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ABSTRACT
Biometric authentication systems are facing increasing threats
from artificial intelligence-generated content. Previous research
has revealed the vulnerability of 2D face authentication systems
to master face attacks, which use GAN-based models to create
facial samples capable of matching multiple registered user tem-
plates in the database. However, the effectiveness of such attacks
in 3D scenarios has not been thoroughly investigated.
In this paper, we present a systematic approach to generate master
faces that can compromise both 2D and 3D face recognition sys-
tems. It uses a latent variable evolution algorithm with a 3D face
morphable model. Notably, our approach achieves, for the first
time, controllable and morphable master face attacks on face au-
thentication systems. We explore the effect of facial reenactment
and face morphing on enhancing the efficacy of master face attacks
and reducing the time required for master face generation. Com-
prehensive simulations of simultaneous master face attacks based
on white-box, gray-box, and black-box scenarios demonstrated
that our approach achieves superior attack success rates and has

∗Corresponding author: siyun.liang@tum.de

Received 29 November 2024; revised 06 February 2025; accepted 19 February 2025
ISSN 2048-7703; DOI 10.1561/116.20240089
© 2025 S. Liang, H. H. Nguyen, S. Ikehata, J. Yamagishi and I. Echizen

http://creativecommons.org/licenses/by-nc/4.0/


2 Liang et al.

advanced flexibility compared with existing methods, highlighting
the importance of defending against master face attacks.

Keywords: 3D master face, face recognition, 3D morphable face model

1 Introduction

Recent developments in artificial intelligence-generated content techniques
have brought renewed attention to cybersecurity, particularly concerning bio-
metric authentication systems. Large-scale real-world attacks on remote iden-
tity verification have been widely reported, employing adversarial techniques
such as deepfake generation [17, 9], facial presentation attacks [16], and video
injection attacks [6], which significantly compromise authentication systems
[18, 15]. These attacks primarily target face recognition (FR) systems in veri-
fication mode, where an attacker attempts to impersonate a legitimate user by
presenting altered or synthetic facial data. As a result, they typically require
prior knowledge of the victims facial information.

In contrast, the “wolf attack” [59] enables attackers to generate generic
“master samples” that closely resemble multiple enrolled biometric traits
within the gallery of the authentication systems. Several studies have suc-
cessfully created master face samples [42] using GAN-based 2D image gen-
eration models [34] without the need for specific victim information. These
methods use 2D face recognition systems to assess the similarity between
GANs-generated faces and real faces in a database. To improve this simi-
larity, the latent variables input to GANs are iteratively refined, ultimately
producing master face samples that effectively cover a wide range of identities
in the gallery, thereby revealing the vulnerability of face-based authentication
systems to master face attacks. However, previous studies on master face
attacks have predominantly focused on 2D scenarios. Such attacks fail with
the widespread incorporation of more robust 3D FR systems in contemporary
authentication systems.

Friedlander et al. [20] introduced the first method for 3D master face gener-
ation, which reconstructed the 3D facial geometries from the 2D face images
generated by the GAN-based model. They further evaluate the similarity
between synthetic faces and real faces using both 2D and 3D FR systems,
leveraging this feedback to optimize the latent code. While this approach
successfully produces 3D master face samples that perform well in white-box
attacks, it is seldom applicable in real-world attacks, which are often gray-box
or black-box scenarios.

To make 3D master face attacks applicable in real-world scenarios, the
following challenges need to be addressed:
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Controllability. While traditional 2D FR systems generally rely on static
frontal face images, modern face authentication systems have integrated live-
ness detection [43] to counter 2D presentation attacks. These systems typ-
ically require users to change their facial expressions and/or poses, thereby
filtering out static attack samples. However, current 2D and 3D master face
generation methods lack flexible controllability. This limitation arises from
their reliance on GAN-based models. The entangled nature of latent variable
spaces in such models prevents them from generating master faces that enable
effective control of facial (semantic) features while maintaining output quality
[1]. In addition to the inconvenience associated with facial reenactments, their
morphing capabilities are also limited. Interpolation between latent codes can
result in unwanted artifacts in the output images.

This highlights the need for a 3D facial template model that offers both ro-
bust facial geometry priors and a parametric face space, enabling controllable
manipulation. In this work, we use a 3D morphable face model (3DMM) [2]
to disentangle shape, appearance, expression, and pose parameters, enabling
the production of highly controllable 3D facial samples directly in the 3D
space. Compared to GAN-based generators, this attribute disentanglement
better preserves critical 3D information, improves the controllability of facial
attributes, and facilitates 3D face morphing. Additionally, since the texture
space of 3DMM is learned from 3D facial scans, the texture and geometry
of the generated master face samples are consistent. In contrast, GAN gen-
erates a single 2D image with limited facial information, and the textures
and geometries of the reconstructed 3D faces are often misaligned. In con-
trast, 3DMM-based master faces are more suitable for physical presentation
attacks.

Cross-modality. Master faces are rooted in the imbalanced distribution
of features within the FR system [41]. Deep learning-based FR systems often
suffer from non-uniform distributions in the feature space. Consequently, if
a face falls within a dense cluster in the feature space, its likelihood of being
falsely matched to other samples within that cluster increases. Training a
master face can be regarded as approaching the densest cluster within the
feature space of the FR system. However, acquiring a 3D master face that
can compromise 2D and 3D FR systems simultaneously is extremely difficult
because these dense clusters may not align between two systems, making it
challenging to pinpoint cross-modal clusters of these vulnerable faces.

To this end, we propose a latent variable evolution (LVE) algorithm to
iteratively optimize the disentangled shape and appearance of latent vectors
of our 3DMM generator, using an objective function to calculate the joint
false matching rate (FMR) of the generated faces based on their similarity
with the facial data of the training set for optimization.

Generalizability. Real-world attacks are generally grey-box or black-box
attacks, which means that the FR system targeted by the attacker may be
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different from the one used to train the master face, and the distribution of
the target face gallery may deviate from the face dataset used for training.
As a result, the generated master faces may be difficult to generalize, leading
to the failure of the attack.

While using multiple master faces in dictionary attacks manner [20] could
alleviate this generalizability problem, current methods are so time-consuming
that it takes up to an entire day to generate even a single master face, not to
mention generating a set of multiple master faces. In our work, we substituted
tedious multiple master faces generation by morphing a few master faces.
The morph of two master faces produced with our framework retains the
capability of multiple false matching due to smoothly bridging the matching
space between the source master faces. Hence, only a small number of master
faces generated from the training set are needed to obtain a large number
of new master face samples via morphing, which greatly reduces the time
required to train a large master face set and enlarges the potential coverage
for real-world attack purposes.

