface reconstruction (LPSR) method. LPSR reconstructs
surfaces in two steps. First, it progressively generates a sparse
voxel representation using a feedforward approach. Second, it de-
codes the representation into unsigned distance functions (UDFs)
based on anisotropic heat diffusion. Experimental results show
that LPSR offers competitive performance against state-of-the-
art surface reconstruction methods on the FAMOUS, ABC, and
Thingi10K datasets at modest model complexity.
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1 Introduction

Surface reconstruction from point cloud scans is critical in 3D vision and
graphics. It finds applications in augmented and virtual reality (AR/VR),
cultural heritage preservation, building information modeling (BIM), etc. Sur-
face reconstruction has recently gained attention in 3D AI-generated content
(AIGC). One inherent challenge in surface reconstruction from point clouds
stems from the ill-posed nature of reconstructing continuous surfaces from dis-
crete points. The fact that infinitely many possible surfaces can pass through
the input points makes it an open problem with no universally optimal solu-
tion.

Early research in this field [6, 7, 13, 16, 21, 28, 29, 48] employed unsu-
pervised solutions, where prior knowledge and assumptions (e.g., smoothness,
consistent normal directions) were heuristically designed to approximate an
optimal solution. Their reconstruction quality is somehow limited.

More recent efforts leverage supervision by pairing point clouds and their
surfaces, allowing surface reconstruction models to gain prior knowledge via
supervised learning. They use deep neural networks to map point clouds into
compact representations and then decode these latent representations into
signed distance functions (SDFs). The supervised deep-learning (DL) method-
ology has become the dominant one nowadays [3, 14, 18, 35, 36, 38, 39, 41, 42,
44, 45, 47]. DL models have the “encoder” and the “decoder” modules applied
to those 3D shape modeling or generative tasks. The former transforms point
clouds into latent vectors while the latter converts latent vectors to output
iso-surfaces [51]. Despite the superior performance of supervised models over
unsupervised ones, several challenges remain unresolved.

The first one is the interpretability of supervised DL models. Point clouds
are encoded into high-dimensional latent spaces and decoded into a signed
distance field (SDF) using convolutional neural networks (CNNs) or trans-
former layers. The latent representations are difficult to explain, and the
contributions of various layers are unclear due to the black-box nature of DL
models. Lack of interpretability may lead to reconstruction failures and hin-
der effective analysis of the model’s generalizability. Moreover, it complicates
the conditioning process in 3D generation and reconstruction. To address
this shortcoming, we propose an explainable method that yields explainable
results step by step. The second one is the training and inference complexity
and model sizes. Although GPUs can accelerate inference, DL models demand
significant memory and computational resources. Furthermore, they need a
large amount of training data. This is a concern since the sample numbers
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in 3D object datasets are much smaller than those in 2D image datasets (e.g.,
50K samples in ShapeNet[8] vs. 1.4M images in ImageNet[12]).

To tackle interpretability and complexity, we propose a lightweight point
cloud surface reconstruction (LPSR) method in this work. It extends our
previous work, GPSR [59]. LPSR enhances the heat diffusion module in
GPSR and employs a supervised learning paradigm to boost the performance.
LPSR features a feedforward-designed encoder and a PDE-based decoder with
mathematical transparency. The encoded representation has a clear physical
meaning in controlling the surface shape, and it can be decoded at different
grid resolutions to produce different levels of detail.

The main contributions of this work are summarized below.

• We propose a lightweight supervised learning pipeline that progressively
constructs voxel representations across multi-resolutions. Feature deriva-
tion, selection, and decision-making are all implemented in a feedforward
and statistical approach.

• We design a decoder that leverages geometric priors and adopts anisotropic
heat diffusion to generate surfaces from representations with modest
memory in an unsupervised manner. It accurately maps the representa-
tion to the 3D distance field.

• We conduct experiments on two 3D object datasets to demonstrate that
LPSR achieves competitive performance against state-of-the-art (SOTA)
surface reconstruction methods with lower memory consumption and at
a smaller model size.

2 Related Work

Surface reconstruction methods can be classified into two categories: unsuper-
vised and supervised. We provide a brief review of them below.

2.1 Unsupervised Surface Reconstruction Methods

Early unsupervised methods utilized combinatorial techniques, such as De-
launay triangulation or Voronoi diagrams, to directly infer point connectivity.
Notable examples include ball-pivoting [4] and power crust [1]. While these
methods are computationally less complex, they often struggle with accuracy
and cannot guarantee watertight surfaces.

On the other hand, implicit function methods solve an underdetermined
partial differential equation (PDE) system, where the solution represents the
target implicit surface in the 3D space. To mitigate the ill-posedness of the
system, geometric priors or constraints such as point normals and surface
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smoothness are typically required. A prominent example is the Screened Pois-
son method [28, 29]. It formulates the Poisson equation by enforcing consis-
tency between SDF gradients and point normals. This method is attractive
due to its accuracy and relatively low computational cost. However, it is
sensitive to input data noise and point normals’ accuracy. To address them,
the iPSR method [22] enhances the Poisson surface reconstruction process by
iteratively updating oriented normals and refining the surface reconstruction
at each iteration. Xiao et al. [48] improve the orientation of normals by incor-
porating an iso-value constraint in the Poisson equations. The PGR method
[33] eliminates the need for normals, treats surface normals and element ar-
eas as unknown parameters, and optimizes these parameters to achieve better
surface representation.

