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ABSTRACT
Molecular Representation Learning (MRL) is widely applied in
various downstream tasks, such as molecule generation, molec-
ular property prediction and reaction prediction. Nevertheless,
MRL faces several challenges posed by the vast chemical space and
limited labeled-data availability. In this paper, we propose Hier-
archical Graph Transformer (HieGT), integrating atom-level and
motif-level representations to capture local-global characteristics of
molecules over a hierarchical graph. Leveraging 2D topological and
3D geometric encoding, HieGT enhances intrinsic representation
understanding of molecules. The proposed method achieves the
state-of-the-art performance over the molecular property prediction
dataset PCBA of Open Graph Benchmark (OGB), and competitive
results on PCQM4Mv2 with better interpretability.

Keywords: Molecular Representation Learning, hierarchical learning, graph
transformer

1 Introduction

Molecular Representation Learning (MRL) aims to utilize machine learning to
encode molecules as numerical feature vectors for downstream applications,
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Figure 1: Representations of molecules. (a) Fingerprints calculated as MACCSFP by rdkit
[18] in binary. (b) The SMILES. (c) The graph. (d) The proposed hierarchical graph
representation, where molecules can be characterized by a set of motifs. Each motif may
correspond to a certain type of local substructures and functions.

such as molecular property prediction [39], reaction prediction [31], drug design
[32] and drug-drug interaction prediction [42]. However, the chemical space
of molecules are extremely vast with limited labeled data, which poses great
challenge to extract effective representations.

There are three main manners to represent molecules: the fingerprint,
sequence and graph, as shown in Figure 1(a)–(c). The fingerprint [29] em-
bodies hand-crafted information from molecules with a fixed length, which is
not flexible for various tasks. The sequence [35] mainly refers to Simplified
Molecular Input Line-Entry System (SMILES), which consists of ASCII strings
to describe molecules. Though SMILES can be processed by Natural Lan-
guage Processing methods, they are typically difficult to understand intuitively
and may encounter ambiguity [15]. In contrast, the graph is a natural way
to represent the topology of molecules. Typically the atoms are treated as
nodes while the bonds are treated as edges, then additional information can
be incorporated in nodes and edges from atom and bond features. Thus,
graphs are widely adopted in recent studies [5, 13, 15, 21, 23–25, 40, 43]. In
applications such as drug-drug interaction [42], drug-target binding affinity
prediction [12] and biochemical reactions [36], edge directionality may be
meaningful for learning asymmetric relationships between molecules. However,
as we mainly focus on independent and static molecular representations rather
than molecular interactions and dynamics, the chemical bonds between atoms
within molecular graphs can be regarded as symmetric edges, on account of
which we represent molecules as undirected graphs as in previous works [13,
23, 24, 40].

Previous works in graph-based molecular representation learning can be
divided into three classes [7]: molecular-topology-based methods [15, 43],
knowledge-graph-based methods [5], and spatial-learning-based methods [4, 8,
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21]. Molecular-topology-based methods focus on the topological structures or
substructures. However, most quantum chemical properties are derived from 3D
conformations [23], which cannot be reflected from 2D topologies. Knowledge-
graph-based methods extract molecular representations by knowledge graphs
rather than molecular graphs. Nevertheless, knowledge graphs relies heavily on
hand-crafted features and domain knowledge, and may discard large amounts
of structural features. Spatial-learning-based methods focus more on 3D
geometric features of molecules. Since 3D geometric features serve as a vital role
in predicting molecular properties, we choose to integrate molecular-topology-
based and spatial-learning-based paradigms to extract more comprehensive
molecular representation combining both 2D & 3D graph features.

As one of the most powerful models to learn molecular topological and
spatial representations, graph Transformer [41] has recently gained state-of-
the-art performance on many MRL tasks [13, 23–25, 40], due to its distinct
self-attention mechanism for capturing long-range structural dependencies.
Previous works in graph Transformer [23, 24, 40] mainly focus on the global
information flow among node representations. Edge representations are merely
utilized as a bias term to the attention module. To emphasize the significance of
edge representations equal to node representations, the Edge-augmented Graph
Transformer (EGT) [14] introduced dynamic edge channels that are updated
across layers, enabling information flow between node and pair representations.
Furthermore, TGT-At [13] enabled direct communication between two adjacent
pairs in a graph via novel triplet attention and aggregation mechanisms.