In summary, our work introduces a novel framework for generating 3D
master faces that can effectively compromise both 2D and 3D face recogni-
tion systems. By leveraging a 3DMM, we achieve a high level of controllability
over facial attributes, which is critical for bypassing advanced face authenti-
cation systems. Additionally, we propose an LVE algorithm to enhance the
cross-modality performance of generated master faces, ensuring their effec-
tiveness across different FR systems. Finally, our approach addresses the gen-
eralizability challenge by efficiently generating a diverse set of master faces
through morphing techniques, significantly reducing computational time while
expanding the potential for real-world application.

2 Related Work

2.1 Face Recognition Systems

The last decade has seen the rapid development of deep learning methods
for 2D face recognition. An important milestone was the introduction of the
DeepFace model [57], which achieved an impressive accuracy rate of 97.35%
on the LFW benchmark [32], approaching human-level performance. Sub-
sequently, the application of convolutional neural networks (CNNs) to FR
systems flourished. Schroff et al. presented the FaceNet model [50], which
was trained with a triplet loss function on a GoogLeNet architecture. Liu et
al. instead proposed a novel angular softmax loss [39]. Further, Wang et al.
[60] and Deng et al. [11] addressed the optimization challenges of this loss
with additive cosine and angular margin. More recent research has explored
adaptive loss functions [36], including the adaptive margin for image quality.
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In contrast, 3D FR systems, known for their superior performance in chal-
lenging cases compared with their 2D counterparts, have received less at-
tention in deep learning-based research. This is partly due to the scarcity
and privacy sensitivity of 3D facial training data. The first CNN-based 3D
FR model [35] involved fine-tuning the pre-trained 2D VGGFace model [4]
with facial depth maps. Gilani and Mian [23] combined public-available 3D
face datasets to create a comprehensive one for training a CNN-based model
called FR3DNet from scratch. To address the challenges posed by the lack
of high-quality training data, Mu et al. [40] proposed Led3D, an open-source
lightweight CNN model that uses low-quality depth images captured using a
Kinect sensor for training, achieving state-of-the-art performance.

Recognizing that real-world 3D face acquisition often involves live capture
using commercial range cameras rather than static, high-resolution 3D scan-
ners in a lab setting, we consider Led3D to be a suitable 3D FR system for
simulating authentic, real-world scenarios. Additionally, inspired by Kim et al.
[35], we fine-tuned a commonly used 2D FR system called ArcFace [11], which
was initially trained on an IResNet [13] backbone, by using a high-resolution
FaceScape [62] dataset. The incorporation of these two FR systems enables us
to simulate a broader range of situations in real-life authentication scenarios.

2.2 Face Generation

Among the various generative models for creating 2D facial images, the gen-
erative adversarial network (GAN) [24] framework is noteworthy. GAN can
be conceptualized as a two-player minimax game between the generator and
the discriminator. The generator is a differentiable function that transforms
an initial latent vector into a data sample, striving to generate data that
closely resembles real training data. In contrast, the discriminator is trained
to differentiate between samples generated by the generator and real training
data. An important development was that of StyleGAN [33], which includes
a mapping network that separates content and style information, leading to
improved control over the appearance of generated images.

Our research emphasizes 3D face generation methods, particularly those
involving the widely used 3DMM [2]. This model disentangles facial com-
ponents such as shape, appearance, and expressions, facilitating statistical
capture of variations and tasks like facial reenactment. The preprocessing
stage establishes point-to-point correspondence within the training database,
which enables meaningful combinations of faces and face generation through
coefficient sampling [14]. Furthermore, analysis-by-synthesis techniques allow
for the estimation of these coefficients directly from 2D images, making it a
foundational approach for single-image 3D face reconstruction.

Recent non-linear extensions of 3DMM have been developed using auto-
encoder-based [70, 46] and GAN-based architectures [55, 7, 51]. These ap-
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proaches significantly enhance single-image 3D face reconstruction. For in-
stance, DECA [19] introduces expression-conditioned displacement models
learned in a self-supervised manner, enabling both high-fidelity 3D face re-
construction and realistic facial animation from in-the-wild images. More
recently, researchers have explored combining 3DMM with advanced neural
3D representations such as Neural Radiance Fields [69, 21] and 3D Gaus-
sian Splattings [61]. These hybrid approaches enhance dynamic head recon-
struction from monocular video by leveraging both the parametric control
of 3DMM and the view-dependent rendering capabilities of neural represen-
tations[22, 52]. These advancements in 3DMM introduce new security risks.
The ability to generate highly realistic and dynamically controllable synthetic
faces increases the vulnerability of face recognition-based authentication sys-
tems, posing new challenges for biometric security.

2.3 Master Attack

The wolf attack, also known as the master attack, was introduced by Une et al.
[59]. This attack aims to create a generic sample capable of falsely matching
multiple enrolled subjects in a biometric authentication system’s gallery. Ini-
tially applied to fingerprint-based authentication systems [3], this concept was
further extended to face-based authentication systems [42]. Recent research
[53, 41] analyzed master faces, exploring their properties and assessing their
generalizability across different datasets and 2D FR systems.

3 Proposed Method

3.1 Overview

Our training process for 3D master face generation is illustrated in Figure 1.
The collected authentic human templates in the training set are denoted as Th.
While numerous publicly available 3D facial datasets primarily consist of hu-
man face meshes, many 3D FR systems use depth images as input rather than
the entire mesh. To accommodate this, we developed a data preprocessing
pipeline labeled P , which is detailed in Section 4.1. This pipeline transforms
Th into RGB and Depth (RGB-D) image pairs for each facial scan.

Face authentication systems use FR models to encode input images into
lower-dimensional feature representations. For 2D FR, the function f2d :
RW×H×3 → Rd maps color images to a d-dimensional space. A similar func-
tion is used for 3D FR, utilizing depth images as input instead.

The face matching function m : Rd × Rd → {0, 1} is used to predict
whether the embeddings of the two inputs correspond to the same identity.
This matching function is conditioned on a chosen threshold θ specific to the



3D Morphable Master Face 7

𝛼

𝛽

R
asterizer

𝑐

𝑙

𝜑

𝜓

Albedo

FLAME

3D Morphable Face Model Generator 𝐺

2D Face 

Recognition

𝑚2𝑑 , 𝜃2𝑑

CMA-ES
 

Preprocessor 

𝑃

RGB-D Matching 𝑀

3D Face 

Recognition

𝑚3𝑑 , 𝜃3𝑑

ℒ𝑗𝑜𝑖𝑛𝑡

𝑡𝑐

𝑡𝑑

𝒯ℎ𝑐

𝒯ℎ𝑑

𝑥𝑐

𝑥𝑑

camera code albedo code light code pose code shape code expression code

Loop for 𝑛 iterations

(Sec. 4.1)

ask tell

 (Sec. 3.2)

Figure 1: The Latent Variable Evolution process with 3D Morphable Face Model. The
CMA-ES optimizer iteratively updates the albedo code α and the shape code β to generate
a 3D master face that maximizes the joint false matching rate across both 2D and 3D FR
systems. The FLAME model and Albedo model of a 3DMM produce a synthesized face
mesh and texture, which are then rasterized and passed through the preprocessor P to
create RGB-D images. These images are fed into 2D and 3D FR, where they are compared
against a gallery of authentic faces Th. The ask-and-tell loop continues for n iterations,
ultimately yielding a 3D master face that simultaneously compromises both modalities.