Unsupervised surface reconstruction methods rely on heuristic assump-
tions to approximate optimal solutions. They ignore specific requirements
of certain scenarios (e.g., objects, indoor scenes, outdoor environments, and
human faces). Therefore, their performance is generally inferior to that of
supervised methods.

2.2 Supervised Surface Reconstruction Methods

Supervised surface reconstruction methods utilize machine learning models
to yield the UDF/SDF or the occupancy grid. We examine them from two
angles below.

3D Representations. Since 3D UDF/SDF/occupancy grids can be re-
dundant and less informative, alternative 3D representations have been intro-
duced to create more compact and informative ones. One approach solves the
problem in the point domain [5, 14, 37, 2]. For example, Points2Surf [14] em-
ploys a PointNet-based network to predict SDF values in the point domain.
Similarly, DeepSDF [37] utilizes an auto-decoder to optimize randomly ini-
tialized latent vectors at each point. While solving the problem in the point
domain is memory efficient, the positional information computation can be ex-
pensive. Sparse voxel representations, widely adopted by SOTA methods [23,
24, 39, 50], store the positional information in voxel grids. This strategy alle-
viates the burden on decoders but has relatively high memory consumption.
Triplanes [43] and similar projective representations [34] introduce a novel rep-
resentation that mitigates the memory concerns associated with voxel grids.
[43] utilizes a multilayer perceptron (MLP) to decode 3D grids from projected
feature planes, though its interpretability may be limited. Lastly, several
methods focus on predicting the UDF [41, 57, 55, 11, 15], which then requires
conversion to SDF or direct extraction of an non-watertight surface.

Architectural Issues. Early supervised methods adopted an end-to-end
optimized neural network [14, 37] to generate point-wise or voxel-wise SDFs.
However, these approaches lack interpretability, exhibit poor cross-dataset



LPSR: Lightweight Point Cloud Surface Reconstruction 5

performance, and frequently result in failure cases. GeoUDF [41] decomposes
the problem into a sequence of modules to enhance interpretability. Huang
et al. [23, 24] replace B-spline bases with learned neural kernel bases in the
screened Poisson method, which achieves SOTA performance with partial ex-
plainability. These methods rely on deep neural networks to predict various
meta-information, such as normals and octree structures. Another method is
based on iterative online training including Neural-Pull [3], CAP-UDF [57,
55], and Neural-IMLS [46]. Neural-Pull [3] minimizes the distance between
query points and predicted SDF or UDFs. These methods do not rely on train-
ing sets from external data, thus avoiding potential biases. However, online
training can be computationally demanding and carries the risk of producing
non-converged results.

Despite their notable performance on specific test sets, DL-based methods
demand substantial computational resources and face interpretability issues.
Unexpected failures may occur when they are applied to unseen data. Conse-
quently, there is a need for a transparent and lightweight surface reconstruc-
tion method.

2.3 Green Learning

This work adopts the Green Learning (GL) paradigm, initially proposed by
Kuo et al. [31, 32], to mitigate computational efficiency and interpretability
concerns. Green Learning has emerged as an eco-conscious approach within
machine learning, emphasizing efficiency and a reduced carbon footprint dur-
ing model operations. Several core features distinguish this paradigm. It
promotes the development of models that are compact in size and have low
computational complexity during both training and inference phases. Fur-
thermore, GL is founded on a modularized design principle that enhances
mathematical transparency and theoretical explainability.

Specifically, GL reduces the training costs of backpropagation by adopting
a purely feedforward training scheme. It employs a modular design that de-
composes the whole machine-learning problem into manageable sub-problems,
each solved by a transparent learning model. This approach reduces the
model size and training/inference complexity and facilitates a theoretically
interpretable process across various applications.

Green learning has been applied to a range of point cloud processing
tasks. Notable models like PointHop [54], PointHop++ [53], R-PointHop [25],
GISP [52], PCRP [27], SPA [26] have proven effective in handling various point
cloud processing challenges, including 3D classification, registration, semantic
segmentation, and retrieval.
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3 Proposed LPSR Method

The proposed Learning-based Point Surface Reconstruction (LPSR) method,
as illustrated in Figure 1, employs a sequential modular approach to transform
an input point cloud into an unsigned distance field (UDF). It consists of four
cascaded modules, as depicted in Figure 1. They are: 1) Point Feature Projec-
tion, 2) Sparse Green U-Shaped Learning (GUSL), 3) PDE-based UDF Solu-
tion, and 4) Post Processing. In the first module, a point feature projection op-
erator is employed to extract point features, which are voxelized through voxel-
wise aggregation. The second module progressively learns the representation
in a feedforward manner. The representation output from Module 2 is used as
the input to Module 3, which solves a partial differential equation (PDE) for
the UDF. Finally, after the sign assignment, Module 4 uses a marching-cubes
algorithm to obtain the distance field. For clarity and logical progression
in explanation, the methodological description begins with the Point Feature
Projection module, followed by the detailed exposition of the PDE-based UDF
decoder module. The Sparse GUSL framework is discussed further in Section
3.3, and the Post Processing steps are elaborated in Section 3.4.

3.1 Point Feature Projection

In this module, the input point clouds are voxelized and yield voxel features
in an unsupervised process. As discussed in Section 2.2, a voxel grid is favored
among various representations because it contains positional information, and
no positional decoder is needed. We employ a sparse voxel grid to avoid
excessive memory consumption, considering only occupied voxels.