Though the atom-level global graph structure has been effectively exploited
in previous works, the local context of molecules is not fully studied yet
in the networks. It has been found that molecules can be characterized by
a set of motifs, each of which may correspond to a certain type of local
substructures and functions (similar to chemical functional groups) [34]. As
illustrated in Figure 2, the sample molecule can be composed of four motifs,
such as the benzene ring and the carbonyl group (the 3rd and 4th colored
circle from left to right). Accordingly, the molecule can be represented as
a motif-wise graph, embodying a hierarchical structure. Hence, we propose
Hierarchical Graph Transformer (HieGT), the first hierarchical Transformer
framework to learn molecular representation, to the best of our knowledge.
We incorporate both atom-level and motif-level graph representations and
come up with a hierarchical graph encoding strategy to shed new light on
local-global characteristics of molecules.

In particular, we firstly decompose the atom-wise molecular graph into
motifs based on three hand-crafted rules, as specified in Section 4.1. Then the
motifs are assembled with the same connectedness, composing the motif-wise
graph, as illustrated in Figure 2. The atom-wise and the motif-wise graphs are
both exploited in the proposed method in a hierarchical manner, as illustrated
in Figure 1(d).
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Figure 2: The atom-wise graph could be decomposed into the motif-wise graph by certain
rules.

Figure 3: Atom-wise Graph Attention (AGA) and Motif-wise Graph Attention (MGA).

Then, we propose to learn molecular representations based on two natural
assumptions. First, there exists information exchange among motifs via inter-
motif edges. Second, the information flow among atoms in the same motif are
regulated by the motif via intra-motif edges. Based on these two assumptions,
we develop two procedures to learn Atom-wise Graph Attention (AGA) via
intra-motif edges, as illustrated in Figure 3(a), and Motif-wise Graph Attention
(MGA) via inter-motif edges, as illustrated in Figure 3(b). After AGA and
MGA, the learned molecular representations are projected for downstream
tasks.

Our main contributions are summarized as follows:

• We propose a novel hierarchical molecular representation learning para-
digm (HieGT), which integrates both atom-level and motif-level infor-
mation.

• We introduce Atom-wise Graph Attention and Motif-wise Graph At-
tention to learn the information flow within and among motifs, by
constraining attention over intra-motif and inter-motif edges.
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• Experimental results demonstrate that our approach establishes a new
state-of-the-art (SOTA) on the PCBA dataset [11] and achieves compet-
itive performance with the SOTA on the PCQM4Mv2 dataset [10] while
obtaining better interpretability.

2 Related Works

Previous works in graph-based MRL methods can be divided into three classes
[7]: molecular-topology-based methods, knowledge-graph-based methods, and
spatial-learning-based methods.

Molecular-topology-based methods. Molecular-topology-based meth-
ods focus on the topological structures or substructures of the molecular
graphs. Jin et al. [15] generate molecular graphs from SMILES strings by the
junction tree variational autoencoder for molecular graph generation. Zhang
et al. [43] extract motifs from molecular graphs and design a self-supervised
motif generation framework for molecular property prediction. However, motif
features are used without explicit atom features, and 2D topology merely
reveals the connectivity between atoms, while the actual 3D distances may
significantly vary between different atom pairs sharing the same local topology.

Knowledge-graph-based methods. Knowledge-graph-based methods
extract molecular-structure-invariant knowledge. KCL [5] adopts contrastive
learning with an external knowledge graph, which is formed by triples in the
form of (chemical element, relation, attribute). Nevertheless, atom pair-wise
characteristics are largely neglected, especially quantitative features such as
geometric features.

Spatial-learning-based methods. Spatial-learning-based methods pay
more attention to 3D geometric features of molecules. GeomGCL [21] proposes
graph contrastive learning by embedding distances and angles across 2D and
3D views. The properties of molecules are mostly determined by their 3D
structures [4, 8], which explains why spatial-learning-based methods typically
achieve better performance on MRL tasks.

