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ABSTRACT
This paper presents an unsupervised method for learning disentan-
gled representations of monophonic music signals into three factors:
global timbral, local pitch, and local variational features. While
existing methods have achieved this for short isolated notes using
random perturbation, they fail for sounds with pitch transitions
or singing voices, causing leakage of the three characteristics into
mismatched latent features. To address this, we introduce a new
framework called re-entry training, which applies the network for
three-factor disentanglement twice in series with shared weights.
Re-entry training refines the characteristics extracted by the en-
coders and increases data variety, effectively performing implicit
data augmentation. This serial model can be reinterpreted as a
unified large variational autoencoder, offering an alternative prob-
abilistic formulation for unsupervised training. Our experiments
demonstrate that re-entry training results in a more focused extrac-
tion of sound characteristics, thereby enhancing the three-factor
disentanglement for various monophonic music signals.
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1 Introduction

Disentangled representation learning aims to decompose complex data into
independent components, each influencing a specific aspect of the data. In
machine learning, disentanglement is crucial as it makes latent representations
interpretable and provides an intuitive method to regulate each factor in data
generation. A major approach to disentanglement involves formulating a latent
variable model with a deep generative network and training it to disentangle
the latent variables. Disentanglement has been explored in various domains,
including image [1, 32, 35], text [53], and audio data [26].

In music information retrieval (MIR), a primary focus has been the dis-
entanglement of music signals into pitch- and timbre-related contents. Such
disentanglement underpins both analysis tasks (e.g., automatic music tran-
scription [3, 23, 59] and musical instrument classification [15, 19, 20, 43]) and
generative tasks (e.g., automatic music generation [6], music style transfer [9,
58], and timbre modification [5]) in MIR. The rationale behind this is that
disentanglement allows MIR systems to model these two elements separately,
enabling specialized analysis or manipulation of the melodic content or accom-
panying harmonic and timbral elements without mutual interference. In the
context of this two-factor disentanglement (i.e., pitch-timbre disentanglement),
major efforts have been devoted to separating the pitch information from all
the other sound characteristics, treated as timbre in a lump.

Although the pitch-timbre framework has acquired useful disentangled
representations of music signals to some extent, it involves an ill-definition
due to the lumped timbre. In pitch-timbre disentanglement, timbre ideally
represents the instrumentation of an input music signal. However, the timbre
of an instrument varies dynamically over time depending on expressive choices,
playing techniques, and dynamics, leading to musical instrument sounds
with different local variations being treated as different instruments, even if
generated from the same instrument. In music performance, we decide which
instrument to play and then dynamically control which notes to play and how
to play them. Therefore, the latent representation of a music signal should
be disentangled into three features: global (time-invariant) timbral features
representing instruments, local (time-varying) pitch features corresponding
to pitches, and local variational features reflecting non-pitch time-varying
characteristics.

Based on this, we previously proposed a variational autoencoder (VAE)-
based three-factor disentanglement method for musical instrument sounds with
random perturbation [54]. We introduced two types of random perturbation:
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pitch shift and timbre distortion, to disentangle the pitch-related contents and
timbre- and variation-related ones. Specifically, random pitch shift prevented
the global timbral and local variational features from acquiring pitch-related
characteristics of input musical instrument sounds, while random timbre
distortion prevented the local pitch features from acquiring timbral or non-
pitch characteristics. Additionally, we formulated our VAE so that the global
timbral features conditioned the local variational features. This formulation
distinguished between the information extracted by the two features and
prevented all information from being captured by the local variational features.
As a result, our method successfully achieved the three-factor disentanglement
of musical instrument sounds, where the global timbral features represented
information about the instruments or sound sources, the local pitch features
captured characteristics of pitch, and local variational features correspond to
expressive devices, playing styles, and dynamics.

Our previous method [54], however, was demonstrated to be effective only
on short isolated notes, and its behavior on more practical sounds (e.g., long-
lasting sounds with pitch transitions or singing voices) has yet to be verified.
Our preliminary experiments in this paper show that the method did not
achieve disentanglement well with such sounds, where the three characteristics
leaked into mismatched latent features. As a result, the local variational
characteristics of the sounds (e.g., phoneme information of singing voices) could
be inferred using the local pitch features. Furthermore, the aspect of sound
that the local variational features control was inspected solely in a qualitative
manner; whether the features truly involve the local variational characteristics
of sound (e.g., phoneme information of singing voices) as intended remains to
be clarified.

In this paper, we introduce a new re-entry training framework, where the
network for three-factor disentanglement is used twice in series (Figure 1).
The first network receives the randomly perturbed sound and outputs an
intermediate reconstruction. The second network takes it as input and outputs
the final reconstruction, with the weights of the two networks being shared.
Since the encoders see two different data simultaneously, they are forced to
extract sound characteristics that are semantically common to both data. For
instance, with respect to pitch, the networks simultaneously process pitch-
shifted content (from the perturbed input) and original pitch content (from the
intermediate reconstruction), both having the same timbre. As the networks
share weights and are thus identical, they are strongly encouraged to focus
on extracting semantically consistent features, such as timbre. Additionally,
re-entry training implicitly achieves data augmentation because it increases the
variety of data that the encoders receive. Moreover, as the training progresses,
the intermediate reconstruction gets closer to the original observation, and
the encoders of the second network eventually receive almost the same input
as the original. This exposes the encoders to a similar situation to the actual
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Figure 1: The overview of re-entry training framework.

inference stage, where the network is used only once and fed inputs without
perturbations.

The main contributions of this study are as follows. First, we verify that
random pitch shift and timbre distortion play essential roles in achieving
the three-factor disentanglement in an unsupervised manner by conducting
ablation studies. Second, we formulate a new probabilistic generative model
for improved three-factor disentanglement achieved by re-entry training. We
theoretically show that the two VAE-based networks in series form a unified
large VAE, where the two encoders and the first decoder work as a large
inference model, while the second decoder works as a generative model. This
allows us to train the entire model still in an unsupervised manner. Third, we
quantitatively reveal that the local variational features possess the intended
corresponding sound characteristics, such as phoneme information, through
experiments with singing voices. Finally, we show that re-entry training can
achieve a refined three-factor disentanglement against a wide range of music
signals, including those with stationary characteristics (i.e., isolated notes)
and with long-lasting non-stationary ones (i.e., monophonic musical fragments
or singing voices).

The rest of this paper is organized as follows. Section 2 reviews related
work on the disentanglement of music and audio signals. Sections 3 and 4
describe the framework of our previous three-factor disentanglement and those
of conventional two-factor disentanglement, respectively. Section 5 explains
the re-entry training framework. Section 6 reports comparative experiments,
and we develop discussions in Section 7. Section 8 concludes this paper.

2 Related Work

This section reviews existing methods for disentangled representation learning
of music signals using autoencoder (AE) or VAE architectures (Sections 2.1
and 2.2). This paper emphasizes an analytical perspective on disentanglement
and does not cover differentiable digital signal processing methods [10, 22,
28, 60]. We also explore disentangled representations in speech processing
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(Section 2.3) and techniques employing weight-shared networks multiple times
(Section 2.4) due to their technical similarity to our proposed approach.

2.1 Pitch-conditioned timbre representation learning

Pitch-timbre disentanglement of music signals originated from pitch-conditioned
timbre representation learning, primarily utilized in timbre transfer [2, 11, 21].
Early work by Mor et al. [48] introduced AEs for music translation, enabling
timbral modifications while preserving pitch. Bitton et al. [4] expanded this
approach1 by using the β-VAE model [24] to handle multiple sounds with a sin-
gle model, allowing many-to-many timbre transfer. Esling et al. [12] proposed
a VAE-based method that uses multi-dimensional scaling to align the learned
latent timbre space with human perception. Recently, Wu et al. [61] introduced
a conditional AE-based model using constant-Q transform representations.