selected similarity metric, in our case, the cosine similarity metric between
feature embeddings. However, our work necessitated the simultaneous consid-
eration of RGB-D matching, leading to a more complex matching function:

M(t1, t2, θ2d, θ3d) = m2d ∩m3d → {0, 1}, (1)

where the two matching functions are:

m2d(f2d(t1c), f2d(t2c), θ2d)→ {0, 1}, (2)

and
m3d(f3d(t1d), f3d(t2d), θ3d)→ {0, 1}. (3)

Based on the above notation, our objective in master face generation is
to produce a forged sample x that can match the highest number of enrolled
templates in the training set and compromise both 2D and 3D FR systems
with the most false matches.

x = argmax
x

∑
t∈Th

M(x, t, θ2d, θ3d) (4)

Since our objective is to generate a master face that can simultaneously
compromise both the 2D and 3D FR systems, focusing solely on maximizing
cases where m2d = m3d = 1 is both sufficient and effective. This design
ensures that the optimization process concentrates on satisfying the shared
constraints of both systems without being distracted by the edge cases of
inconsistency.
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To this end, we use a 3DMM-based face generator G to synthesize a 3D
face mesh, conditioned on a set of latent codes, which are the camera code c,
albedo code α, light code l, shape code β, pose code φ, and expression codes
ψ [37]. Human face templates in the FR systems are typically front-facing
and expressionless, so we optimize only the albedo code α and shape code
β and freeze the other codes to simplify the training procedure. We then
utilize the same data preprocessor P to produce the RGB-D image pair of
this synthesized face. We therefore re-formulate the master face generation
problem as finding an optimal pair of latent vectors (α,β) that results in the
highest FMR:

(α,β)opt = argmax
(α,β)

∑
t∈Th

M(P (G(α,β)), t, θ2d, θ3d)

∥Th∥
(5)

In particular, our maximization objective deliberately ignores cases where
m2d ̸= m3d, as these inconsistencies fail to provide clear guidance on how to
update the α and β. Specifically, changes in the albedo code primarily affect
the facial appearance, influencing the 2D FR system but having little impact
on the 3D FR system. In contrast, changes in the shape code alter the facial
geometry, significantly affecting both the 2D and 3D FR systems. As a result,
in cases where inconsistencies occur, it is ambiguous whether the they come
from the appearance variation or the geometric variation.

Maximizing the count of matches requires an iterative process to refine
(α,β). For this purpose, we introduce an LVE strategy in the following Section
3.2.

3.2 Latent Variable Evolution Algorithm

We formalized the process for refining an initial latent vector (α,β) as outlined
in Algorithm 1. To address the optimization challenges inherent in generat-
ing master faces, which involve non-differentiable thresholding operations, we
used the covariance matrix adaptation evolution strategy (CMA-ES) [26] as
our optimizer.

Our implementation of the LVE algorithm leverages the ask-and-tell inter-
face of CMA-ES. First, we initialize the CMA-ES solver with random latent
codes. When we “ask” the solver for solutions, it generates potential can-
didate solutions by sampling from a multivariate normal distribution with
parameters determined during initialization. We execute the complete gener-
ation and matching procedure using these candidate solutions to obtain fitness
scores from our objective function. These scores are subsequently “told” to
the CMA-ES optimizer. The optimizer utilizes this feedback to update its
distribution parameters, including the distribution mean vector and covari-
ance matrix, for the subsequent iterations of the ask-and-tell process. This
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Algorithm 1 Latent variable evolution pseudo code
m← 22 ▷ Population size
F ,S ← {} ▷ Empty master face & score set
(α,β)← 0 ▷ Initialization
for n iterations do ▷ Run LVE n times
X ← P (G((α,β))) ▷ Generate m faces
s← 0 ▷ Initialize scores s ∈ Rm

for face xi in faces X do
for face tj in faces T do
si ← si +M(xi, tj ,θ) ▷ See Section 3.2

end for
end for
s← s

|T | ▷ Calcuating FMR
xb, sb ← GetBestFace(X , s,θ)
F ← F ∪ {xb} ▷ Append best master face
S ← S ∪ {sb} ▷ Append best score
(α,β)← CMA-ES(1− s)

end for
return F ,S
fb, sb ← GetBestFace(F ,S,θ) ▷ Find best master faces

iterative approach enables the optimizer to progressively explore the search
space, ultimately converging towards an optimal solution.

The key challenge lies in defining an appropriate objective function that
guides the CMA-ES algorithm effectively toward improved solutions. In prior
studies on 2D master face generation [42], the optimization process used scores
of the similarity between two faces, aiming at increasing these scores. In con-
trast, our work introduces complexity by incorporating both 2D and 3D FR
systems, emphasizing simultaneous matches. Our experiments in Section 4.8
show that enhancing similarity scores for both 2D and 3D FR systems might
not yield the desired outcomes. This is because a face sample with high av-
erage similarity scores in both 2D and 3D FR systems could be matched to
different individuals across modalities due to distinct feature space distribu-
tions. To address this challenge, we use the matching function described in
Section 3.1, which quantifies the count of concurrent 2D and 3D matches for
the same individual. The final objective function tends to maximize the joint
FMR on both 2D and 3D FR systems:

Ljoint = 1− FMRjoint + ω∥β∥2, (6)
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where the joint FMR is defined as:

FMRjoint =

∑
t∈Th

M(x, t, θ2d, θ3d)

∥Th∥
. (7)

Here the ω∥β∥2 defines a regularization term of the shape vector β in a
3DMM. This regularization penalizes extreme deviations in the shape vector
that could result in unrealistic or anatomically implausible face shapes, en-
suring that the generated shapes remain within a reasonable range of natural
human facial geometry.

3.3 Baseline

We compare our methods with the first 3D master face generation method [20],
which reconstructs the 3D geometry from images generated through Style-
GAN2.

One limitation of the baseline derives from the instability of the uncon-
ditional GAN-based generator. Randomly sampling the latent vector could
yield human faces with varying poses and expressions. Faces with exagger-
ated expressions or excessively deviated poses are difficult to optimize, which
degrades performance. The authors, therefore, ran the LVE algorithm five
times and selected the optimal outcome for evaluation. Although effective,
this method is computationally expensive.

Another limitation is that optimizing within the latent space of 2D GAN
during the optimization stage compromises the information available from
3D FR. 3D face reconstruction from a single image is an ill-posed problem.
Therefore, the reconstruction process typically introduces inaccuracies and
uncertainties, leading to a loss of information related to the characteristics of
the 3D master face. Additionally, since the 3D geometry is estimated from
2D images, controlling the 3D domain without affecting 2D appearance is
challenging, resulting in reduced controllability.