By combining molecular-topology-based and spatial-learning-based para-
digms, the graph Transformer model has recently achieved state-of-the-art
performance across numerous downstream tasks in MRL with its unique
self-attention mechanism. Graphormer [40] encodes the centrality, shortest
path distance and edge features into the standard Transformer architecture.
Nevertheless, only 2D topological information is encoded. Transformer-M
[24] develops two separated channels to encode both 2D and 3D structural
information and incorporates them with the atom features in the network
modules. GPS++ [25] is a hybrid Message Passing Neural Network (MPNN)
and Transformer to incorporate 3D atom positions and an auxiliary denoising
task. Uni-Mol+ [23] generates an initial molecule conformation from simple
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methods such as RDKit [18], and iteratively updates the conformation, which
will be used to further predict molecular properties. TGT-At [13] enables
direct communication between two adjacent pairs in a graph via novel triplet
attention and aggregation mechanisms. Our method adopts the transformer
architecture but incorporates both atom-level and motif-level features in a
hierarchical manner to extract local-global intrinsic molecular representation.

3 Preliminary

3.1 Graph Neural Networks (GNN)

We represent molecules on undirected graphs. An undirected graph G = {V, E}
is composed of a node set V with cardinality |V| = N , and an edge set E
connecting nodes. The typical GNNs iteratively update the representation of
a node vi by aggregating representations of its neighbors:

hl+1
i = UPDATE(hl

i,AGGREGATE({hl
j}j∈N (vi))), (1)

where hl
i is the representation of vi at the l -th layer, and N (vi) is the set of

neighbors of vi.

3.2 Transformer

The Transformer model consists of Transformer layers [33], each of which
includes a self-attention module and a position-wise feed-forward network
(FFN).

Multi-head self-attention. Denote Hl as the input of self-attention
module on the transformer layer l, and d as the hidden dimension, one head k
of self-attention Ak(Hl) is represented as:

Qk = HlWQk
,Kk = HlWKk

,Vk = HlWVk
, (2)

Ak(Hl) = softmax(
QkK

⊤
k√

d
+ Bk)Vk, (3)

where WQk
, WKk

and WVk
are learnable projection matrices, and Bk is the

graph structural encodings as the attention bias of the k heads.
Let Wl be the learnable projection matrix to map the concatenated output

of all h heads on the layer l, the multi-head self-attention is denoted as:

A(Hl) = CONCAT(A1,A2, . . . ,Ah)Wl. (4)

Transformer layer. After the multi-head self-attention, the feed-forward
network (FFN) is applied, which is composed of a pre-norm layer, a linear
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Figure 4: The framework of the proposed Hierarchical Graph Transformer.

transformation layer, a non-linear activation layer, followed by another linear
transformation layer. As in previous works [13, 40], we choose the widely used
Gaussian Error Linear Unit (GELU) [9] as the activation function. Both the
output of self-attention and FFN of layer l is processed with pre-norm layer
normalization and residual connection:

H′
l = LayerNorm(Hl + A(Hl)), (5)

Hl+1 = LayerNorm(H′
l + FFN(H′

l)), (6)

where Hl+1 is the output of the transformer layer l + 1.

4 The Proposed Hierarchical Graph Transformer

We propose a Hierarchical Graph Transformer framework, as illustrated in
Figure 4. Our molecular representation learning consists of four steps:

1) hierarchical graph construction, where we design three hand-crafted rules
to decompose the atom-wise graph into a motif-wise graph;

2) Atom-wise Graph Attention, which computes self-attention within motifs
via intra-motif edges;

3) Motif-wise Graph Attention, which computes self-attention between
motifs via inter-motif edges; and

4) output projection, which obtains representations of the whole graph by
linear transformation.

We elaborate on these steps in the following.
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Table 1: Input atomic features and the corresponding rdkit functions.

Features Rdkit Functions

the atomic number GetAtomicNum()
the chiral tag GetChiralTag()
the degree GetTotalDegree()
the formal charge GetFormalCharge()
the number of connected Hs GetTotalNumHs()
the number of radical electrons GetNumRadicalElectrons()
hybridization GetHybridization()
aromaticity GetIsAromatic()
whether is in ring IsInRing()

Table 2: Input bond features and the corresponding rdkit functions.