To convert point features to voxel features, we voxelize an input point
cloud into a 3d grid of size d × d × d. Within each voxel cube, we recenter
the points using the voxel geometry center. The recentered points inside the
voxel can be denoted as {p1, p2, . . . , pn} ⊆ R3. To align the dimension across
different voxels, we introduce a PoinNet-like structure [40]. A recentered point
pi is projected into a high-dimensional feature fi using a shared weights W
and bias b:

fi = σ(Wpi + b), (1)
where σ(·) is a non-linear activation function, specifically ReLU. Then, a
maximum aggregation function produces a voxel feature F by:

F = max({f1, f2, . . . , fn}), (2)

The major difference between our method and PointNet is that the weights
W and biases b in our module are purely based on random initialization
and do not require supervision for adjustment. We choose a large feature
dimension and rely on a feature selection module to identify powerful features,
as discussed in Section 3.2.
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Figure 1: The four modules of the LPSR method: 1) Point Feature Extraction, 2) Sparse
GUSL, 3) PDE-based UDF Solver and 4) Post Processing. Modules 1 and 2 can be viewed
as the encoding process that maps a point cloud scan to a representation, denoted by p,
while modules 3 and 4 decode the representation, p, to the reconstructed surface.

3.2 Heat-equation-based Surface Decoder

Motivation. The motivation behind applying a PDE-based decoder is to pa-
rameterize the UDF/occupancy field into an explainable feature space, thereby
avoiding the black box decoding processes typical of MLPs or other decoding
layers. This idea is shared by a group of supervised works [23, 24]. Consid-
ering the SDF/UDF is continuous in space and monotonic in empty regions,
one can parameterize it to some compact representations. Differ from [24]
using popular B-spline or Fourier bases to represent the SDF, we opt to use a
temperature grid to mimic the UDF and control the grid by parameterizing
the boundary conditions (e.g., temperature or heat flux). The advantages of
using a heat-equation solution as the UDF are outlined below:

• The steady-state solution of the heat equation forms a smooth and con-
tinuous 3D grid, supporting re-scaling using the finite element method
(FEM).

• Temperature values in empty voxels follow a monotonic change, with
values falling between the lowest and highest temperature ranges.



8 Zhou et al.

• The temperature is controlled by the magnitude and spatial position of
the heat source / flux, which is inherently differentiable.

This approach has proven efficient in our previous work, GPSR [59].
Implementation Details. Given a discrete 3D grid, our goal is to estab-

lish a heat flux or temperature control function q(x) and seek the steady state
solution u(x) to the heat equation, Eq. (3), which will serve as the UDF:

∂u(x)
∂t

−∇ · (D∇u(x)) = q(x), (3)

where D is the diffusion coefficient, ∂u(x)
∂t is set to 0 in the steady state when

u(x) does not change w.r.t. to time t.
Unlike our previous GPSR method, which treats the diffusion coefficient

D as a constant value, we set the D as a dependent variable of u by

D = αu, (4)

where α is a scalar parameter. This modification leads to the establishment
of a more accurate steady-state equation:

−∇ · (αu(x)∇u(x)) = q(x), (5)

which offers a more precise solution that converges to the UDF. We then
discretize Eq. (5) into a matrix form:

Gx(αu ⊙ (Gxu)) + Gy(αu ⊙ (Gyu)) + Gz(αu ⊙ (Gzu)) = q, (6)

where ⊙ denotes the Hadamard product. Gx,Gy,Gz are matrix form of
discrete gradient operator along x, y, z directions, respectively. The solution
u is the flattened UDF vector in the 3D grid. The q is the vector representing
the heat source/flux controlling the shape of the UDF.

The following two constraints must be satisfied to guarantee a converged
steady-state solution.

• The boundary condition is set to Neumann boundary condition with zero
heat flux, indicating no heat exchange with the outside environment at
the boundary.

• The vector q has a zero-sum, indicating that the net heat flux entering
and leaving the system is zero.

Considering the non-linear parabolic PDE, Eq. (6), cannot be directly
solved, we treat it as an optimization problem and use the gradient descent
method to solve it iteratively. The initial guess for optimization is the qpred
obtained from the XGBoost regressor. We use the iterative approach to solve
the PDE for upred, the output UDF.
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3.3 Sparse Green U-Shaped Learning (GUSL) Model

The GUSL model is the critical module that maps the aggregated point fea-
tures into a compact representation using the Green Learning paradigm. As
shown in Figure 2, it follows a U-shape pipeline and progressively yields rep-
resentations at different grid resolutions. The framework comprises three
modules for each resolution: unsupervised Saab feature construction, semi-
supervised feature selection, and supervised decision learning. We will intro-
duce these modules in the following.
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Figure 2: The pipeline of sparse GUSL, a multi-grid representation learning process. Note
that the Saab Hop module and the 2x2x2 pooling/upsampling operations are based on
sparse voxel operations, where empty voxels are not processed.

1) Sparse Saab Transform. To yield decorrelated representation fea-
tures from the input voxel features, a channel-wise (c/w) Saab Transform [10,
32] is applied on each local voxel neighborhood to derive its new representa-
tion in terms of Saab coefficients in an unsupervised manner. Given the sparse
nature of the 3D voxel representation, we only apply the c/w-Saab transform
over the occupied neighborhood, following a similar scheme of sparse convolu-
tion [17]. Using the n-hop c/w-Saab transform layers increase the spectrum
resolution to capture spatial correlations. The 3-layer features are sent to the
multi-grid feature selection and decision learning module.
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2) Feature Selection. Reducing the input feature dimension is essential
to achieve a lightweight model. Therefore, we introduce a semi-supervised
feature selection technique called the Relevant Feature Test (RFT) [49]. As
shown in Figure 3, for a given 1D input feature, samples are ordered by
their feature values, and the sample maximum and minimum bind the feature
dimension. The representation is then partitioned into two sub-intervals at
a set of uniformly spaced points between the maximum and minimum. We
compute the mean values of the samples in the left and right sub-intervals,
find the point that minimizes the weighted mean-squared error (MSE), and
define this MSE value as the RFT cost for that representation. The RFT cost
indicates the effectiveness of the representation in reducing regression errors.
We select the top k features with the most discriminant power and discard
the rest. “semi-supervised” means only a small subset of labels among the
training samples are required in the feature selection process.