2.2 Pitch-timbre disentanglement

Unconditioned pitch-timbre disentanglement was first explored by Hung et
al. [27], who used encoder-decoder structures for music style transfer at the
stream level. Recent studies have focused on finer temporal resolutions, such as
note-level and frame-level disentanglement. Table 1 summarizes these studies.
Techniques vary, including Gaussian mixture VAE [38], unsupervised learn-
ing with auxiliary objectives [39], contrastive metric learning [55], two-stage
disentangled sequential AEs [41], Jacobian disentangled sequential AEs [42],
and random perturbation [54]. However, all aim to disentangle non-stationary
music signals into multiple factors with different temporal resolutions. Unlike
our previous work [54], this paper addresses non-stationary music signals with
various types of music, including isolated notes, monophonic musical fragments,
and singing voices.

Table 1: Comparison of existing works on pitch-timbre disentanglement and the proposed
approach.

Method Input Timbre Pitch Variation

Luo et al. [38] Spectrogram (stationary) Global Global —
Luo et al. [39] Spectrum Global Global —
Tanaka et al. [55] Spectrogram (stationary) Local Local —
Luo et al. [41, 42] Spectrogram (non-stationary) Global Local —
Tanaka et al. [54] (Our previous work) Spectrogram (stationary) Global Local Local
Proposed Spectrogram (non-stationary) Global Local Local

1The paper by Mor et al. [48] was accepted to ICLR in 2019 but was submitted to arXiv
on 21 May 2018 (https://arxiv.org/abs/1805.07848). Meanwhile, the paper by Bitton et al.
[4] was submitted to arXiv on 29 September 2018.

https://arxiv.org/abs/1805.07848
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2.3 Disentangled representation in speech processing

Disentangled representation learning is also actively explored in speech pro-
cessing [46, 47], where VAEs have proven effective with vector quantization
for unsupervised phoneme extraction [50]. Our approach shares technical simi-
larities with the disentanglement of speech into multiple factors. For instance,
Qian et al. [52] decomposed speech signals into rhythms, pitches, timbres, and
contents using three information bottlenecks. Similarly, Liu et al. [36] and
Liang et al. [34] achieved similar decompositions without requiring bottleneck
fine-tuning or hand-crafted features. Choi et al. [7, 8] disentangled speech sig-
nals into linguistic, pitch, speaker, and energy information through waveform
perturbation, whereas Xie et al. [62] employed a learnable network to extract
linguistic information from perturbed speech, contrasting with Choi et al.’s use
of a pre-trained wav2vec model. In our research, we align with recent trends
in speech processing by applying input signal perturbation with a VAE-based
method. However, our research needs to focus on disentangling features unique
to music performances, employing tailored perturbation methods.

2.4 Multiple utilization of weight-shared networks

Our proposed re-entry training utilizes weight-shared networks multiple times.
This framework has been applied in various audio-related research fields. For
example, SpEx+ and SpEx++ [16, 17] employed weight-shared networks in
parallel for speaker extraction. Neri et al. [49] used a single VAE twice in
parallel to achieve unsupervised blind source separation of musical instrument
sounds. Similarly, in the work of Gao and Grauman [14], an audio-visual
separator was used in parallel for visually-guided audio source separation,
and Wisdom et al. [56, 57] implicitly used the same networks in parallel for
unsupervised sound separation. In contrast, Pan et al. [51] used weight-shared
networks in series for audio-visual speaker extraction, expecting their progres-
sive refinement architecture to outperform single-stage extraction. Likewise,
Hoshen [25] used the same networks in series for image separation. Our method
falls into this latter category (i.e., serial use), but differs by integrating two
weight-shared networks into a single large VAE, probabilistically formulated
in a novel manner.

3 Three-Factor Disentanglement

Our method trains a VAE to disentangle monophonic music signals into
global (time-invariant) timbral features and local (time-varying) pitch and
variational features in an unsupervised manner (Figure 2). Let x1:N be a matrix
consisting of N vectors xn (n = 1, . . . , N). This VAE is trained to represent
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Figure 2: The three-factor VAE model consists of three encoders for inferring latent variables
and a decoder for sound generation.

⊕
denotes the concatenation of multiple tensors.

During training, the latent variables zt, Zv, and Zp are sampled probabilistically using the
reparameterization trick, while during inference, they are given deterministically. Note that
random pitch shift and timbre distortion are only applied during training.

the log-amplitude spectrogram X ≜ x1:T ∈ RF×T of a monophonic music
signal, where F and T denote the numbers of frequency bins and time frames,
respectively. The proposed training forces the network to estimate the latent
representations Z ≜ {zt, zv1:T , z

p
1:T } consisting of global timbres zt ∈ RDt

, local
variations Zv ≜ zv1:T ∈ RDv×T , and local pitch features Zp ≜ zp1:T ∈ RDp×T

from the observations, where D∗ (∗ represents “t”, “v”, or “p”) is the dimension
of the latent space.

3.1 Generative model

We begin by formulating the generative process of an observed log-amplitude
spectrogram X. Each time-frequency bin xfτ ∈ R of X is represented by a
Gaussian distribution with latent variables Z,

xfτ ∼ N (xfτ | µθ,fτ (zt,Zv,Zp), σ2), (1)

where µθ,fτ (zt,Zv,Zp) ∈ R is the output of a deep neural network (DNN),
decoder with parameters θ, and σ2 ∈ R+ is a hyperparameter representing
the variance of the spectrogram. We assume each latent variable follows a
standard Gaussian distribution:

zt ∼ N (zt | 0Dt , IDt), (2)

Zv ∼
T∏

τ=1

N (zvτ | 0Dv , IDv), (3)

Zp ∼
T∏

τ=1

N (zpτ | 0Dp , IDp), (4)
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where 0D∗ is the all-zero vector of size D∗, and ID∗ is the identity matrix
of size D∗ ×D∗. These priors provide each latent variable with independent
features [24] that are interpretable.

3.2 Variational inference for unsupervised training

Our goal is to train the DNN to maximize the log-marginal likelihood log pθ(X).
However, the DNN-based formulation of our generative model renders log pθ(X)
intractable. Instead, we introduce a network, encoder with parameters ϕ,
denoted as qϕ(Z|X), to approximate the log-marginal likelihood. We train
both the encoder and decoder networks to maximize the following lower bound
L of the log-marginal likelihood:

L = Eqϕ(Z|X)[log pθ(X|Z)]−DKL(qϕ(Z|X)||p(Z)), (5)

where DKL(·||·) represents the Kullback-Leibler (KL) divergence. The decoder
parameters θ are inferred using maximum likelihood estimation, while the
encoder parameters ϕ are optimized to minimize the KL divergence from
qϕ(Z|X) to pθ(Z|X) ∝ pθ(X|Z)p(Z). The lower bound can be analytically
computed with Monte-Carlo approximation and optimized using gradient
ascent.

3.3 DNN-based formulation with partial conditioning

We aim to achieve disentanglement with one global and two local latent
features. When these three features are entirely independent, the model may
not prioritize the global features or utilize them less due to the dynamic
nature of music signals. To compel the model to use the global features,
we introduce an inductive bias into its formulation. Specifically, our model
needs to disentangle conventional timbre further into global and local features.
Therefore, we structure our model so that the global timbral features condition
the local variational features while maintaining the independence of pitch
features from both.