Features Rdkit Functions

the bond type GetBondType()
the bond stereo GetStereo()
whether is conjugated GetIsConjugated()

4.1 Hierarchical Graph Construction

Graph motifs are frequently-occurring subgraph patterns (e.g., functional
groups of molecules), which are fundamental for both the structure and
function of molecules. For instance, the benzene ring is one of the most
typical motifs among molecules, which embodies special chemical properties
not reflected by individual atoms. Therefore, to better extract molecular
features, we propose to construct atom-wise graph and motif-wise graph to
learn both local and global molecular representations.

The atom-wise graph. Following previous works [13, 24, 40], we use the
input atomic and bond features as calculated by the OGB [11] Python library.
Specifically, they can be represented in Table 1 and Table 2 by rdkit functions.
We treat atoms as nodes and bonds as edges, then the input atomic and bond
features are projected via a learnable embedding layer into node embeddings
Xa and edge embeddings Ea.

The motif-wise graph. To obtain motifs from a molecule in a universal
manner, we consider bridge bonds that connect motifs based on three rules:

Rule 1 : The bonds that connect rings and chains (non-ring subgraphs);

Rule 2 : The bonds in chains that connect carbon and non-carbon atoms;

Rule 3 : The bonds in chains whose types are not single (i.e. double or triple).
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By breaking bridge bonds, a molecule is transformed from an atom-wise
graph to a motif-wise graph, where each motif is represented as a node, and
the bridge bonds serve as the inter-motif edges. The new node embeddings of
the motif-wise graph are obtained via Atom-wise Graph attention discussed in
Section 4.2, while the new edge embeddings are part of the atom-wise-graph
edge embeddings, merely retaining embeddings of inter-motif edges.

4.2 Atom-wise Graph Attention (AGA)

Given the atom-wise graph, we can obtain the AGA via intra-motif edges
Eintra_m, illustrated as the module painted light green in Figure 4.

As the self-attention mechanism described in Section 3.2 only calculates
the context between each node and all the other nodes, much structural
information of a graph is neglected, such as the relation between node pairs.
Therefore, we introduce three graph structural encodings of the previous work
[40]: centrality encoding, path encoding and edge encoding.

Centrality encoding. Node centrality measures how important a node
is in the graph. Because degree centrality is one of the standard centrality
measures in literature, the degree encoding of node vi is defined as:

ΨCentrality
i = z−deg−(vi)

+ z+deg+(vi)
, (7)

where z−deg−(vi)
, z+deg+(vi)

∈ Rd denote embedding vectors with indegree deg−(vi)
and outdegree deg+(vi) respectively. For undirected graphs like molecular
graphs, deg−(vi) and deg+(vi) are equal.

Path encoding. In the Transformer architecture, positional dependency
is generally encoded as bias terms to encode global structural information. To
extract positional dependency between atom pairs of a molecule, encoding the
distance is the most natural way. To avoid ambiguity with the 3D distance
encoding, we apply 2D distance encoding for each connected atom pair (vi, vj)
but rename it to path encoding:

ΨPath
ij = bSPD(vi,vj), (8)

where bSPD(vi,vj) is a learnable scalar indexed by the Shortest Path Distance
(SPD) between vi and vj .

Edge encoding. For molecular graphs, edge features represent critical
properties of bonds between connected atoms. For each connected atom pair
(vi, vj), the edge encoding is defined as:

ΨEdge
ij =

1

N

N∑
n=1

xen(wn)
T , (9)
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where xen is the feature of the n-th edge en in the shortest path between vi
and vj , and wn is the n-th weight embedding of the same dimension as xen .

Though the above encoding methods effectively represent 2D structural
features of molecular graphs, the 3D geometric features are neglected, which
are more practical for discovering the actual properties of molecules. Therefore,
we introduce the 3D distance encoding as [24], which is naturally invariant to
translation and rotation of the 3D molecular graphs.