In contrast, our method stably generates highly controllable 3D master
faces and effectively utilizes information from both modalities. For compari-
son, we re-implemented the baseline method using StyleGAN2 and the DECA
3D face reconstruction model instead of the original reconstruction network
[12]. The reason is that DECA uses the FLAME topology for 3D face recon-
struction, enhancing fairness in comparisons. Furthermore, DECA achieved
better reconstruction performance than the work mentioned above on the
NoW benchmark [48].
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4 Experiments

4.1 Experimental Setup

Datasets
In our experiments, we used four 3D face datasets and four FR systems, en-
abling us to explore various configurations and assess the generalizability of
master faces. The details of the datasets involved are presented in Table 1.
We extracted data for 60 individuals, comprising a total of 1,500 scans, from
the BU-3DFE dataset [64] to form the training set for master face generation.
To ensure an extensive evaluation, the remaining 40 identities were randomly
shuffled and allocated to the development (dev) and evaluation (eval) sets.
The Headspace [10] and Texas3D [25] datasets are used as targets in the at-
tacking phase and split into dev and eval sets too. Specifically, the dev set
of each dataset was used for conducting a grid search to identify an optimal
threshold that effectively balances the false acceptance rate (FAR) and false
rejection rate (FRR), ultimately minimizing the equal error rate (EER), as
shown in Table 2. As Headspace provides only one sample image per indi-
vidual, we manually selected thresholds to ensure that both 2D and 3D FR
systems achieved an EER of less than 2%.

Table 1: Details of 3D facial datasets used in our experiments.

Database Data type IDs Scans Exps
BU-3DFE [64] Mesh 100 2,500 25
Texas3D [25] Range Images 118 1,149 Various
Headspace [10] Mesh 1,519 1,519 1
FaceScape [62] Mesh 847 16,940 20

Table 2: Equal error rates (%) computed on each dataset-FR system pair.

FaceNet [50] AdaFace [36] IResnet100 [13] Led3D [40]
BU-3DFE 1.17 10.35 9.27 11.70
Texas3D 0.08 6.64 4.69 4.00
Headspace 1.95 1.70 1.79 1.29

Although the FaceScape dataset [62] has the largest number of samples,
its facial topology does not include eyes and mouth, making it unsuitable for
training the master face. We thus used its released bilinear model to generate
300 different samples, each having 52 different expression meshes rendered in
9 different poses. Inspired by Kim et al. [35], we used these rendered depth
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maps to fine-tune a pre-trained 2D FR system [13], resulting in a workable
3D FR system.

Data Preprocessing
Our experiments required two rounds of data preprocessing. First, for datasets
with inconsistent topologies and varying facial poses as raw data, i.e., BU-
3DFE and Headspace, we selected one facial scan as a template. We then
conducted a Procrustes analysis based on the landmark data for each facial
scan to align them. This enabled us to further use the selected intrinsic
parameters to render the entire mesh dataset into an RGB-D dataset.

During preprocessing, we used face detection and cropping to transform
the rendered datasets into valid input data for the FR systems. We used the
same parameters settings for the MTCNN face detector [68] used for FaceNet
and AdaFace. During the training process, we used a face parser based on the
bilateral segmentation network (BiSeNet) [65] to filter out irrelevant informa-
tion, such as background and neck regions, from the intermediate results.

For the rendered 3D depth maps based on the FLAME topology, we first
used a pre-defined vertex mask to retain only the depth information for the
facial region. We then carried out preprocessing relevant to the target FR
system. The preprocessing pipeline corresponds to that for Led3D, which
includes nose tip calibration, outliers removal, and depth normalization.

Face Recoginition Systems
From among the many open-source 2D FR systems, we selected FaceNet and
AdaFace. FaceNet [50] is based on the GoogLeNet (InceptionNet) [56] ar-
chitecture and trained with triplet loss. As a highly regarded 2D FR model
widely used to this day, FaceNet has demonstrated high efficiency and accu-
racy. We used a FaceNet model pre-trained on the VGGFace2 [4] dataset
for the experiments. AdaFace [36] features a novel loss function based on
adjustable image quality. We used an AdaFace model, which used ResNet18
[27] as the backbone, pre-trained on the CASIA-WebFace dataset [63].

There are relatively few open-source models for 3D FR systems, primarily
due to the scarcity of public available databases. Hence, we used a fine-tuned
IResnet100 model originally trained on the MS1MV2 dataset [11]. We also
used a 3D FR system based on an open-source lightweight CNN model named
Led3D [40], which incorporates a spatial attention vectorization module for
multi-level feature fusion. Initially pre-trained on a combination of the Face
Recognition Grand Challenge (FRGC) v2 dataset [45] and Bosphorus dataset
[49], it was further fine-tuned using the Lock3DFace dataset [67], which con-
sists of Kinect-captured low-quality 3D face images. Notably, for fair experi-
ments, we carefully selected the pre-trained 2D and 3D FR systems to ensure
that their training sets did not overlap with the dataset we used for training
and evaluating master faces.
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Setting
We simulate and evaluate different attack scenarios as shown in Figure 2. In
Master Face Generation Phase, we use the BU-3DFE training dataset
and FaceNet/IResnet100 FR systems pair to generate a set of master faces.
The evaluation is done in the Attacking Phase, where we use the generated
master faces to attack specific settings of a face authentication system. If the
targeting system shares the same dataset and FR systems with those used
for the generation phase, we consider this a white-box attack. If the only
partial settings are overlapped, we consider it a gray-box attack. The most
difficult case is the black-box attack, where both the dataset and the FR
systems of the target is completely different from the training setting.

BU-3DFE
Training

Master Face Generation Phase

FaceNet

VGGFace2

IResnet100

FaceScape

2D FR 3D FR

BU-3DFE
Dev & Eval

Attacking Phase

Training set

Test set

HeadSpace
Dev & Eval

Test set

Texas3D
Dev & Eval

Test set

FaceNet

VGGFace2

IResnet100

FaceScape

2D FR 3D FR

FaceNet

VGGFace2

Led3D

Lock3DFace

2D FR 3D FR

AdaFace

CASIAWebface

IResnet100

FaceScape

2D FR 3D FR

AdaFace

CASIAWebface

Led3D

Lock3DFace

2D FR 3D FR

Figure 2: Master face attack scenarios. Master faces were created during the generation
phase on a fixed dataset and FR systems and then used for attacking. A combination of 3
test datasets (further divided into dev and eval sets) and 4 FR pairs resulted in a total of
12 attack settings, categorized as white/gray/black-box attacks depending on the extent of
overlap with the generation phase.

4.2 Metrics and Reference Anchor

Given x as the generated master face sample and given the context of the
target, we typically used the joint FMR on both 2D and 3D FR systems as
the evaluation metric, as defined in Equation 7.