The formulation of qϕ(Z|X) is now given as

qϕ(Z|X) = qϕt(zt|X)qϕv(Zv|X, zt)qϕp(Zp|X), (6)

where ϕt, ϕv, and ϕp are the parameters of the encoders for the global timbres,
local variations, and local pitch features, respectively. Each posterior is given
by
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qϕt(zt|X) = N (zt|µt
ϕt(X),diag(σ2t

ϕt(X))), (7)

qϕv(Zv|X, zt) =
T∏

τ=1

N (zvτ |[µv
ϕv(X, zt)]τ ,diag([σ2v

ϕv(X, zt)]τ )), (8)

qϕp(Zp|X) =

T∏
τ=1

N (zpτ |[µ
p
ϕp(X)]τ ,diag([σ

2p
ϕp(X)]τ )), (9)

where µt
ϕt(X) and σ2t

ϕt(X) are the Dt-dimensional outputs of the DNN with
parameters ϕt, µv

ϕv(X, zt) and σ2v
ϕv(X, zt) are the DvT -dimensional outputs

with ϕv, and µp
ϕp(X) and σ2p

ϕp(X) are the DpT -dimensional outputs with
ϕp. The notation [A]τ indicates the τ -th time-frame of A. We approximately
calculate the expectation term of L using the reparameterization trick [30] as
follows:

Eqϕ(Z|X)[log pθ(X|Z)] ≈ −1

2

F,T∑
f,τ=1

{
log(2πσ2) +

1

σ2
(xfτ−ỹfτ )

2

}
, (10)

where ỹfτ = µθ,fτ (z̃t, Z̃
v
, Z̃

p
) is the reconstructed spectrogram with the sam-

ples z̃t, Z̃
v
, and Z̃

p
from the variational posterior q. In our model, these

samples can be obtained through the following partial ancestral sampling:

z̃t ∼ qϕt(zt|X), (11)

Z̃
v ∼ qϕv(Zv|X, z̃t), (12)

Z̃
p ∼ qϕp(Zp|X). (13)

3.4 Random perturbation for disentanglement

Our encoders transform the observed spectrogram X into the global timbral
representations zt, local variational representations Zv, and local pitch repre-
sentations Zp. However, these obtained representations are not disentangled
in terms of the timbral, variational, and pitch features because all the encoders
qϕ∗(·) receive the same input feature X, which contains all of the original
timbral, variational, and pitch contents. Since the VAE is trained to enable
the decoder to reconstruct the observation from the latent features extracted
by the encoders, the encoders aim to retain as much information as possible
in the latent spaces. Consequently, the timbral, variational, or pitch contents
naturally leak into mismatched latent spaces.

To avoid this undesired behavior, we utilize random perturbation techniques.
Specifically, we replace the inputs of the encoders X with two types of randomly
perturbed spectrograms, X′

RPS and X′
RTD, where “RPS” and “RTD” stand for

random pitch shift and timbre distortion (i.e., applying audio effects without



10 Tanaka et al.

changing the pitch), respectively. Let s ≜ s1:L be a time-domain musical signal
with a length of L. Originally, the observed spectrogram X is deterministically
obtained from the signal s via short-time Fourier transform (STFT) as

X = log(|STFT(s)|). (14)

Instead, we get the perturbed spectrograms via STFT against randomly
perturbed musical signals:

X′
RPS = log(|STFT(RPS(s))|), (15)

X′
RTD = log(|STFT(RTD(s))|). (16)

Note that these manipulations modify the signal non-deterministically; the
range of pitch shift and the kind of timbre distortion are determined at each
attempt.

We can hinder the encoders from extracting undesired information using
these perturbed spectrograms. On the one hand, we feed the encoders for the
global timbres and local variations with the randomly pitch-shifted spectro-
grams to prevent them from extracting pitch-related characteristics. On the
other hand, we feed the encoder for the local pitch features with the randomly
timbre-distorted spectrograms to prevent it from extracting characteristics
unrelated to pitch. The formulations of our DNNs (Eqs. (6)–(9)) are thus
rewritten as follows:

qϕ(Z|X′
RPS,X

′
RTD)

= qϕt(zt|X′
RPS)qϕv(Zv|X′

RPS, z
t)qϕp(Zp|X′

RTD), (17)

qϕt(zt|X′
RPS) = N (zt|µt

ϕt(X′
RPS),diag(σ

2t
ϕt(X′

RPS))), (18)

qϕv(Zv|X′
RPS, z

t)

=

T∏
τ=1

N (zvτ |[µv
ϕv(X′

RPS, z
t)]τ ,diag([σ

2v
ϕv(X′

RPS, z
t)]τ )), (19)

qϕp(Zp|X′
RTD)

=

T∏
τ=1

N (zpτ |[µ
p
ϕp(X′

RTD)]τ ,diag([σ
2p
ϕp(X′

RTD)]τ )). (20)

The ancestral samplings in Eqs. (11)–(13) are also rewritten as follows:

z̃t ∼ qϕt(zt|X′
RPS), (21)

Z̃
v ∼ qϕv(Zv|X′

RPS, z̃
t), (22)

Z̃
p ∼ qϕp(Zp|X′

RTD). (23)
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The random pitch shift and timbre distortion of the observed spectrogram
make the corresponding representations ignorant of the perturbed aspects
of the data. This is because if the randomly perturbed characteristics are
extracted by the encoders and used in reconstruction, they deteriorate the
likelihood of the model. These perturbations can be introduced without any
labels, allowing us to train the VAE in an unsupervised manner. Based on the
changes, our VAE is finally trained to maximize the following lower bound LR:

LR = Eqϕ(Z|X′
RPS,X

′
RTD)[log pθ(X|Z)]

−DKL(qϕ(Z|X′
RPS,X

′
RTD)||p(Z)). (24)

Note that the decoder pθ(·) still aims to generate the original observed spec-
trogram X.

4 Two-Factor Disentanglement

In this paper, we first compare our three-factor disentanglement framework with
two kinds of existing two-factor disentanglement frameworks: disentanglement
of the global timbres and local pitch features and of the local timbres and
local pitch features. This section describes the formulations of these two
disentanglement frameworks using random perturbations.

4.1 Disentanglement into global timbre and local pitch

This model is regarded as our model without the local variational features. We
aim to estimate the latent representations Z\v ≜ {zt,Zp} from the observation
X, where zt and Zp follow a standard Gaussian distribution as described in
Eqs. (2) and (4). Each time-frequency bin xfτ ∈ R of X is represented with
Z\v:

xfτ ∼ N (xfτ |µθ,fτ (zt,Zp), σ2). (25)

Similar to Section 3, we approximately calculate the log-marginal likelihood of
this model with two encoders and a decoder, where each encoder takes randomly
pitch-shifted and timbre-distorted spectrograms as input, respectively:

qϕ(Z\v|X′
RPS,X

′
RTD) = qϕt(zt|X′

RPS)qϕp(Zp|X′
RTD). (26)

Each posterior is given by Eqs. (18) and (20), and the samplings (not ancestral)
are the same as Eqs. (21) and (23). We train this model to maximize the
following lower bound L\v

R :

L\v
R = Eqϕ(Z\v|X′

RPS,X
′
RTD)[log pθ(X|Z\v)]

−DKL(qϕ(Z
\v|X′

RPS,X
′
RTD)||p(Z\v)). (27)
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4.2 Disentanglement into local timbre and local pitch

This model is then regarded as our model without the global timbral features.
Note that the formulation is slightly different from the original one because
the local timbres of this model are no longer conditioned. We aim to estimate
the latent representations Z\t ≜ {Zv,Zp} from the observation X, where Zv

and Zp follow a standard Gaussian distribution as described in Eqs. (3) and
(4)2. Each time-frequency bin xfτ ∈ R of X is represented with Z\t:

xfτ ∼ N (xfτ |µθ,fτ (Zv,Zp), σ2). (28)

Again, we calculate the log-marginal likelihood of this model. The formu-
lation of the encoders is given as

qϕ(Z\t|X′
RPS,X

′
RTD) = qϕv(Zv|X′

RPS)qϕp(Zp|X′
RTD). (29)

The first term of the posteriors is derived as

qϕv(Zv|X′
RPS) =

T∏
τ=1

N (zvτ |[µv
ϕv(X′

RPS)]τ ,diag([σ
2v
ϕv(X′

RPS)]τ )), (30)

where µv
ϕv(X′

RPS) and σ2v
ϕv(X′

RPS) are the DvT -dimensional outputs of the
DNN with parameters ϕv. The second term is given by Eq. (20). In this model,
we obtain the samples independently using

Z̃
v ∼ qϕv(Zv|X′

RPS), (31)

along with Eq. (23). The training of this model is conducted to maximize the
following lower bound L\t

R :

L\t
R = Eqϕ(Z\t|X′

RPS,X
′
RTD)[log pθ(X|Z\t)]

−DKL(qϕ(Z
\t|X′

RPS,X
′
RTD)||p(Z\t)). (32)

5 Re-entry Training

Our preliminary experiments (Section 6.4) revealed that the three-factor
framework explained in Section 3 did not effectively disentangle sounds with
pitch transitions or singing voices, causing leakage of local characteristics
across different latent features. To address this issue, we introduce a training
framework called re-entry training (Figure 3), which employs the network for
three-factor disentanglement twice in series with weight sharing.