3D distance encoding. While path encoding can effectively represent
topological distances, it fails to take the actual 3D Euclidean distances into
account. Due to the complex conformation of a molecule, one atom can be
close to another atom (which means a short 3D Euclidean distance) but have
a long SPD. Hence, we apply 3D distance encoding as a complement for path
encoding, similar to the one used in Transformer-M [24] and TGT [13]:

ϕk
ij =

1√
2π · |σk|

exp

−1

2

(
mk

ij · dij + bkij − µk

|σk|

)2
 , (10)

where dij is the 3D Euclidean distance between atoms i and j. mk
ij , b

k
ij are

learnable scalars indexed by the pair of atom types, and µk, σk are learnable
parameters for the k-th kernel (k = 1, . . . ,K where K is the number of
Gaussian Basis kernels [30]). Denoting ϕij as the concatenation of the outputs
of all kernels, the 3D distance encoding of pair (i, j) is defined as:

ΨDistance
ij = GELU(ϕijWd1)Wd2, (11)

where Wd1 and Wd2 are learnable weight matrices, and GELU is the Gaussian
Error Linear Unit [9] as the activation function.

The path encoding, edge encoding, and 3D distance encoding are combined
as the atom-wise attention bias:

Ba = ΨPath +ΨEdge +ΨDistance. (12)

For simplicity, we omit the notation of multi-heads. Inspired by EGT [14], we
use the intra-motif edge embeddings Eintra_m to gate the information flow
between atoms. Given node representations Ha, the attention matrix Aa in
the atom-wise graph is denoted as:

Qa = HaWQ,Ka = HaWK ,Va = HaWV , (13)

Aa = softmax(
QaK

⊤
a√

d
+ Ba)⊙ σ(Eintra_m)Va. (14)

The network outputs the embedded representation of each atom for the
MGA module.
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4.3 Motif-wise Graph Attention (MGA)

Given the motif-wise graph, we can obtain the MGA via inter-motif edges
Einter_m, illustrated as the module painted light orange in Figure 4.

In this module, we deploy a similar network framework as in the AGA
module, but choose different encodings. As the motif-wise graph possesses new
topological structure and edges, we retain the above manners of computing
the path encoding ΨPath′

and edge encoding ΨEdge′ , and combine them as
the motif-wise attention bias:

Bm = ΨPath′
+ΨEdge′ . (15)

Nevertheless, the distances between motifs do not make much sense due to
the nonexistence of explicit centers in each motif, so we discard them in the
module. Similar to AGA, the attention matrix Am in the motif-wise graph is
denoted as:

Am = softmax(
QmK⊤

m√
d

+ Bm)⊙ σ(Einter_m)Vm. (16)

The network outputs the embedded representation of each atom for output
projection.

Despite the similarity in the network architecture of AGA and MGA in
Figure 4, there are some differences in the specific implementation of AGA and
MGA. First, the input data are different. AGA takes the node representations
Ha as input, while MGA takes the output of AGA as input. Second, the
atom-wise attention bias Ba in AGA and the motif-wise attention bias Bm

in MGA are calculated differently, as described in Eq. 12 and Eq. 15. Third,
the information flows of AGA and MGA are gated by intra-motif edges and
inter-motif edges, respectively.

4.4 Output Projection

In this module, the output representation from the motif module is projected
as the overall graph representation by linear transformation for downstream
tasks.

5 Experiments

5.1 Experimental Setup

We follow the experimental settings in previous works [13, 24, 40]. First, we
pre-train our model on the large quantum chemistry datasets PCQM4Mv2 from
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OGB Large-Scale Challenge [10]. After pre-training, we implement finetuning
on PCBA [11] for the classification task.

PCQM4Mv2. PCQM4Mv2 is a quantum chemistry dataset originally
curated under the PubChemQC project [26]. The total number of training
samples is 3.37 million. The task of PCQM4M-LSC is to predict HOMO-
LUMO energy gap of molecules calculated by density functional theory (DFT)
[3] with their 2D molecular graphs, which is one of the most practically-relevant
quantum chemical properties of molecule science [10]. We utilize the same
dataset-division manner as [10] for fair comparison.