1D Feature value 

Min Max 

Best Partition Point

Figure 3: Visualization of the Relevant Feature Test (RFT). Dots of different colors rep-
resent samples with different labels. The partition metric is the label values’ weighted
mean-squared error (MSE).

One challenge with incorporating supervision in our method is the absence
of backpropagation, which prevents traditional gradient-based learning. We
employ an indirect labeling approach to address this by utilizing outputs from
the PDE-based Module 3. Specifically, we pass the ground truth UDF uGT

pass through Eq. (5) introduced in Section 3.3 under different grid resolutions.
In Eq. (5), α is a scalar coefficient, u(x) represent the UDF at position x and
q(x) denotes the resulting representation. This process yields a set of ground
truth representation labels {qnGT , q

n−1
GT , , ...q2GT , q

1
GT } corresponding to various

resolutions. These labels are then used to effectively guide the feature selection
process without relying on backpropagation.
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3) Decision Learning. The selected features predict each voxel’s rep-
resentations qpred. These predictions are made using a group of progressive
XGBoost regressors [9]. The XGBoost model at the coarsest grid level (Hop n)
produces the coarse prediction q

(n)
pred for the representation voxel, while those

at finer grid levels predict the corresponding residuals ∆q
(n−1)
pred , ...,∆q

(2)
pred,∆q

(1)
pred

between the ground truth and the previous predictions.
As discussed in the previous paragraph, directly inferring the upred from

ppred involves solving a non-linear PDE in each training iteration, which can
be computationally expensive. To address this, we define an indirect loss for
the representation term q:

Lq = ∥qpred(x)− qUDF (x)∥2 . (7)

In addition, when the qpred is close to the ground truth, a correction term is
required to respect the PDE. In this case, we solve the PDE and define a loss
for the PDE solution upred:

LUDF = ∥upred(x)− uUDF (x)∥2 , (8)

where upred is the solution to the heat propagation equation, Eq. (3), given
representation q. The overall learning objective function can be expressed as:

L = Lq + λLUDF . (9)

The parameter, λ, is initially set to 0 in the training and gradually increases
to a preset value as the iteration progresses.

3.4 Post Processing

In this module, we aim to convert the unsigned distance field into a surface
by assigning a sign to the UDF upred and applying a marching cube to the
recovered SDF spred. To infer the sign of the predicted distance field upred,
we follow the approach used in GPSR [59]. As shown in Figure 4, the process
of converting UDF to SDF involves a forward heat propagation process across
a 3D temperature grid T through the following steps:

• Step 1: Identify all voxels intersected by the surface in a unit 3D space
with resolution d×d×d. A voxel is considered occupied (intersected by
the surface) if its predicted unsigned distance is less than 0.5 ∗ s, where
s = 1/d.

• Step 2: Compute the unit-length normal direction vector n for each
occupied voxel by determining the direction of the steepest gradient in
UDF.
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(a) (b) (c) (d)

Figure 4: Illustration of the sign alignment in the post-processing step, where red dots
denote the geometry center of each occupied voxel, while red and green crosses denote new
heat sources and sinks in P and N, respectively. The sign of occupied voxels is aligned in
the heat propagation process.

• Step 3: Arbitrarily select an occupied voxel pi = (xi, yi, zi) with normal
direction ni as the starting point. The sign of ni can be arbitrarily
assigned.

• Step 4: Compute 2 candidate locations l1i and l2i for each point pi as
follows:

l1i = round(pi + ni) (10)

l2i = round(pi − ni) (11)

Append l1i, l2i to two sets P and N, respectively.

• Step 5: Designate all locations in P and N as constant heat sources with
temperature +1 and sinks with temperature -1, respectively. Perform
a forward heat diffusion iteration over T , as demonstrated in Figure 4
(a).

• Step 6: For each adjacent occupied voxel pj , append l1j to P if T (l1j) >
0, and to N if T (l1j) < 0; apply the same criteria to l2j . This operation
is demonstrated in Figure 4 (b).

• Step 7: Repeat Step 5, cycling through each voxel until all occupied
voxels are processed, as shown in Figures 4 (c) and (d).

Following the propagation of all occupied voxels, the signs from the tem-
perature field T are extracted. The SDF spred is calculated as follows:

spred = Sign(T )⊙ upred, (12)

where ⊙ denotes the element-wise product. Finally, the marching cubes algo-
rithm is applied to spred to extract the surface.
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Our surface extraction method shares similarities with MeshUDF [20] in
determining the sign of the distance field. However, there are distinct dif-
ferences between the two approaches. MeshUDF utilizes the projection of
neighboring gradient vectors to compute the vote values for sign determina-
tion. While our method is a more straightforward approach by assigning preset
temperatures to specific locations and utilizing a heat transmission process to
infer values throughout the grid.