2Naturally, the local timbres of this model should be denoted as Zt ≜ zt1:T . However,
this usage clashes with zt (i.e., the global timbres) and confuses correspondence to the
three-factor model, hence Zv.
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Figure 3: Two interpretations of re-entry training: Serial networks (above representation)
can be reinterpreted as a unified large VAE (below representation).

5.1 Re-entry training as two serial networks

In re-entry training, the first network receives the two perturbed inputs and
outputs an intermediate reconstruction X̃mid as follows:

X̃mid ∼ pθ(X̃mid|Z1), (33)
Z1 ∼ qϕ(Z1|X′

RPS,X
′
RTD). (34)

The second network then takes X̃mid as input for all of its encoders and outputs
the final reconstruction X:

X ∼ pθ(X|Z2), (35)

Z2 ∼ qϕ(Z2|X̃mid, X̃mid). (36)

The formulations of the components in Eqs. (33)–(36) follow Eqs. (1) and
(17)–(23). Re-entry training requires the encoders to simultaneously process
two different data: X′

RPS or X′
RTD and X̃mid, forcing them to focus on spe-

cific sound characteristics for extraction. If the encoders capture undesired
characteristics from either data, the reconstruction in the other network can
be degraded. Specifically, the encoders in the first network are trained to
extract as little information as possible, as X′

RPS and X′
RTD are perturbed

inputs and likely include unnecessary content. In contrast, the encoders in the
second network aim to extract as much information as possible, as X̃mid is a
reconstruction expected to contain only the original content. Since the two
networks share weights, excessive filtering by the first network can prevent
the second network from fully recovering the lost information, resulting in
missing elements and reduced final reconstruction accuracy. Conversely, if
the second network retains too much information, it can amplify information
leakage in the first network, degrading the intermediate reconstruction quality
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and, consequently, the final reconstruction accuracy. Additionally, re-entry
training doubles the amount of input data received by the encoders, implicitly
providing data augmentation and making the network more robust to various
data.

5.2 Re-entry training as a unified large VAE

We introduced re-entry training as two serial networks, but it can also be
viewed as a unified large VAE, which offers an alternative probabilistic formu-
lation. Specifically, the serial networks can be reinterpreted as a large encoder
Qθ,ϕ(Z2|X′

RPS,X
′
RTD) and a decoder pθ(X|Z2). The formulation of the large

encoder is given as follows:

Qθ,ϕ(Z2|X′
RPS,X

′
RTD) = qϕ(Z2|X̃mid, X̃mid), (37)

X̃mid ∼ pθ(X̃mid|Z1), (38)
Z1 ∼ qϕ(Z1|X′

RPS,X
′
RTD). (39)

This alternative formulation introduces a nested inference method without
altering the original generative model pθ(X|Z2) (i.e., Eq. (1)). It enables us
to train the entire model still in an unsupervised manner by maximizing the
lower bound LRe:

LRe = EQθ,ϕ(Z2|X′
RPS,X

′
RTD)[log pθ(X|Z2)]

−DKL(Qθ,ϕ(Z2|X′
RPS,X

′
RTD))||p(Z2)). (40)

In practice, re-entry training is conducted in parallel with the original VAE
training for computational stability, particularly in the early phases, by maxi-
mizing the following training objective:

Ltotal = LR + LRe. (41)

5.3 Inference

Once re-entry training is completed, the latent features can be inferred from
unperturbed sounds using Eq. (6) instead of Eq. (17) or Eqs. (37)–(39). On the
one hand, as re-entry training progresses, the intermediate reconstruction X̃mid

converges towards the original observation X. Consequently, the encoders of
the second network eventually receive inputs that are nearly identical to the
original ones, resembling the scenario described in Eq. (6), where unperturbed
inputs are fed into the network. On the other hand, as the weights of the
encoders qϕ (and the decoder pθ) are shared between the first and second
networks, well-trained encoders (i.e., the encoders shown in Eq. (6)) can
directly infer disentangled features without utilizing the large encoder. Since
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the latent variables of a VAE are typically obtained using their means at the
inference stage, we can deterministically capture disentangled representations
of an input signal.

6 Evaluation

This section reports comparative experiments conducted to evaluate the effec-
tiveness of re-entry training. We first assessed the three-factor disentanglement
framework against the two conventional two-factor frameworks, highlighting
its limitations, particularly in handling singing voices (Section 6.4). Subse-
quently, we compared the standard three-factor method with re-entry training,
showing that re-entry training achieved more refined disentanglement than
the standard method across various music signals, including isolated notes,
monophonic musical fragments, and singing voices (Sections 6.5 and 6.6). Also,
we conducted ablation studies to examine the contributions of the random
pitch shift and timbre distortion in our unsupervised training scheme, as well
as the effects of batch size on singing voices and the choice of k in the k-nearest
neighbor classifiers used for evaluation (Section 6.7).

6.1 Data

Through our experiments, we used the following three types of music signals
from different datasets.

Isolated notes. We used isolated notes from a subset of the RWC Music
Database [18]. Each file is annotated with the instrument name and spans
the entire pitch range of the instrument at semitone intervals. We segmented
each file into isolated notes using silence detection and removed initial silent
sections identified by onset detection. From the initial 88,889 files, we selected
62,704 files covering pitches from A0 to C8 (excluding percussive instruments),
corresponding to 43 distinct instrument classes. For evaluation, we randomly
split the pitched sounds into three sets: a training set (43,892 files), a validation
set (9,406 files), and a test set (9,406 files). Only the first two seconds of
each sound were used for analysis. The resulting spectrograms had dimensions
F = 2049 and T ≤ 201.

Monophonic musical fragments. We used monophonic musical fragments
from the Slakh2100-redux dataset [44], consisting of 1,289 training tracks,
270 validation tracks, and 151 test tracks. Each track includes isolated,
synthesized audio for multiple instruments along with accompanying MIDI
data. The dataset spans 83 distinct instrument classes, including a wide
variety of synthesized timbres. To extract monophonic segments, we filtered
out polyphonic segments longer than 100 ms and silent segments longer than
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two seconds based on the MIDI data. Segments longer than three seconds were
considered valid and randomly trimmed to a maximum of five seconds. The
resulting spectrograms had dimensions F = 2049 and T ≤ 501. Instrument
names were identified using the General MIDI program numbers, excluding
drums.

Singing voices. We used singing voice recordings from the PJS dataset [31],
which includes 100 phoneme-balanced short songs (totaling 27.2 minutes) sung
by a Japanese male singer. Each song is annotated with MIDI data and
temporally aligned phoneme labels. For evaluation, we randomly split the
songs into a training set (70 files), a validation set (15 files), and a test set
(15 files). The songs were randomly cut into five-second segments, and the
resulting spectrograms had dimensions F = 2049 and T = 501.

All sounds were sampled at 44.1 kHz. During training, we applied random
pitch shifts and timbre distortions to each sound on the fly. Specifically, the
pitch was shifted by L semitones (−7 ≤ L ≤ 7), with L chosen from a uniform
distribution (including L = 0) for each instance. Timbre distortion was applied
using Pedalboard3, a Python library by Spotify. Two out of nine presets
(Chorus, Distortion, Phaser, LadderFilter, HighpassFilter, LowpassFilter,
Reverb, GSMFullRateCompressor, and Bitcrush) were randomly selected
and applied to the sound each time. We used STFT with a Hann window of
4,096 samples and a hop size of 441 samples (10 ms). The spectrograms were
normalized to have an average amplitude of one. Our implementation utilized
the librosa library [45].