PCBA. PCBA is a molecular property prediction dataset with 437,929
molecules. We follow MoleculeNet [37] to split datasets into the training,
validation and test set with a 80/10/10 ratio.

The experiments are conducted over eight RTX3090 (24GB RAM). We
employ 24 transformer layers, and the dimension of hidden layers and feed-
forward layers is set to 768. The number of attention heads is set to 32.

5.2 Pre-training

The model is pre-trained on the training set of PCQM4Mv2. The training set
provides 3D structural information for training molecules computed by DFT.
We calculate a rough version of coordinates by rdkit [18] for the validation
set and the test set. The objective is predicting the HOMO-LUMO gap. The
results are presented in Table 3 in terms of Mean Absolute Error (MAE) in eV
unit. We compare our algorithm with 14 methods: GINE-VN [2, 6], GCN-VN
[6, 17], GIN-VN [6, 38], DeeperGCN-VN [6, 20], TokenGT [16], GRPE [27],
Graphormer [40], GraphGPS [28], GEM-2 [22], Transformer-M [24], GPS++
[25], Uni-Mol+ [23], and TGT-At [13].

As shown in Table 3, our method achieves competitive performance with
other state-of-the-art methods. Though the MAE of our method on pre-training
is slightly higher than that of TGT-At, the finetuning result in Section 5.3 is
better, which shows greater potential on downstream tasks. In addition, the
interpretability of our method is stronger, as will be specified in Section 5.4.
The time cost of our method is competitive to other state-of-the-art methods
with available efficiency data [13, 23], as shown in Table 4.

5.3 Finetuning

As the 3D coordinates are not provided for PCBA, we calculate coordinates
by rdkit as well. The results are presented in Table 5 in terms of Average
Precision (AP). We compare our algorithm with 7 methods: DeeperGCN [20],
DGN [1], GINE [2], PHC-GNN [19], GIN-VN [6, 38], Graphormer [40] and
TGT-At [13]. Our method outperforms the state-of-the-art approaches and



Molecular Representation Learning via Hierarchical Graph Transformer 13

T
ab

le
3:

R
es

ul
ts

on
P
C

Q
M

4M
v2

.
T

he
ev

al
ua

ti
on

m
et

ri
c

is
th

e
M

ea
n

A
bs

ol
ut

e
E

rr
or

(M
A

E
↓)

[e
V

].
B

ol
d

va
lu

es
in

di
ca

te
th

e
be

st
pe

rf
or

m
an

ce
.

M
od

el
Y

ea
r

S
ou

rc
e

V
al

id
M

A
E
↓

T
es

t-
d
ev

M
A

E
↓

G
IN

E
-V

N
[2

,6
]

20
20

ar
X

iv
pr

ep
ri

nt
,I

C
M

L
0.

11
67

-
G

C
N

-V
N

[6
,1

7]
20

17
IC

LR
,I

C
M

L
0.

11
53

0.
11

52
G

IN
-V

N
[6

,3
8]

20
18

IC
LR

,I
C

M
L

0.
10

83
0.

10
84

D
ee

pe
rG

C
N

-V
N

[6
,2

0]
20

20
ar

X
iv

pr
ep

ri
nt

,I
C

M
L

0.
10

21
-

T
ok

en
G

T
[1

6]
20

22
N

eu
rI

P
S

0.
09

10
0.

09
19

G
R

P
E

[2
7]

20
22

IC
LR

0.
08

67
0.

08
76

G
ra

ph
or

m
er

[4
0]

20
21

N
eu

rI
P

S
0.

08
64

-
G

ra
ph

G
P

S
[2

8]
20

22
N

eu
rI

P
S

0.
08

52
0.

08
62

G
E

M
-2

[2
2]

20
22

ar
X

iv
pr

ep
ri

nt
0.

07
93

0.
08

06
T
ra

ns
fo

rm
er

-M
[2

4]
20

22
IC

LR
0.

07
72

0.
07

82
G

P
S+

+
[2

5]
20

22
ar

X
iv

pr
ep

ri
nt

0.
07

78
0.

07
20

U
ni

-M
ol

+
[2

3]
20

23
N

at
ur

e
C

om
m

un
ic

at
io

ns
0.