Apparently, the FMR is affected by the choice of the training dataset
and the performance of the FR systems selected. Due to variations in the
assessments of different FR systems in previous research, there is currently
no unified benchmark for evaluating the success rate of master face
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attacks. To the best of our knowledge, our research is the first attempt to
simultaneously assess this success rate for both 2D and 3D systems in terms
of generalization. Therefore, besides the reconstruction-based baseline [20]
detailed in Section 3.3, we set two reference anchors, which are the FMRs of
natural master faces obtained on the training set and the test set.

A natural master face is a bona fide face sample that possesses master
face capability. Given an arbitrary dataset and 2D/3D FR systems pair, for
each bona fide face data within the dataset, we can calculate the number of
genuine templates in the dataset that it could falsely match with, conditioned
on the matching function of the given FR systems. The one with the high-
est FMR is identified as the natural master face under that specific setting.
Therefore, we can compute the natural master face on the training set using
the generation phase setting. In addition, for each of the twelve settings in
the attacking phase, as shown in Figure 2, we can obtain the natural master
face on the test set.

To be specific, for each attacking scenario out of the twelve settings, we
evaluate the FMR with the following baseline:

1. Attack with the natural master face based on the test set: We
assume the attacker already knows the gallery and the FR systems of
the targeted face authentication system, making the attack white-box.
While generally impossible in real-world scenarios, it serves as an an-
chor for evaluating the “best ideal” performance of a master face
attack.

2. Attack with the natural master face based on the training set:
In this attack setting, the natural master faces calculated with the set-
tings from the generation phase are used. This means that they are gen-
erated under the same conditions as our synthesized master faces. This
anchor supports the comparison of the attack success rates between
genuine and synthesized master face samples.

3. Attack with the synthesized master face from Friedlander et
al. [20]: We use the same setting in the generation phase to get master
faces from the baseline [20]. We try both attacks with a single master
face or multiple master faces using a greedy strategy.

The FMR resulting from the above baselines is compared to the FMR
achieved using our synthesized master face approach to evaluate effectiveness.
We present results in in Tables 3 and 4, with further analysis in Section 4.6.

4.3 Master Face Generation and Attack

Master face generation refers to the generation phase depicted in Figure 2,
in which we ran the LVE algorithm (Algorithm 1) for 1,000 iterations on a
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Table 3: Success rates for master face attacks simulated with different settings (in total 12
settings, each setting on dev and eval set), divided into two sub-tables.

(a)

FRs Strategy BU-3DFE dev (%) BU-3DFE eval (%) Headspace dev(%)
2D 3D Joint 2D 3D Joint 2D 3D Joint

FaceNet
IResNet

Avg 1.09 9.06 0.01 1.39 13.99 0.35 3.89 3.56 0.34
Best 1.20 1.60 0.80 10.60 34.40 7.40 17.56 11.78 4.19
Single[20] 0.00 6.80 0.00 3.20 5.20 0.00 0.20 0.20 0.00
Greedy[20] 0.20 23.80 0.00 3.20 28.60 0.00 7.78 1.40 0.00
Single 0.80 40.00 0.80 4.20 56.60 4.20 5.99 6.79 1.00
Greedy 3.00 48.40 2.80 15.40 64.60 14.00 15.97 16.37 2.59
Morph 4.40 51.80 4.40 19.60 67.00 19.20 20.96 22.75 4.59

FaceNet
Led3D

Avg 1.09 11.74 0.06 1.39 22.74 0.84 3.89 2.58 0.27
est 5.20 2.20 2.20 10.60 46.80 9.40 17.56 10.78 4.19
Single[20] 0.00 6.80 0.00 3.20 0.80 0.00 0.20 0.00 0.00
Greedy[20] 0.20 15.20 0.00 3.20 14.20 0.00 7.78 0.00 0.00
Single 0.80 35.80 0.60 4.20 46.80 4.00 5.99 6.99 0.40
Greedy 3.00 49.80 2.00 15.40 53.40 11.60 15.97 10.78 0.40
Morph 4.40 55.40 4.20 19.60 60.60 18.20 20.96 13.77 2.20

AdaFace
IResNet

Avg 9.88 9.06 1.91 9.96 13.99 3.04 3.39 3.56 0.31
Best 36.40 40.40 16.60 31.60 47.80 22.00 18.56 13.97 4.99
Single[20] 0.60 6.80 0.00 4.20 5.20 0.00 0.00 0.20 0.00
Greedy[20] 2.60 23.80 0.00 6.20 28.60 1.00 0.00 1.40 0.00
Single 5.20 40.00 5.20 4.80 56.60 4.80 0.00 6.79 0.00
Greedy 8.40 48.40 7.00 8.20 64.60 7.40 0.40 16.37 0.00
Morph 19.40 51.80 15.00 25.00 67.00 22.60 1.80 22.75 0.60

AdaFace
Led3D

Avg 9.88 11.74 3.08 9.96 22.74 4.51 3.39 2.58 0.25
Best 26.60 51.20 20.20 34.20 48.80 25.20 14.97 7.98 3.39
Single[20] 0.60 6.80 0.00 4.20 0.80 0.00 0.00 0.00 0.00
Greedy[20] 2.60 15.20 0.00 6.20 14.20 0.00 0.00 0.00 0.00
Single 5.20 35.80 4.60 4.80 46.80 3.80 0.00 6.99 0.00
Greedy 8.40 49.80 6.80 8.20 53.40 6.80 0.40 10.78 0.00
Morph 19.40 55.40 17.00 25.00 60.60 20.60 1.80 13.77 0.40

(b)

FRs Strategy Headspace eval (%) Texas3d dev (%) Texas3d eval (%)
2D 3D Joint 2D 3D Joint 2D 3D Joint

FaceNet
IResNet

Avg 3.48 2.90 0.31 0.08 4.31 0.01 0.17 2.80 0.01
Best 9.18 11.18 3.79 3.24 23.73 1.69 6.60 9.40 2.60
Single[20] 0.20 0.00 0.00 0.00 0.62 0.00 0.00 1.80 0.00
Greedy[20] 6.99 1.60 0.20 0.00 0.62 0.00 0.00 1.80 0.00
Single 5.59 4.39 0.60 0.00 0.00 0.00 0.00 0.00 0.00
Greedy 14.17 13.17 1.20 0.00 0.46 0.00 0.00 4.40 0.00
Morph 20.76 18.76 4.19 0.00 0.46 0.00 0.00 4.40 0.00

FaceNet
Led3D

Avg 3.48 2.06 0.20 0.08 3.81 0.05 0.17 12.25 0.05
Best 11.18 11.18 2.40 8.32 20.18 7.55 11.40 8.00 5.00
Single[20] 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Greedy[20] 6.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Single 5.59 6.99 0.40 0.00 0.00 0.00 0.00 0.00 0.00
Greedy 14.17 10.18 0.60 0.00 0.62 0.00 0.00 0.00 0.00
Morph 20.76 12.18 2.20 0.00 0.62 0.00 0.00 0.00 0.00