6.2 Model configuration

Our VAE utilizes the bidirectional gated recurrent unit (BiGRU) architecture
for its encoders and decoder to capture the temporal characteristics of sounds,
as shown in Figure 2. All the BiGRU layers have 2 × 800 cells. First, the
randomly pitch-shifted sounds are fed into the encoder for the global timbres
and the encoder for the local variations. The encoder for the global timbres
consists of three BiGRU layers, an average pooling layer along the time-frame
axis, and fully connected (FC) layers. Two FC layers independently transform
the 1,600-dimensional output into Dt dimensions to represent the means and
variances of the latent variables. The encoder for the local variations also
consists of three BiGRU layers and FC layers. The global timbres are tiled
along the time-frame axis and fed into the last BiGRU layer concatenated
with the outputs of the second BiGRU layer along the spatial axis (i.e., the
final BiGRU layer takes input tensors with (Dt + 1, 600) dimensions). Two
FC layers perform the same transformation as those for the global timbres.

3https://github.com/spotify/pedalboard.

https://github.com/spotify/pedalboard
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Next, the randomly timbre-distorted sounds are fed into the encoder for
the local pitch features. This encoder consists of three BiGRU layers and FC
layers. These FC layers independently transform the 1,600-dimensional output
into Dp dimensions to represent the means and variances of the latent variables.
Finally, the decoder reconstructs the observation from the three types of latent
variables above. Note that these variables are sampled probabilistically during
training but are given deterministically during inference using their means.
The decoder consists of three BiGRU layers and an FC layer. The tiled global
timbral, local variational, and local pitch features are all concatenated along
the spatial axis and fed into the decoder (i.e., the first BiGRU layer takes
input tensors with (Dt+Dv +Dp) dimensions). The final FC layer transforms
the 1,600-dimensional output into the same dimensions as the observation,
F . The three FC layers representing the variances of the latent variables are
passed through the softplus activation function. We set σ2 in Eq. (1) to 0.5.

The dimensions Dt, Dv, and Dp were experimentally set to 64, 64, and 32,
respectively. In the experiments with isolated notes from RWC and monophonic
musical fragments from Slakh2100-redux, the batch size was set to 32. In the
experiments with singing voices from PJS, the batch size was set to one. We
used the Adam optimizer [29] with an initial learning rate of 1.0× 10−4 for
RWC and Slakh2100-redux and 1.0 × 10−5 for PJS. The learning rate was
reduced exponentially by 0.01% per epoch. We applied cyclical annealing of
KL regularization [13] from zero to one every ten epochs. The checkpoints
that achieved the best validation loss were used for the final evaluations.

6.3 Evaluation criteria

We evaluated the degree of disentanglement in each latent space by calculating
the accuracy of instrument classification and pitch estimation for isolated notes
and monophonic musical fragments, as well as phoneme estimation and pitch
estimation for singing voices. If the latent spaces are ideally disentangled, each
of the latent features, such as the pitch feature, should not contain information
about other characteristics, such as timbral or variational characteristics. To
assess this, we used k-nearest neighbor (k-NN) classifiers. For isolated notes
and monophonic musical fragments, we used their training sets with instrument
names and semitone-level pitch annotations. For singing voices, we employed
phoneme labels and semitone-level pitch annotations. Note that we excluded
the silent segments here.

We chose k-NN classifiers because they can directly capture the structure
of each latent space with sufficient accuracy without requiring additional
model development and parameter tuning, unlike DNN-based methods. The
accuracy should be high exclusively within the corresponding space. Note
that the construction of the k-NN classifier is performed sample-wise for the
global features and frame-wise for the local features. Therefore, for the global
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features, each vote is based on an individual input sample, while for the local
features, each vote is based on an individual frame within the input sample4.
Throughout our experiments, we set k to 5.

We also assessed the quality of spectrogram reconstruction to monitor
potential information loss through disentangled representations. We computed
the mean squared error (MSE) between the input log-amplitude spectrogram
X and the output log-amplitude spectrogram Ỹ ≜ µθ(Z̃) per time-frequency
bin on the test data. As we employed the deep generative model formulation
in Eq. (1) with a fixed σ2 = 0.5, the MSE corresponds to the negative log-
likelihood for X, with a lower MSE indicating better reconstruction quality.

6.4 Preliminary experiments

We first compared the three-factor disentanglement framework with the two-
factor frameworks, demonstrating its advantages and limitations.

6.4.1 Isolated notes

The three-factor framework demonstrated superior disentanglement perfor-
mance on isolated notes, as indicated by the comparative evaluations of
two-factor and three-factor disentanglement methods in Table 2. The global
timbral features were crucial for extracting instrument information, achieving
classification accuracies exceeding 90% for both methods. In contrast, the
accuracy using the local variational features was below 80%. Note that “Varia-
tion” in the table (and the following tables) has arrows in different directions
for different systems. This is because it represents the local timbres in the
two-factor method and the local variational features in the three-factor method
(also see Section 4.2). The performance gap between the global timbral features
of the two-factor method (97.6%) and the three-factor method (94.7%) was
around 3%.

For pitch estimation, incorporating local variational features improved
the performance of the local pitch features. Specifically, the pitch-timbre
disentanglement method scored below 40%, whereas the other methods achieved
above 50%, with the three-factor method showing the highest performance.
As such, the gain in pitch estimation accuracy was significantly greater than
the loss in instrument classification accuracy (3%). This suggests that the
local variational features effectively capture the time-variant characteristics

4Particularly for instrument classification on the local variational features, an alternative
approach is to average the latent features across time and classify based on the averaged
vector. In this study, as our focus is on comparing the frameworks, we opted for the
frame-wise method without averaging, as it better captures the diversity of features at each
frame. However, the aspect of temporal granularity and information capacity remains an
important topic of discussion [33, 37, 40, 41].



Unsupervised Pitch-Timbre-Variation Disentanglement of Monophonic Music Signals 19

Table 2: Comparison of the two-factor and three-factor disentanglement on isolated notes.
In this and the following tables, ↑ indicates that higher values are better, while ↓ indicates
that lower values are better.

Factors Instrument classification [%] Pitch estimation [%]

Timbre Variation Pitch MSE ↓ Timbre ↑ Variation Pitch ↓ Timbre ↓ Variation ↓ Pitch ↑
✓ ✓ 0.609 97.6 — 31.8 7.8 — 34.5

✓ ✓ 0.557 — 77.5 (↑) 37.4 — 13.2 51.9
✓ ✓ ✓ 0.543 94.7 54.6 (↓) 38.5 15.8 7.0 61.6

of isolated notes unrelated to pitch, thereby refining the disentanglement of
the local pitch features. Moreover, richer features contribute to minimizing
information loss through disentangled representations, as evidenced by the
MSE scores (0.609 > 0.557 > 0.543).

6.4.2 Monophonic musical fragments

Table 3 presents comparative evaluations of monophonic musical fragments,
indicating the three-factor framework generally achieved superior disentangle-
ment. Note that the instrument classification task in this dataset is particularly
challenging due to the larger number of instrument classes compared to isolated
notes. Additionally, instruments with similar timbres (e.g., acoustic grand
piano and bright acoustic piano, treated as separate classes) further increase
the complexity of classification. Similar to isolated notes, the global timbral
features proved more effective than the local variational features in extracting
instrument information. However, examining the accuracy gaps among the
three features within the three-factor method revealed much smaller discrep-
ancies (51.2% – 37.3% – 30.0%) compared to the more significant differences
observed in isolated notes (94.7% – 54.6% – 38.5%). Ideally, these differences
should be substantial, as seen in the isolated notes, but that was not the case
here. This suggests that while the three-factor method outperformed the two-
factor methods, the disentanglement remained less effective for monophonic
musical fragments.