4 Experiments

4.1 Experimental Settings

We compare the performance of various surface reconstruction methods on
three datasets: FAMOUS [14], ABC [30], and Thingi10K [58]. They have
various types of degradation, including missing parts and different noise levels.
The input point cloud sets are categorized into three types: noise-free, original,
and extra-noise, with the variance of noise set to 0.00L, 0.01L, and 0.05L,
respectively. The L denotes the largest side of the mesh bounding box. The
model is trained over the ABC [30] dataset following a similar setting to [14].

We compare our LPSR method with several other surface reconstruction
methods, including Screened Poisson Reconstruction (SPR) [29], PGR [33],
Neural-Pull [3], Points2surf [14], PCPNet [19], POCO [5], NKSR [24], Geo-
UDF [41], CAP-UDF [55], and LevelSetUDF [56]. SPR and PGR are unsu-
pervised, non-data-driven methods that do not incorporate learning modules,
while the remaining seven are powered by learning-based approaches. It is
worth noting that PCPNet generates oriented point normals as outputs, and
SPR is used to yield its surface for fair comparison. SPR+PCPNet denotes
the resulting method. Experimental results for different point set categories
are reported by following the configuration settings specified by each method’s
papers for consistency and comparability.

The reconstruction quality is measured by the similarity between the
ground truth mesh, MeshGT , and the reconstructed mesh surface, Meshrec.
We normalize both meshes into unit size and uniformly sample 10,000 points
to yield point cloud sets, PCGT and PCrec. Following existing works [33,
14], we use the symmetric Chamfer distance (CD) and the Hausdorff distance
(HD) between PCGT and PCrec, and the symmetric mesh cosine similarity
(CS) between MeshGT and Meshrec as three quality metrics. For a compre-
hensive assessment of the reconstruction quality, F-score (F-S.) and normal
consistency (N.C.) are used. Following the existing work of [24], the F-score
adopt a threshold of 1% for evaluation.

We normalize all input point clouds to a unit scale within the range [0, 1].
The point clouds are then voxelized with a resolution of 256x256x256. The
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point feature dimension is set to 48. A three-hop sparse GUSL module is
applied, with each Saab transform conducted over a window size of 3x3x3.
Pooling and upsampling operations are set with a stride of 2. The feature
selection module ensures that the input features to each XGBoost model are
reduced to k = 256.

4.2 Quantitative Comparison of Reconstructed Surface Quality

The experimental results for the FAMOUS [14], ABC [30], and Thingi10K [58]
datasets are presented in Tables 1, 2, and 3, respectively. The best and second-
best results are highlighted in bold and underlined, respectively. Additionally,
to provide a comparative analysis of several leading methods, the F-score and
normal consistency across these three datasets are detailed in Tables 4, 5, and
6, respectively.

Table 1: Comparison of Reconstructed Surface Quality Metrics for the FAMOUS Dataset.

Method Noisefree Original ExtraNoisy
CD↓ HD↓ CS↑ CD↓ HD↓ CS↑ CD↓ HD↓ CS↑

PGR [33] 1.470 0.212 0.850 2.711 0.349 0.386 5.626 0.358 0.662
GPSR [59] 1.530 0.211 0.867 1.922 0.244 0.791 4.047 0.319 0.688

Points2surf [14] 1.633 0.218 0.822 1.750 0.235 0.793 3.103 0.332 0.585
SR+PCPNet [19] 1.746 0.258 0.830 1.947 0.263 0.782 4.005 0.327 0.540

Neural-Pull [3] 2.091 0.264 0.860 2.200 0.250 0.764 5.275 0.376 0.245
POCO [5] 1.403 0.223 0.869 1.734 0.252 0.818 3.213 0.323 0.638
NKSR [24] 1.684 0.206 0.871 2.151 0.236 0.633 3.490 0.301 0.694

Geo-UDF [41] 1.403 0.207 0.023 2.370 0.239 0.026 6.274 0.407 0.042
CAP-UDF [55] 1.456 0.219 0.027 2.367 0.240 0.028 5.738 0.373 0.036

LevelSetUDF [56] 1.433 0.214 0.023 2.318 0.242 0.029 6.253 0.393 0.036
LPSR (Ours) 1.511 0.209 0.872 1.832 0.237 0.809 3.546 0.311 0.694

Table 2: Comparison of Reconstructed Surface Quality Metrics for the ABC dataset.

Method Noisefree Original ExtraNoisy
CD↓ HD↓ CS↑ CD↓ HD↓ CS↑ CD↓ HD↓ CS↑

PGR [33] 2.014 0.242 0.816 3.549 0.319 0.331 5.434 0.357 0.609
GPSR [59] 1.932 0.267 0.849 3.225 0.299 0.693 5.579 0.367 0.600

Points2surf [14] 2.391 0.255 0.842 2.267 0.271 0.713 5.178 0.351 0.450
SR+PCPNet [19] 3.530 0.331 0.708 3.703 0.341 0.597 5.791 0.367 0.381

Neural-Pull [3] 3.431 0.296 0.788 4.891 0.342 0.582 8.898 0.422 0.262
POCO[5] 1.854 0.238 0.860 2.119 0.257 0.805 3.511 0.303 0.656
NKSR[24] 2.197 0.257 0.615 5.557 0.371 0.313 16.187 0.591 0.077

Geo-UDF [41] 1.836 0.237 0.022 3.721 0.293 0.039 11.13 0.461 0.092
CAP-UDF [55] 2.116 0.263 0.041 3.614 0.294 0.033 9.850 0.423 0.067

LevelSetUDF [56] 1.991 0.261 0.036 3.535 0.293 0.035 9.628 0.418 0.073
LPSR (Ours) 1.881 0.232 0.855 2.111 0.260 0.802 4.047 0.319 0.688
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Table 3: Comparison of Reconstructed Surface Quality Metrics for the Thingi10K dataset.