AdaFace
IResNet

Avg 3.75 2.90 0.30 6.18 4.31 0.49 6.40 2.80 0.31
Best 16.97 11.18 4.79 31.28 18.34 9.71 22.00 9.40 4.60
Single[20] 0.00 0.00 0.00 8.94 0.62 0.00 4.20 1.80 0.00
Greedy[20] 0.00 1.60 0.00 9.86 0.62 0.00 4.60 1.80 0.00
Single 0.00 4.39 0.00 0.31 0.00 0.00 0.20 0.00 0.00
Greedy 0.00 13.17 0.00 1.69 0.46 0.00 5.80 4.40 0.40
Morph 1.60 18.76 0.20 4.01 0.46 0.00 18.20 4.40 0.60

AdaFace
Led3D

Avg 3.75 2.06 0.18 6.18 3.81 0.68 6.40 12.25 1.50
Best 23.75 10.98 4.39 28.51 20.18 14.79 27.00 28.20 13.60
Single[20] 0.00 0.00 0.00 8.94 0.00 0.00 4.20 0.00 0.00
Greedy[20] 0.00 0.00 0.00 9.86 0.00 0.00 4.60 0.00 0.00
Single 0.00 6.99 0.00 0.31 0.00 0.00 0.20 0.00 0.00
Greedy 0.00 10.18 0.00 1.69 0.62 0.00 5.80 0.00 0.00
Morph 1.60 12.18 0.20 4.01 0.62 0.00 18.20 0.00 0.00

BU-3DFE training set consisting of 1,500 facial data samples to train our
master faces. The FR systems used in our experiments were FaceNet and
fine-tuned IResNet100 as mentioned above. Notably, the training set for the
FR systems(VGGFace2, FaceScape) was distinct from the training set for the
LVE algorithm(BU-3DFE).



16 Liang et al.

Table 4: Results for using a selected natural master face to attack face authentication
systems for 12 settings. Natural master face was computed using the BU-3DFE training
set, and FR systems used were FaceNet and IResNet. The computation setting matched
that for our master face generation. The FMR for each attacking setting is shown in column
Natural. Our best results of the master face morphing attacks are shown in column Morph
in comparison with such kind of natural master face attack.

(a)

FRs FaceNet IResNet FaceNet Led3D
Strategy Avg Best Natural Morph Avg Best Natural Morph

BU-3DFE
dev (%)

2D 1.09 1.20 0.00 4.40 1.09 5.20 0.00 4.40
3D 9.06 31.60 39.60 51.80 11.74 2.20 38.20 55.40
Joint 0.01 0.80 0.00 4.40 0.06 2.20 0.00 4.20

BU-3DFE
eval (%)

2D 1.39 10.60 0.00 19.60 1.39 10.60 0.00 19.60
3D 13.99 34.40 46.20 67.00 22.74 46.80 39.00 60.60
Joint 0.35 7.40 0.00 19.20 0.84 9.40 0.00 18.20

Headsapce
dev (%)

2D 3.89 17.56 0.20 20.96 3.89 17.56 0.20 20.96
3D 3.56 11.78 3.79 22.75 2.58 10.78 1.60 13.77
Joint 0.34 4.19 0.00 4.59 0.27 4.19 0.00 2.20

Headspace
eval (%)

2D 3.48 9.18 0.80 20.76 3.48 11.18 0.80 20.76
3D 2.90 11.18 2.40 18.76 2.06 11.18 1.40 12.18
Joint 0.31 3.79 0.00 4.19 0.20 2.40 0.00 2.20

Texas3D
dev (%)

2D 0.08 3.24 0.00 0.00 0.08 8.32 0.00 0.00
3D 4.31 23.73 0.00 0.46 3.81 20.18 0.00 0.62
Joint 0.01 1.69 0.00 0.00 0.05 7.55 0.00 0.00

Texas3D
eval (%)

2D 0.17 6.60 0.00 0.00 0.17 11.40 0.00 0.00
3D 2.80 9.40 0.00 4.40 12.25 8.00 0.00 0.00
Joint 0.01 2.60 0.00 0.00 0.05 5.00 0.00 0.00

(b)

FRs AdaFace IResNet AdaFace Led3D
Strategy Avg Best Natural Morph Avg Best Natural Morph

BU-3DFE
dev (%)

2D 9.88 36.40 18.00 19.40 9.88 26.60 18.00 19.40
3D 9.06 40.40 39.60 51.80 11.74 51.20 38.20 55.40
Joint 1.91 16.60 9.80 15.00 3.08 20.20 12.20 17.00

BU-3DFE
eval (%)

2D 9.96 31.60 17.80 25.00 9.96 34.20 17.80 25.00
3D 13.99 47.80 46.20 67.00 22.74 48.80 39.00 60.60
Joint 3.04 22.00 12.00 22.60 4.51 25.20 10.40 20.60

Headsapce
dev (%)

2D 3.39 18.56 0.00 1.80 3.39 14.97 0.00 1.80
3D 3.56 13.97 3.79 22.75 2.58 7.98 1.60 13.77
Joint 0.31 4.99 0.00 0.60 0.25 3.39 0.00 0.40

Headspace
eval (%)

2D 3.75 16.97 1.00 1.60 3.75 23.75 1.00 1.60
3D 2.90 11.18 2.40 18.76 2.06 10.98 1.40 12.18
Joint 0.30 4.79 0.00 0.20 0.18 4.39 0.00 0.20

Texas3D
dev (%)

2D 6.18 31.28 7.70 4.01 6.18 28.51 7.70 4.01
3D 4.31 18.34 0.00 0.46 3.81 20.18 0.00 0.62
Joint 0.49 9.71 0.00 0.00 0.68 14.79 0.00 0.00

Texas3D
eval (%)

2D 6.40 22.00 6.00 18.20 6.40 27.00 6.00 18.20
3D 2.80 9.40 0.00 4.40 12.25 28.20 0.00 0.00
Joint 0.31 4.60 0.00 0.60 1.50 13.60 0.00 0.00

To compare our master face generation method with the reconstruction-
based baseline, we ran the baseline multiple times using the same FR systems,
dataset, and iteration number, each time with a different initialization latent
code. We then selected the output with a realistic visual appearance and the
highest FMR.

Figure 3 presents the joint FMR (the rate of the master face being falsely
matched as the same individual by 2D and 3D FR systems) on the BU-3DFE
training set, constituting a white-box scenario. As shown by the RGB-D
avatars, StyleGAN2 tightly entangled shape, appearance, head pose, and ex-
pression attributes, leading to joint adjustments during the optimization pro-
cess. In contrast, our 3DMM disentangled these attributes, enabling optimiza-
tion with fewer degrees of freedom and resulting in better FMR results(6.60%)
than the baseline result(2.87%).
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Figure 3: Intermediate faces and their joint FMRs on the training set. Row (a) was
generated by the baseline, and (b) was generated by our method. The leftmost column is
the initialized face sample, and the rightmost column is the master face sample obtained
after 1,000 iterations.