Table 3: Comparison of two-factor and three-factor disentanglement on monophonic musical
fragments.

Factors Instrument classification [%] Pitch estimation [%]

Timbre Variation Pitch MSE ↓ Timbre ↑ Variation Pitch ↓ (Timbre ↓) Variation ↓ Pitch ↑
✓ ✓ 0.524 47.1 — 31.6 (N/A) — 69.3

✓ ✓ 0.452 — 44.4 (↑) 35.7 (—) 37.2 77.8
✓ ✓ ✓ 0.446 51.2 37.3 (↓) 30.0 (N/A) 27.7 74.9

Regarding pitch estimation, it is no longer possible to infer any pitch infor-
mation from the global timbral features due to the time-variant characteristics
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of pitch transitions; thus, this is marked as N/A. The local pitch features
of all three methods were comparable in terms of pitch estimation accuracy.
However, the three-factor method showed a reduced accuracy with the local
variational features (27.7%), indicating a higher degree of disentanglement
than the two-factor method. Similar to the results with isolated notes, having
more latent features led to less information loss, as evidenced by the MSE
scores. Notably, the absence of local variational features had a significantly
negative impact on MSE.

6.4.3 Singing voices

Table 4 shows comparative evaluations of singing voices, indicating that both
the two-factor and three-factor disentanglement frameworks did not achieve
effective disentanglement. Note that the global timbral features were not
applicable, as phonemes and pitch transitions are time-variant characteristics,
hence marked as N/A. First, the pitch-timbre disentanglement method resulted
in outcomes opposite to the ideal. The performance of phoneme estimation
using its local pitch features (64.7%) was far higher than that of pitch estimation
(16.6%). The other two methods also resulted in inadequate performance.
They extracted the pitch characteristics of singing voices to some extent
using the local pitch features. However, the variational characteristics (i.e.,
phoneme information) were also contaminated in the features, resulting in
small performance gaps for phoneme estimation between the two local features
(62.1% vs 46.3% and 61.4% vs 48.1%). Incidentally, the MSE scores were
overall worse than those in the other two datasets. This is likely due to the
size of the PJS dataset; only 70 songs were available for training.

Table 4: Comparison of two-factor and three-factor disentanglement on singing voices.

Factors Phoneme estimation [%] Pitch estimation [%]

Timbre Variation Pitch MSE ↓ (Timbre ↓) Variation ↑ Pitch ↓ (Timbre ↓) Variation ↓ Pitch ↑
✓ ✓ 0.873 (N/A) — 64.7 (N/A) — 16.6

✓ ✓ 0.653 (—) 62.1 46.3 (—) 13.3 44.2
✓ ✓ ✓ 0.613 (N/A) 61.4 48.1 (N/A) 12.7 45.5

To further investigate this aspect, we examined whether a performance
gap exists across different split sets. The results are presented in Table 5. For
the training data, we randomly split the 70 samples into 56 for constructing
k-NN classifiers and 14 for assessment. The results show minimal performance
differences between the various splits, indicating that the training process was
conducted properly. However, the relatively small number of training samples
appears insufficient for the three models to effectively learn disentangled
representations.
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Table 5: Performance of two-factor and three-factor disentanglement on singing voices across
different split sets.

Factors Phoneme estimation [%] Pitch estimation [%]

Data split Timbre Variation Pitch MSE ↓ Variation ↑ Pitch ↓ Variation ↓ Pitch ↑
Test ✓ ✓ 0.873 — 64.7 — 16.6
Test ✓ ✓ 0.653 62.1 46.3 13.3 44.2
Test ✓ ✓ ✓ 0.613 61.4 48.1 12.7 45.5

Training ✓ ✓ 0.897 — 63.8 — 14.9
Training ✓ ✓ 0.650 62.4 44.4 11.5 43.0
Training ✓ ✓ ✓ 0.605 61.5 44.2 10.7 45.2

Validation ✓ ✓ 0.888 — 63.2 — 17.8
Validation ✓ ✓ 0.657 60.9 44.0 12.8 45.0
Validation ✓ ✓ ✓ 0.614 60.3 46.2 11.1 47.3

Throughout all the preliminary experiments, the three-factor disentangle-
ment method outperformed the two-factor methods, yet it remained inadequate
as a general disentangled representation for various monophonic music signals.

6.5 Performance of re-entry training

We compared the standard three-factor disentanglement method with re-entry
training framework. Hereafter, we refer to the former as the standard method.
We also evaluated re-entry training against three baselines to assess its benefits,
specifically its ability to implicitly provide data augmentation and simulate the
inference phase by incorporating unperturbed inputs during training. For the
baselines, we implemented simple data augmentation by adding random noise
(i.e., white noise) to the original samples and introduced a 25% perturbation
dropout to feed unperturbed inputs during training in the standard method.

6.5.1 Isolated notes

Table 6 presents the results on isolated notes. Compared to the standard
method, re-entry training generally reduced the accuracies of both instrument
classification and pitch estimation across all features, accompanied by a de-
terioration in the MSE score. Although the introduction of re-entry training
did not significantly impact the results for this type of music signal, a notable
aspect is that it did not impede the training processes of the three-factor
disentanglement. Despite a decrease in pitch estimation scores on the local
pitch features, all features maintained a high level of disentanglement.

The standard methods with random noise achieved the highest pitch estima-
tion accuracies on the local pitch features. However, the sound characteristics
were more evenly distributed across the three features, leading to smaller per-
formance discrepancies, especially in instrument classification accuracy. When
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Table 6: Comparison of the standard three-factor disentanglement methods with re-entry
training framework on isolated notes. In this and subsequent tables, RN and PD refer to
adding random noise and introducing perturbation dropout, respectively.

Instrument classification [%] Pitch estimation [%]

Methods MSE ↓ Timbre ↑ Variation ↓ Pitch ↓ Timbre ↓ Variation ↓ Pitch ↑
Standard 0.543 94.7 54.6 38.5 15.8 7.0 61.6
Standard + RN 0.697 91.6 67.7 63.5 15.2 8.7 79.0
Standard + PD 0.536 95.9 44.5 35.1 24.7 5.0 47.1
Standard + RN + PD 0.666 94.4 71.4 73.4 12.8 9.2 80.6

Re-entry 0.594 92.1 52.7 37.0 9.8 5.1 49.2

combined with perturbation dropout alone, MSE and instrument classification
scores surpassed those of re-entry training, but the pitch estimation accuracy
gap between the global timbral and local pitch features narrowed significantly.
The results are also observed to be more strongly affected by random noise
than by perturbation dropout when both are applied. These results suggest
that re-entry training effectively combines the benefits of the baselines, i.e.,
data augmentation and inference-phase simulation.

6.5.2 Monophonic musical fragments

Table 7 presents the results on monophonic musical fragments, illustrating
that re-entry training improved the quality of disentanglement compared to
the standard method. For instrument classification accuracy, while the score
moderately increased with the local pitch features (from 30.0% to 37.5%), it
significantly decreased with the local variational features (from 37.3% to 19.3%)
without impacting the score with the global timbral features. These findings
indicate that re-entry training mitigated the small discrepancies observed in
the standard method. In terms of pitch estimation, re-entry training notably
enhanced disentanglement. Specifically, the accuracy with the local variational
features decreased significantly from 27.7% with the standard method to 11.1%
with re-entry training. Conversely, the accuracy with the local pitch features
increased from 74.9% to 79.3%, resulting in a wider performance gap.

Table 7: Comparison of the standard three-factor disentanglement methods with re-entry
training framework on monophonic musical fragments.