Method Noisefree Original ExtraNoisy
CD↓ HD↓ CS↑ CD↓ HD↓ CS↑ CD↓ HD↓ CS↑

PGR [33] 1.457 0.192 0.918 3.055 0.352 0.402 5.672 0.355 0.695
GPSR[59] 1.543 0.218 0.893 2.521 0.244 0.819 4.477 0.361 0.581

Points2surf [14] 1.552 0.200 0.884 1.689 0.214 0.860 3.601 0.342 0.603
SR+PCPNet [19] 2.462 0.270 0.828 2.602 0.271 0.780 4.937 0.336 0.533

Neural-Pull [3] 2.115 0.222 0.878 2.486 0.245 0.832 6.737 0.395 0.253
POCO[5] 1.579 0.224 0.909 1.839 0.232 0.880 3.611 0.324 0.679

NKSR [24] 1.911 0.221 0.679 2.454 0.230 0.603 12.991 0.564 0.103
Geo-UDF [41] 1.394 0.200 0.027 2.709 0.239 0.056 7.454 0.429 0.068
CAP-UDF [55] 1.507 0.208 0.039 3.021 0.241 0.046 7.483 0.402 0.055

LevelSetUDF [56] 1.517 0.211 0.032 2.874 0.231 0.043 8.200 0.415 0.052
LPSR (Ours) 1.503 0.211 0.902 1.869 0.240 0.825 4.047 0.349 0.604

Table 4: Comparison of F-score (F-S.) and Normal Consistency (N.C.) for the FAMOUS
Dataset.

Method Noisefree Original ExtraNoisy
F-S.↑ N.C.↑ F-S.↑ N.C.↑ F-S.↑ N.C.↑

PGR [33] 0.964 0.904 0.644 0.702 0.277 0.746
Neural-Pull [3] 0.759 0.753 0.763 0.749 0.280 0.568

POCO [5] 0.963 0.913 0.871 0.871 0.505 0.766
NKSR [24] 0.861 0.891 0.613 0.690 0.249 0.546

Geo-UDF [41] 0.981 0.918 0.682 0.720 0.265 0.575
CAP-UDF [55] 0.974 0.924 0.674 0.681 0.281 0.548

LevelSetUDF [56] 0.974 0.931 0.690 0.699 0.252 0.553
LPSR (Ours) 0.963 0.910 0.814 0.835 0.487 0.751

Table 5: Comparison of F-score (F-S.) and Normal Consistency (N.C.) for the ABC Dataset.

Method Noisefree Original ExtraNoisy
F-S.↑ N.C.↑ F-S.↑ N.C.↑ F-S.↑ N.C.↑

PGR [33] 0.836 0.916 0.543 0.677 0.270 0.793
Neural-Pull [3] 0.740 0.793 0.531 0.716 0.192 0.611

POCO [5] 0.882 0.953 0.757 0.883 0.391 0.821
NKSR [24] 0.766 0.897 0.520 0.662 0.159 0.547

Geo-UDF [41] 0.956 0.970 0.537 0.670 0.169 0.577
CAP-UDF [55] 0.916 0.949 0.533 0.662 0.167 0.566

LevelSetUDF [56] 0.927 0.944 0.550 0.704 0.158 0.590
LPSR (Ours) 0.897 0.933 0.763 0.891 0.352 0.801

For the FAMOUS dataset, LPSR significantly improved the performance
of our previous work, GPSR. We also see a reduction in the Chamfer and
the Hausdorff distances in all three datasets. This is attributed to the in-
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Table 6: Comparison of F-score (F-S.) and Normal Consistency (N.C.) for the Thingi10K
Dataset.

Method Noisefree Original ExtraNoisy
F-S.↑ N.C.↑ F-S.↑ N.C.↑ F-S.↑ N.C.↑

PGR [33] 0.928 0.952 0.527 0.742 0.244 0.805
Neural-Pull [3] 0.806 0.919 0.591 0.788 0.221 0.589

POCO [5] 0.916 0.941 0.817 0.920 0.394 0.823
NKSR [24] 0.768 0.925 0.671 0.873 0.194 0.559

Geo-UDF [41] 0.975 0.959 0.546 0.754 0.209 0.586
CAP-UDF [55] 0.966 0.958 0.495 0.704 0.211 0.561

LevelSetUDF [56] 0.972 0.963 0.525 0.744 0.185 0.572
LPSR (Ours) 0.910 0.942 0.794 0.889 0.363 0.805

troduced supervision. LPSR employs supervision to control the heat equa-
tion, leading to finer distance fields and better handling of various distortions.
POCO [5], NKSR [24], Geo-UDF[41], and CAP-UDF[55] exhibit competitive
performance in terms of Chamfer distance and Hausdorff distance under noise-
free conditions. Among them, POCO excels in robustness against noisy and
degraded inputs. On the other hand, it demands a high memory cost since it
uses query points to describe the occupancy map. NKSR [24] offers impres-
sive performance on the FAMOUS dataset. However, its accuracy relies on
the orientation of input point normals, which can be problematic with noisy
inputs in the ABC and Thingi10k datasets.