4.4 Master Face Attack in a Greedy Manner

The comparison described above was conducted for a white-box attack sce-
nario, which is seldom the case in reality. However, Friedlander et al., in their
original work, only trained and evaluated the reconstruction-based baseline
method on a single 3D facial dataset named Texas3D. It is still unclear whether
3D face masters generated from a training set can be successfully generalized
to real-world face authentication systems with unknown FR architectures or
dataset distributions. In our evaluation, however, we test the generalizability
of the master face generated by both the baseline [20] and our methods.

3D master face generalization has proven challenging due to the potential
misalignment or conflict between the densest clusters in the feature space
distributions of 2D and 3D FR systems. Even in the simplest scenario of
a white-box attack, the FMRs on the dev and test sets can be zero when
attacking with only a single master face generated from the training set. To
address this limitation, we use a greedy strategy, which starts by generating
one master face from the training set. Subsequently, individuals that have
already been matched are removed, and another face is generated repeatedly.
This strategy enables the exploration of more possible clusters of master faces
in the feature space of the training set, with no overlap in individuals
matched by each master face. We use this set, rather than a single master
face, to conduct a master face attack.

4.5 Master Face Morphing

While the greedy strategy has proven effective in improving the master face
attacks, it comes with a high time cost when generating a larger number of
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master faces. The inherent nature of the LVE algorithm dictates that each
training run results in only one master face sample. For 1,000 iterations, the
baseline method running on a system with an NVIDIA Tesla V100 card takes
approximately 14 hours to create a single master face. Our approach reduces
this time cost by 1 hour as it omits the StyleGAN generation steps, but the
time cost remains relatively high.

However, our approach enables the quick generation of new master faces
through interpolation between existing master faces, supported by the inter-
polation control capabilities of 3DMMs. These morphs effectively preserve
both shape and appearance, as shown in Figure 4. By smoothly bridging be-
tween the “densest cluster” within which the source/target master face falls,
these morphs not only cover a subset of mismatched identities from the source
master faces but also introduce new mismatches that are not covered by the
input master faces. This enhances the master face attack in terms of efficiency
and effectiveness.
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

Fig. 4: Effect of master face morphing. Columns show generated face samples with their joint FMR on top. From left to
right, linear interpolation weight increases from 0.1 to 0.9. T-SNE visualization displays matching results for left source
master face, morph with weights 0.2, 0.5, 0.8, and right source master face, respectively. Orange points represent newly
matched samples.

settings, as advanced techniques can be applied to lower the
difficulty of attacking.

4.6 Master Face Morphing
While the greedy strategy has proven effective in improving
the master face attack, it does come with a significant time
cost when generating a larger number of master faces. The
inherent nature of the LVE algorithm dictates that each
training procedure results in just one master face sample.
Running with 1,000 iterations, the baseline method takes
approximately 14 hours to create a single master face, using
an NVIDIA Tesla V100 card. Our 3DMM-based approach
reduces this time cost by 1 hour as it omits the StyleGAN
generation steps, but it still remains relatively high.

Our approach advances in swiftly generating new mas-
ter faces through interpolation between existing master
faces, supported by the exceptional interpolation control
capabilities of 3DMMs. These morphs effectively preserve
both shape and appearance, as shown in Figure 4. By
smoothly bridging between the “dentest cluster” that the
source/target master face falls within, these morphs not
only cover a subset of mismatched identities from the source
master faces but also introduce new mismatches that are not
covered by the input master faces. This excellent property
allows to enhance the master face attack in both efficiency
and effectiveness by incorporating the morphs. For example,
creating 27 morphs from pairs of 3 master faces takes less
than a minute. Employing these 30 samples in the attack
significantly improves the attack success rate, as illustrated
in column (h) in Figure 3.

4.7 Master Face Reenactment
While StyleGAN2 represents a significant advancement in
generating high-quality images, it inherently lacks seman-
tic control over the generated output. Consequently, tasks
involving the precise control of expression and pose, while
retaining identity information, remain challenging, leading
to subsequent works as improvement [38]. In contrast, our

method, built upon the foundation of 3DMMs, offers signif-
icantly enhanced controllability, as presented in Figure 5.

Due to the sensitivity of 2D FR systems to pose vari-
ations, the success rate of attacks targeting specific poses
may be relatively low. Nonetheless, our results still highlight
the potential of utilizing a controllable 3D master face to
strengthen presentation attacks against 2D face authentica-
tion systems, particularly against systems that require users
to exhibit specific facial expressions.

5 DEFENSE AGAINST 3D MASTER FACE ATTACK

Our research has identified significant concerns regarding
the vulnerability of 2D and 3D FR systems against control-
lable 3D master face attacks. Despite extensive research on
security for 2D FR systems in the past decade, these findings
do not seamlessly extend to 3D FR systems. For instance,
presentation attack detection [39] and deepfake detection
[40] can be readily adapted to counter physical and digital
2D morphing face attacks, respectively. However, similar
work has not yet been achieved for 3D FR systems, which
underscores the urgent need for research and development
in this area. Another concern is the generalizability of de-
tectors for both 2D and 3D FR systems, which remains an
active research topic in biometric security.

6 CONCLUSION

We have introduced a novel master face attack method
that leverages 3D Morphable Face Models to generate mor-
phable and controllable master faces. As the first study to
evaluate master face attacks against 2D and 3D FR sys-
tems across various attack scenarios, our greedy generation
and morph creation method demonstrates the potential to
compromise the face authentication systems, even when the
architectures of FR systems or face gallery distributions are
unknown. In addition, with disentangled parameters, we
can easily change the facial expressions and poses of the
master faces while retaining the ability of false matching.

Figure 4: Effect of master face morphing. Columns show generated face samples with their
joint FMR on top. From left to right, interpolation weight increases from 0.1 to 0.9. T-
SNE visualization displays matching results for the left source face, morph with weights
0.2, 0.5, 0.8, and right source face, respectively. Orange points represent newly matched
samples that were not covered before.

For instance, the baseline takes around 17 day to generate 30 master faces.
Our method, however, allows us to train 3 master faces in 1.5 days only and
to create 27 morphs from pairs of 3 master faces in less than a minute. Using
these 30 samples in an attack greatly improves the attack success rate, as
illustrated by the results in Table 3. In this example, we save 10x time than
the baseline. The time saving is even more significant when generating a large
number of master faces for brute-force attack.

4.6 Master Face Attack Simulation Analysis

We present the complete results for our comprehensive experimental settings,
as illustrated in Figure 2, in Tables 3 and 4.
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We conducted evaluations across combinations of four 2D and 3D FR
system pairs with three 3D facial datasets, simulating a total of twelve master
face attack scenarios. These scenarios include one white-box attack, two black-
box attacks, and nine gray-box attack cases, which are shaded respectively
from white to dark gray in the table. Notably, for each setting, we present
results computed using seven different strategies. For each strategy, we report
the results with the highest joint FMRs, along with the corresponding 2D and
3D FMRs.