Instrument classification [%] Pitch estimation [%]

Methods MSE ↓ Timbre ↑ Variation ↓ Pitch ↓ (Timbre ↓) Variation ↓ Pitch ↑
Standard 0.446 51.2 37.3 30.0 (N/A) 27.7 74.9
Standard + RN 0.814 23.5 31.0 43.4 (N/A) 13.6 80.2
Standard + PD 0.440 44.3 32.5 42.3 (N/A) 17.7 82.3
Standard + RN + PD 0.862 39.5 28.2 45.4 (N/A) 10.0 82.5

Re-entry 0.431 51.2 19.3 37.5 (N/A) 11.1 79.3
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A noteworthy observation in this dataset is the substantial accuracy de-
crease when using the local variational features with re-entry training. This
suggests that the model under the standard method did not effectively distin-
guish the two local features, leading to undesired characteristics bleeding into
other features. Additionally, it is important to highlight that the MSE score
improved from 0.446 to 0.431, indicating a more focused extraction of sound
characteristics for enhanced reconstruction quality, as anticipated.

The three baseline methods yielded notable findings for instrument classi-
fication. While adding random noise and introducing perturbation dropout
degraded accuracies on the global timbral and local pitch features, these nega-
tive effects were mitigated with re-entry training. Conversely, both methods
improved accuracies on the local variational features, and these improvements
were amplified when combined with re-entry training. These results indicate
that re-entry training effectively integrates the benefits of data augmentation
and inference-phase simulation, mirroring the trends observed in the case of
isolated notes.

6.5.3 Singing voices

Table 8 presents the results on singing voices, showing mixed results with
re-entry training. Regarding phoneme estimation accuracy, while the score
with the local variational features remained nearly the same compared to the
standard method (61.4% vs 60.7%), the score with the local pitch features
significantly decreased from 48.1% to 33.9%. This result indicates that re-entry
training improved the quality of the local pitch features by eliminating the
contamination of local variational characteristics of sounds. However, for
pitch estimation accuracy, the scores with both the local variational and pitch
features decreased, with the drop in pitch features being more substantial.
This implies that while re-entry training helps eliminate contamination, it may
also inadvertently remove essential information.

Table 8: Comparison of the standard three-factor disentanglement methods with re-entry
training framework on singing voices.

Phoneme estimation [%] Pitch estimation [%]

Methods MSE ↓ (Timbre ↓) Variation ↑ Pitch ↓ (Timbre ↓) Variation ↓ Pitch ↑
Standard 0.613 (N/A) 61.4 48.1 (N/A) 12.7 45.5
Standard + RN 1.130 (N/A) 60.8 58.5 (N/A) 11.9 53.2
Standard + PD 0.594 (N/A) 60.9 44.8 (N/A) 12.5 44.0
Standard + RN + PD 1.110 (N/A) 60.7 58.2 (N/A) 11.7 51.1

Re-entry 0.590 (N/A) 60.7 33.9 (N/A) 10.9 33.6

Additionally, re-entry training successfully reduced the MSE score from
0.613 to 0.590. Given that the total amount of extracted latent information de-
creased, as mentioned above, this suggests that the focused extraction of sound
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characteristics also improved reconstruction quality for singing voices, echoing
similar results observed in monophonic musical fragments. Interestingly, the
improvement in the MSE score was most pronounced among the three types of
music signals. This is likely due to the stronger effect of implicit data augmen-
tation, considering the PJS dataset comprises only 100 songs in total, whereas
Slakh2100-redux contains 1,710 tracks with much longer durations. Although
merely augmenting data (e.g., by adding random noise) may worsen the MSE
scores, it appears to work promisingly across the three datasets when combined
with the inference-phase simulation in re-entry training. Furthermore, directly
incorporating data augmentation or unperturbed samples tends to produce
extreme results, while utilizing both through re-entry training leads to more
balanced performance.

Through all the comparative experiments between the standard method and
re-entry training framework, the model with re-entry training demonstrated an
ability to acquire more focused latent information. This effect was notable and
introduced some trade-offs: while it helped eliminate unnecessary information,
thereby enhancing the quality of each latent feature, it also risked excluding
essential information. Generally, re-entry training refined (i.e., widened) the
performance gap among the three features by improving the quality of the local
variational features, though this came at the cost of some desired information
in the local pitch features.

6.6 Comparison of encoder types in re-entry training

As outlined in Section 5.3, once re-entry training is completed, disentangled
representations can be inferred using the small encoder (i.e., Eq. (6)), rather
than the large encoder (i.e., Eqs. (37)–(39)). However, it remains essential to
assess how the choice between these two encoder types affects the disentangled
representations and reconstruction performance. Comparative results are
provided in Tables 9, 10, and 11, with the decoder being consistently defined
as Eq. (1).

Table 9: Comparison of two types of latent representations obtained using small and large
encoders during re-entry training on isolated notes.

Instrument classification [%] Pitch estimation [%]

Encoder MSE ↓ Timbre ↑ Variation ↓ Pitch ↓ Timbre ↓ Variation ↓ Pitch ↑
Small 0.594 92.1 52.7 37.0 9.8 5.1 49.2
Large 0.612 93.3 66.1 53.1 11.8 8.9 60.8

In general, the disentangled representations obtained with the small en-
coder outperformed those derived from the large encoder in terms of both
potential information loss and disentanglement quality. Specifically, all three
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Table 10: Comparison of two types of latent representations obtained using small and large
encoders during re-entry training on monophonic musical fragments.

Instrument classification [%] Pitch estimation [%]

Encoder MSE ↓ Timbre ↑ Variation ↓ Pitch ↓ (Timbre ↓) Variation ↓ Pitch ↑
Small 0.431 51.2 19.3 37.5 (N/A) 11.1 79.3
Large 0.443 51.8 30.7 40.5 (N/A) 23.9 82.0

Table 11: Comparison of two types of latent representations obtained using small and large
encoders during re-entry training on singing voices.

Phoneme estimation [%] Pitch estimation [%]

Encoder MSE ↓ (Timbre ↓) Variation ↑ Pitch ↓ (Timbre ↓) Variation ↓ Pitch ↑
Small 0.590 (N/A) 60.7 33.9 (N/A) 10.9 33.6
Large 0.634 (N/A) 62.0 40.6 (N/A) 12.1 37.3

MSE scores deteriorated when the large encoder was used, and the values
measured across the three latent features increased. This outcome is expected
for the large encoder, as its multi-stage processes introduce cumulative informa-
tion loss. Consequently, intermediate reconstructions tend to lose distinctive
characteristics and become smoothed across samples, resulting in less effective
disentanglement and higher error metrics.

When comparing the large encoder results to the standard method reported
in Tables 2, 3, and 4, the performance degraded for isolated notes but showed
some improvement for monophonic musical fragments and singing voices.
This suggests that while the large encoder may excel at handling complex or
continuous input patterns, its overall effectiveness is constrained for data with
simpler characteristics.

6.7 Ablation study

We examined the contributions of the random pitch shift and timbre distortion
in our unsupervised training scheme. We also assessed the impacts of batch
size on singing voices and k selection in the k-NN.

6.7.1 Contributions of random pitch shift and timbre distortion

We further investigated the contributions of random pitch shift and timbre
distortion to achieving three-factor disentanglement in an unsupervised manner.
To assess their impact, we conducted experiments where either or both random
perturbations were removed during the standard training. We evaluated
performance across the three types of music signals. The results are detailed
in Tables 12, 13, and 14.
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Table 12: Effect of random perturbations on disentanglement in isolated notes.

Perturbations Instrument classification [%] Pitch estimation [%]

RPS RTD MSE ↓ Timbre ↑ Variation ↓ Pitch ↓ Timbre ↓ Variation ↓ Pitch ↑
0.438 96.8 13.0 21.5 90.8 8.2 12.5

✓ 0.475 97.3 20.9 39.2 11.8 4.0 28.1
✓ 0.473 97.5 17.4 42.6 84.9 5.8 13.5

✓ ✓ 0.543 94.7 54.6 38.5 15.8 7.0 61.6

Table 13: Effect of random perturbations on disentanglement in monophonic musical
fragments.