06
93

0.
07

05
T

G
T

-A
t

[1
3]

20
24

IC
M

L
0.

06
71

0.
06

83
H

ie
G

T
0.

07
69

0.
07

81



14 Wang et al.

Table 4: Efficiency comparison on PCQM4Mv2.

Model GPUs Training time Inference time

Uni-Mol+ [23] 8 A100 GPUs 5 days 7 minutes
TGT [13] 8 A100 GPUs 4 days -
HieGT 8 RTX3090 GPUs 5 days 8 minutes

Table 5: Results on PCBA. The evaluation metric is the Average Precision (AP↑). Bold
values indicate the best performance.

Model Year Source Test-AP (%) ↑
DeeperGCN-VN-FLAG [20] 2020 arXiv preprint, ICML 28.42±0.43
DGN [1] 2021 ICML 28.85±0.30
GINE-VN [2, 6] 2020 arXiv preprint, ICML 29.17±0.15
PHC-GNN [19] 2021 ICANN 29.47±0.26
GIN-VN [6, 38] 2018 ICLR, ICML 29.02±0.17
Graphormer-FLAG [40] 2021 NeurIPS 31.40±0.34
TGT-Ag+TGT-At-DP [13] 2024 ICML 31.67±0.31
HieGT 33.25 ± 0.27

achieves performance gain by around 4.99%, which gives credits to the effective
local-global representation learning by the proposed hierarchical framework.

5.4 Interpretation

To show the interpretability of the proposed method, we visualize the attention
scores of two randomly sampled molecules in head 0 and head 1 after AGA and
MGA, compared with the state-of-the-art method TGT [13], as shown in Figure
5. The results illustrate the main impact within intra-motif edges in AGA and
inter-motif edges in MGA, which demonstrate the intuitive interpretability
of the proposed method. For instance, in AGA, the attention weights are
constrained in atoms of the same motif of the target atom. In MGA, the
attention weights are significant in atoms of other motifs. In comparison, the
distribution of attention weights in TGT is spread around and it is not easy to
discover chemical mechanism. Moreover, the atoms with significant weights are
consistent in Head 0 and Head 1 in AGA (the neighbor atoms of the candidate
atom) or MGA (atoms in other motifs), while atoms with significant weights
vary greatly in Head 0 and Head 1 in TGT (either the neighbor atom of the
candidate atom, or one of the farthest atoms). That is to say, the weights of
atoms are more stable across different attention heads in our method. This
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Figure 5: The visualization of attention weights of two randomly sampled molecules. The
node marked by a red square represents the candidate atom, while the other atoms are
shaded from red to white based on the magnitude of their attention weights relative to the
candidate atom.

indicates that the latent features learned by AGA and MGA are more intrinsic
than TGT for molecular representation learning.

5.5 Ablation Study

We conduct ablation studies on the two major components of our algorithm:
AGA and MGA. Experiments are conducted on the PCQM4Mv2 dataset in
Table 6. The evaluation metric is the Mean Absolute Error (MAE) in eV unit.
The results with both AGA and MGA are significantly better than results
with removing one of the modules, which validates the effectiveness of our
method. In addition, keeping merely the AGA module achieves lower MAE
than remaining merely MGA. This could suggest that atom features serve as
a comparatively more important role in molecular representation learning.
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Table 6: Ablation Study on PCQM4Mv2.

Model AGA MGA Valid MAE ↓
HieGT ✕ ✓ 0.0856
HieGT ✓ ✕ 0.0812
HieGT ✓ ✓ 0.0769

6 Conclusion

In this work, we propose Hierarchical Graph Transformer to learn local-global
molecular representations. As molecules can be decomposed into motifs that
possess local substructures and functions, we develop rules to construct motif-
wise graphs from atom-wise graphs, and design Atom-wise Graph Attention
and Motif-wise Graph Attention constrained by intra-motif edges and inter-
motif edges. Experimental results show that the proposed method achieves
competitive results on pretraining and significantly outperforms state-of-the-
art graph representation learning approaches on finetuning. In the future,
we plan to apply the proposed method on more downstream tasks, such as
molecule generation and molecular conformation learning.
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