Regarding UDF-based methods [41, 55, 56], they display excellent per-
formance under noise-free conditions. However, their mesh cosine similarity
scores are typically lower than those achieved by other methods. This lower
performance can be attributed to the fact that UDF-reconstructed surfaces are
generally non-watertight and their surface normals are poorly aligned. These
factors significantly impact the mesh cosine similarity of their outputs.

4.3 Complexity Comparison

The complexity is measured over the FAMOUS dataset with noise-free inputs.
The model sizes, the computational complexity (in terms of floating operation
counts, or FLOPs), and the peak memory requirement are measured by taking
the average for the input point clouds. For a fair comparison, the output
resolution for most methods are typically set to 256, if possible.

Table 7 compares model sizes, the computational complexity (in terms
of floating operation counts, or FLOPs), the peak memory requirement of
LPSR, and two unsupervised and seven supervised methods. LPSR exhibits
the lowest computational complexity and maintains a notably small model
size among all the supervised methods evaluated. Specifically, LPSR’s model
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Table 7: Comparison of model sizes, computational complexities (in FLOPs), and peak
memory requirements.

Method Model Size Total FLOPs Peak Memory Runtime

Unsupervised PGR [33] <100 B - 11815 MB (x88) 7.41 s
GPSR[59] <100 B 10 G (x1) 134 MB (x1) 13.20 s

Supervised

Points2surf [14] 22 MB (x3.93) 5301 G (x62) 7805 MB (x8.71) 46.49 s
SR+PCPNet [19] 87 MB (x15.53) 2688 G (x31) 4967 MB (x5.54) 8.97 s

Neural-Pull [3] 15 MB (x2.67) 85486 G (x994) * 362 s
POCO [5] 133 MB (x23.75) 2370 G (x28) 33276 MB (x37.13) 39.53 s
NKSR [24] 57 MB (x10.18) 340 G (x4) 3409 MB (x3.80) 1.70 s

Geo-UDF [41] 3.2 MB (x0.57) 690 G (x8.02) 5742 MB (x6.41) 65.63 s
CAP-UDF [55] 2.0 MB (x0.35) 256491 G (x2982) * 947 s

LevelSetUDF [56] 1.8 MB (x0.32) 330702 G (x3845) * 789 s
LPSR (Ours) 5.6 MB (x1) 86 G (x1) 896 MB (x1) 21.17 s

*Neural-Pull, CAP-UDF and LevelSetUDF requires online training for each query
point cloud. Its peak memory is GPU specific.

size is 23 times smaller and its total FLOPs are 28 times lower than those of
the POCO method.

The low FLOP consumption can be attributed to the efficient feature se-
lection module in our sparse GUSL model. The Relevant Feature Test (RFT)
technique constrains the feature dimension to a specified size and discards less
relevant features, maintaining high performance while reducing the computa-
tional load. The small model size results from two key factors. First, RFT
effectively constrains the feature space dimension, thereby reducing the size of
the decision-learning process. Second, the surface decoder of LPSR is purely
PDE-based without any learnable parameters. While GeoUDF and CAP-USF
also have smaller model sizes, their total FLOP consumption during inference
significantly exceeds that of LPSR. This makes LPSR particularly efficient in
terms of both model size and computational requirements.

Regarding memory consumption, LPSR exhibits a lower cost than other
supervised models, although it is slightly higher than our previous unsuper-
vised work, GPSR. The low memory cost is due to sparse voxel representation
and a multi-grid scheme.

We also compared the runtime of these methods. The self-supervised meth-
ods, such as those detailed in [3, 55, 56], exhibit significantly longer runtimes
than others due to their reliance on online training for each point cloud scan.
This reliance makes them less suitable for real-time tasks. NKSR, on the other
hand, has the quickest response time compared to our LPSR and other super-
vised methods. This difference in speed is primarily because most modules of
LPSR are implemented on the CPU, whereas other supervised methods ben-
efit from GPU acceleration on Neural Networks. Consequently, the reported
runtimes should be considered as informative rather than definitive indicators
of true computational complexity.
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4.4 Visual Quality Comparison

In Figures 5, 6, and 7, we show input point cloud scans, ground truth surfaces,
and reconstructed surfaces using six methods - SPR+PCPNet, Points2Surf,
Neural-Pull, POCO, NKSR, Geo-UDF, CAP-UDF, LevelsetUDF and LPSR
(ours) for noise-free, original, and extra noisy categories, respectively. They
are used for qualitative comparison of reconstructed surfaces under different
settings. Besides, a visual illustration of different resolution outputs of LPSR
are shown in Figure 8.

Generally speaking, LPSR produces accurate surfaces with no apparent
failures. Although some details may be lost due to noisy inputs, no strange
textures or artifacts exist in its reconstructed surfaces. In contrast, DL-
based methods such as Neural-Pull and NKSR have partial failures, while
Points2Surf exhibits unusual textures. Geo-UDF and CAP-UDF produce
high-quality detailed geometry, though they struggle to maintain continuous
surfaces in some local regions, resulting in broken pieces and non-manifold
surfaces.

The success of LPSR is attributed to the PDE-based UDF decoder, which
produces a smooth and monotonic UDF across most regions. In contrast,
the DL-based models may decode surfaces from an ambiguous latent space,
leading to unexpected local optima and, thus, unpredictable failures.

4.5 Ablation Study

In this section, we assess the effectiveness of each component using a subset
of the ABC dataset.