Perturbations Instrument classification [%] Pitch estimation [%]

RPS RTD MSE ↓ Timbre ↑ Variation ↓ Pitch ↓ (Timbre ↓) Variation ↓ Pitch ↑
0.414 53.6 40.4 12.2 (N/A) 76.8 17.4

✓ 0.439 20.6 34.2 44.1 (N/A) 23.8 78.6
✓ 0.448 53.4 18.8 26.8 (N/A) 12.3 72.0

✓ ✓ 0.446 51.2 37.3 30.0 (N/A) 27.7 74.9

Table 14: Effect of random perturbations on disentanglement in singing voices.

Perturbations Phoneme estimation [%] Pitch estimation [%]

RPS RTD MSE ↓ (Timbre ↓) Variation ↑ Pitch ↓ (Timbre ↓) Variation ↓ Pitch ↑
0.524 (N/A) 39.8 45.9 (N/A) 39.5 36.1

✓ 0.562 (N/A) 61.4 55.7 (N/A) 16.0 39.1
✓ 0.557 (N/A) 57.5 34.9 (N/A) 30.4 55.8

✓ ✓ 0.613 (N/A) 61.4 48.1 (N/A) 12.7 45.5

First, we examined the outcomes when random pitch shift was omitted.
The absence of this perturbation noticeably deteriorated disentanglement
within the global timbral and local variational features. As shown in Table 12,
pitch information of isolated notes leaked into the global timbral features,
resulting in significantly higher pitch estimation accuracies than the local
pitch features. Table 14 also indicates decreased phoneme estimation accuracy
when using the local variational features. Furthermore, pitch estimation
accuracies generally decreased when using the local pitch features, except in
cases involving singing voices with random timbre distortion (Tables 12, 13,
and 14). These results emphasize the critical role of random pitch shift in
achieving effective three-factor disentanglement.

Next, we analyzed the results when random timbre distortion was omitted.
The absence of this perturbation led to an overall deterioration in disentangle-
ment within the local pitch features. Tables 12, 13, and 14 illustrate decreased
pitch estimation accuracies using the local pitch features under various condi-
tions, except for singing voices with random pitch shift. Table 14 also reveals
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that variational information from singing voices leaked into the local pitch
features, resulting in phoneme estimation accuracies comparable to or even
higher than those using the local variational features. This phenomenon also
had a detrimental effect on the local variational features. These results indicate
the importance of random timbre distortion in our method.

Finally, it is important to note that both random perturbations degraded
the quality of spectrogram reconstruction. Across all ablation studies, intro-
ducing an additional perturbation consistently worsened reconstruction quality.
Applying both perturbations simultaneously had an even more detrimental
effect compared to using either one alone. This result was anticipated before-
hand, as the concurrent application of both perturbations hindered our VAE
from learning from the original input during training.

6.7.2 Impact of batch size on singing voices

Since the singing voice dataset is considerably smaller than the other two
datasets, we set the batch size for this dataset to one, while using a batch size of
32 for the other datasets. This discrepancy in batch sizes may have contributed
to the performance gap, particularly the poorer performance observed for the
singing voices. To further investigate this, we conducted re-entry training
experiments on the singing voice dataset with batch sizes varying up to 32.
The results presented in Table 15 indicate that larger batch sizes resulted
in less effective training, with trends deviating from the expected behavior.
Specifically, larger batch sizes resulted in higher MSE scores, lower phoneme
estimation scores on the local variational features, and higher scores on the local
pitch features. Although the pitch estimation scores on the local variational
features slightly improved, those on the local pitch features worsened. These
findings support our decision to use a batch size of one for the singing voice
dataset.

Table 15: Performace of re-entry training on singing voices with different batch sizes.

Phoneme estimation [%] Pitch estimation [%]

Batch size MSE ↓ (Timbre ↓) Variation ↑ Pitch ↓ (Timbre ↓) Variation ↓ Pitch ↑
1 0.590 (N/A) 60.7 33.9 (N/A) 10.9 33.6
4 0.635 (N/A) 60.6 43.5 (N/A) 11.2 31.1
8 0.700 (N/A) 60.6 49.0 (N/A) 9.9 24.2
16 0.776 (N/A) 58.6 53.7 (N/A) 8.8 13.1
32 0.875 (N/A) 52.8 55.3 (N/A) 8.3 11.5
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6.7.3 Impact of k choice in the k-NN classifier

As noted in Section 6.3, we consistently set k to 5 in the k-NN classifier
throughout all experiments. However, the frame-wise voting method could
introduce noise due to this choice of k. To further explore this, we conducted
additional experiments focusing on instrument classification on the local vari-
ational features. The results, summarized in Table 16, show that the scores
remain largely unchanged across different k values. This finding also supports
our decision to set k to 5.

Table 16: Performace of instrument classification accuracy on the local variational features
with different k values in the k-NN.

k value On isolated notes [%] On monophonic musical fragments [%]

1 52.1 18.8
5 52.7 19.3
9 53.1 20.6
13 52.6 21.2
17 52.2 21.4

7 Discussion

Our proposed three-factor disentanglement framework achieved better results
than the conventional two-factor frameworks and was more successful with
re-entry training. However, there are two main drawbacks regarding the per-
turbations. First, while the random pitch shift can effectively eliminate target
characteristics (i.e., pitch information) from input sounds, the random timbre
distortion used in this study cannot achieve the same effect. This is because
the distortions introduced in Section 6.1 are designed to add audio effects
to an instrument while preserving its instrumental identity. Consequently,
timbral characteristics can leak into the local pitch features, as observed in
our preliminary experiments on singing voices. Although re-entry training
alleviated this issue, further disentanglement is desired. One solution might
be to replace the timbre distortion with DNN-based timbre transfer networks
instead of traditional signal processing techniques. However, this would require
labels and semi- or fully supervised training.

Second, there is also potential for improvement in mitigating the side
effects caused by the perturbations. As observed in the ablation studies, the
perturbations are essential for unsupervised three-factor disentanglement but
also degrade the quality of spectrogram reconstruction. This means that the
overall model performance diminishes from the perspective of a generative
model. It is important to note that our focus was on the framework-level
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method rather than DNN architectures, which is why we used relatively
simple DNNs, such as BiGRUs. Since the re-entry training framework can be
integrated with other architectures, this issue can be addressed by employing
more expressive DNNs (e.g., transformers) for the decoder.

We focused on pitched instruments in this paper, but another vital family
of instruments used in music is percussive instruments. Treating them within
the same disentanglement framework as pitched instruments is challenging yet
interesting. In fact, the proposed method failed to achieve this, with all three
latent features having similar representations and attaining almost the same
accuracies in any evaluations (these experiments were conducted as trials and
are not reported in this paper). This is not surprising because our method
used the random “pitch” shift, which cannot be well-defined for percussive
instruments. To address this, we need to reconsider how musical sounds should
be interpreted and disentangled.

In addition, the trained models are currently tailored to each specific dataset.
From a generalizability perspective, it is worth investigating the creation of a
model capable of handling musical sounds from multiple datasets. Ultimately,
a method for disentangling polyphonic music signals that can simultaneously
manage multiple musical sounds is desirable. This advancement would pave the
way for future applications, including zero-shot automatic music transcription.

8 Conclusion

In this paper, we presented the re-entry training framework to enhance pitch-
timbre-variation disentanglement of monophonic music signals based on random
perturbation. This framework applied the network for three-factor disentangle-
ment twice in series with weight sharing, refining the characteristics extracted
by the encoders and implicitly achieving data augmentation. The serial model
was trained in an unsupervised manner, leveraging its alternative probabilistic
formulation as a unified large VAE. Our experiments demonstrated that re-
entry training achieved effective disentanglement across a wide range of music
signals, including isolated notes, monophonic musical fragments, and singing
voices. Additionally, we confirmed the necessity of two types of random pertur-
bation on input sounds for successful disentanglement within our framework.
Looking ahead, we aim to extend our method to handle polyphonic music
signals and percussive instruments, further broadening the applicability and
robustness of our disentanglement framework.
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