1) Point Feature Projection. The number of projection directions
in the point feature projection module significantly impacts model perfor-
mance. We explored different configurations by varying the number of projec-
tion directions with m = 8, 16, 24, 32, 64, 128 and report the results in Table
8. We observed that the performance tends to drop with a smaller value m.
This indicates that fewer projection directions limit the representation capa-
bility. When the number of projections is above 64, the performance saturates.
Considering the complexity caused by larger feature dimensions, we selected
m = 48.

Table 8: Effect of projection dimensions of Point Feature Projection Module.

# of projection directions 8 16 24 32 48 64 128
L2 CD 1.952 1.664 1.573 1.548 1.540 1.551 1.539

2) PDE-based decoder. We assess the effect of our PDE-based decoder
by comparing our performance against a Sparse GUSL framework without a
PDE-based decoder. The latter directly uses the unsigned distance value of
each voxel as the prediction label.
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(a) Input (b) GT (c) PGR[33] (d) GPSR[59]

(e) SPR+PCP[19] (f) P2S[14] (g) Neural-Pull[3] (h) POCO[5]

(i) NKSR[24] (j) Geo-UDF[41] (k) CAP-UDF[55] (l) levelsetUDF[56]

(m) Our LPSR

Figure 5: Visualization of reconstructed surfaces obtained by LPSR and ten benching
methods, where the input point cloud belongs to the category of noise-free.
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(a) Input (b) GT (c) PGR[33] (d) GPSR[59]

(e) SPR+PCP[19] (f) P2S[14] (g) Neural-Pull[3] (h) POCO[5]

(i) NKSR[24] (j) Geo-UDF[41] (k) CAP-UDF[55] (l) levelsetUDF[56]

(m) Our LPSR

Figure 6: Visualization of reconstructed surfaces obtained by LPSR and ten benching
methods, where the input point cloud belongs to the category of original.
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(a) Input (b) GT (c) PGR[33] (d) GPSR[59]

(e) SPR+PCP[19] (f) P2S[14] (g) Neural-Pull[3] (h) POCO[5]

(i) NKSR[24] (j) Geo-UDF[41] (k) CAP-UDF[55] (l) levelsetUDF[56]

(m) Our LPSR

Figure 7: Visualization of reconstructed surfaces obtained by LPSR and ten benching
methods, where the input point cloud belongs to the category of extra noisy.
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(a) input (b) GT (c) 64 (d) 128 (e) 256

(f) input (g) GT (h) 64 (i) 128 (j) 256

Figure 8: Visualization of reconstructed noisefree surfaces at grid resolutions of 64, 128,
and 256. In our method, details are progressively added to the surface in a coarse-to-fine
manner.

Performance results are detailed in Table 9, showing a significant margin
that validates the effectiveness of the PDE-based decoder. Additionally, we
present the validation loss curves for the XGBoost model at the coarsest layer
in Figure 9. The model without the PDE-based decoder exhibits early satura-
tion, resulting in a higher loss. This performance gap stems primarily from the
absence of the decoder, where XGBoost processes each voxel independently,
disregarding the spatial correlations among neighboring voxels. In contrast,
the PDE-based decoder captures the smoothness across the field, preventing
the generation of discontinuous UDFs by the model.
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Table 9: Performance w/wo PDE-based decoder.

Method w/o PDE decoder w PDE decoder
L2 CD 2.23 1.54
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Figure 9: Comparison of validation loss of the xgboost model w/wo PDE-based decoder
at the coarsest layer. The validation loss is the MSE between the predicted UDF and the
ground-truth UDF.

3) The Effect of Feature Selection. To achieve an optimal balance
between low complexity and high performance, we investigated the impact of
varying the number of features selected by our RFT module. We experimented
with feature subsets of different sizes, selecting a subset of 32, 64, 128, 256,
512, 1024, and all generated features. The performance metrics for these
configurations are detailed in Table 10. Our findings indicate that the RFT
effectively maintains robust performance with as few as 256 selected features.
Adding more features beyond this number results in performance saturation.
This trend is also verified in Figure 10, where we plot the discriminative power
of each feature at the coarsest and the second coarsest layers. Both figures
illustrate that only a small percentage of the features have relatively strong
discriminative power and majorly contribute to the model’s performance.
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Table 10: Effect of selected feature dimensions of Sparse GUSL.

# of selected features 32 64 128 256 512 1024 all
L2 CD 1.725 1.632 1.578 1.540 1.532 1.561 1.533
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Figure 10: Ranked feature importance score of the Sparse Saab generated features for the
coarsest layer (left) and the second coarsest layer (right). The smaller RMSE value of RFT
indicates the stronger discriminative power of a given feature.

5 Conclusion and Future Work

A lightweight and interpretable surface reconstruction method, named LPSR,
was proposed in this work. It offers high-quality reconstructed surfaces for
various point cloud categories at lower computational and memory complex-
ity. LPSR is mathematically transparent. It uses a feedforward-designed
encoder and a PDE-based decoder, contributing to a deeper understanding
of the surface reconstruction mechanism and model behaviors. The encoded
representation has a clear physical meaning in controlling the surface shape,
and it can be decoded at different grid resolutions to produce different lev-
els of detail. The green learning paradigm further enhances the efficiency of
LPSR. LPSR delivers high-quality reconstructed surfaces with a small feature
dimension and minimal supervision.

We will extend LPSR to large-scale point cloud datasets, such as indoor
and outdoor scenes. We aim to understand the 3D shape generation behavior
in these diverse contexts while maintaining mathematical transparency and
computational efficiency.
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