The results for Avg and Best were computed using the natural faces
belonging to the corresponding targeted face authentication system setting in
a white-box manner. They were used as references to evaluate whether our
Single, Greedy, and Morph results can surpass the natural best result in
white-box cases.

In Table 3, the third and fourth rows for each setting represent the eval-
uation results for a single master face instance and for a set of three master
faces generated greedily with the reconstruction-based baseline, respectively.
The fifth and sixth rows present the evaluation results for master faces
generated with our 3DMM-based method instead. The final row, labeled as
Morph, highlights our key results, which are computed using the combina-
tion of the three master faces generated by the greedy mechanism and their
intermediate morphs, resulting in a total of thirty samples used for the attack.

In Table 4, the Avg, Best, and Morph columns are the same as described
above while the Natural column shows values for the second anchora natural
master face attack based on the training setting equivalent to the one used in
the generation phase.

The experimental results demonstrate that master faces generated by our
method achieve high FMRs across various attack settings. This underscores
the effectiveness of our 3D master face attack approach in real-world scenarios.
In contrast, while the baseline demonstrates success in attacking individual
2D or 3D FR systems, it fails to target both 2D and 3D FR systems simultane-
ously. Compared to the natural master face on the test set, our morph attack
method achieves significantly better joint FMR in the white-box attack sce-
nario. In gray-box attack scenarios, when the dataset distribution is unknown
(e.g., attacks on Headspace and Texas3D), and the FR system architecture
is known (i.e., the target FR systems are FaceNet and IResNet, the same
architectures used to generate the master face), our method outperforms the
natural master face on the Headspace dataset. When the FR system architec-
ture is only partially known, our FMR shows some decline but still remains
significantly higher than the average FMR of bona fide samples. Moreover,
when the dataset distribution is known (e.g., attacks on BU-3DFE), regardless
of whether the FR system architecture is partially known or unknown, our
results either surpass or are on par with the FMR of the natural master face.
Even in the most difficult black-box attack scenario, our method can attain a
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joint FMR higher than the average bona fide face’s FMR on Headspace.
We observed that the attack success rate of master faces is constrained by

dataset distribution differences, particularly in gray-box or black-box attacks
where the target dataset distribution cannot be accurately estimated. The
performance gap between HeadSpace and BU-3DFE further supports the con-
clusion that mismatched dataset distributions can significantly reduce attack
success rates on the target dataset.

However, our results still demonstrate the potential threat posed by mor-
phable master faces to the joint 2D and 3D face recognition systems. By
integrating research on neural network architecture estimation [58, 44] and
dataset distribution inference [54, 5, 8, 30], the difficulty of using master face
attacks against face authentication systems can be further reduced, thereby
amplifying the associated risks.

4.7 Master Face Reenactment and Presentation Attack

Although most methods rely on static master face samples to attack FR sys-
tems, our method enables dynamic facial reenactment by manipulating the
pose and expression codes in the FLAME model. Specifically, the FLAME
model learns both pose code φ and expression code ψ distributions from 4D
facial sequences. By sampling expression codes within chosen standard de-
viations of these learned distributions, we ensure natural facial deformations
and can generate a diverse range of realistic expressions. Similarly, we control
pose variations by sampling head pose and jaw articulation parameters within
appropriate angular ranges, enabling natural head movements and mouth ar-
ticulations. While baseline methods fail to attack FR systems with liveness
detection due to their lack of semantic control over the generated output, our
method’s high controllability demonstrates significant advantages.

As shown in Figure 5, due to the sensitivity of 2D FR systems to pose
variations, the success rate of attacks targeting specific poses may be rela-
tively low. Nonetheless, our results still highlight the potential of utilizing
a controllable 3D master face to strengthen presentation attacks against 2D
face authentication systems, particularly against systems that require users
to exhibit specific facial expressions. However, current active presentation
attack detection systems often require users to perform specific facial expres-
sions or movements based on text instructions. While our method enables
facial reenactment by manipulating latent variables for expressions and poses,
it falls short of addressing such dynamic, real-time interactions. Incorporat-
ing a large language model (LLM) agent could be a promising direction for
enhancing adaptability and achieving more sophisticated attacks in the future.
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Figure 5: Effect of master face reenactment. Columns show generated face samples with
their joint FMR on top. The first to sixth columns show variations in the first three
principal components of the expression. The others show visualizations of changes w.r.t
poses.

4.8 Ablation Study

Attacking 3D FR systems only
We conduct an ablation study to validate our hypothesis that a master face
generation method based on 3DMM can better learn from the shape informa-
tion within the 3D facial dataset, resulting in a higher rate of false matching.
In contrast, the baseline method based on 3D face reconstruction has limited
abilities to preserve and utilize 3D shape information. This is due to various
factors such as optimization within the 2D latent variable space, unstable la-
tent variable initialization, and errors in the 3D face reconstruction process.
In this experiment, we used only the FMR computed from the 3D FR sys-
tem as the objective function for the optimizer. The training curve obtained,
shown in Figure 6, demonstrates that the 3DMM-based method is better at
learning crucial features for a 3D master face, resulting in higher 3D FMRs.

Figure 6: Training curves for two master faces, one generated using the baseline method
and one generated using our method, guided only by feedback from the 3D FR system. Our
method shows better initialization and higher FMRs.

Attacking 2D FR systems only
One of the criticisms of 3DMM is its tendency to blur textures. To assess
whether this affects our method’s 2D FMR, we used feedback from only the
2D FR system to optimize the master face. The design aim was to compare
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the final 2D FMRs between our 3DMM-based method and the reconstruction-
based baseline. Since FaceNet performs exceptionally well, to avoid having
the CMA-ES optimizer fail due to an initially close-to-zero FMR, we used a
relatively low threshold starting point and gradually increased its matching
threshold every 200 iterations. We found that the 3DMM-based method also
outperformed the baseline method in terms of 2D FMRs, as shown in Figure 7.
We hypothesize that the 2D FR results are affected by pose and expression.
In our training dataset, all facial data corresponded to a frontal pose, which
aligns with the use case in real life. This pose is modeled with the fixed pose
parameters of our 3DMM-base method. In contrast, in StyleGAN, facial pose
and expression are uncontrollable during training, which may degrade the
final 2D error matching rates.

Figure 7: Training curves for two master faces, one generated using the baseline method
and one generated using our method, guided only by feedback from the 2D FR system. Our
method exhibited better robustness when the threshold was increased.

Objective Function Selection for CMA-ES Solver
As described in Section 3.2, after the CMA-ES solver samples and provides
possible candidate answers, the fitness scores corresponding to these answers
are returned to CMA-ES to aid it in further optimization. The score function
thus plays a decisive role in the efficiency of optimization. Previous research
on master faces has proposed two approaches to optimize based on similarity
scores or FMRs. We leverage the FMR-based objective function for its better
performance when attacking joint FR systems. As shown in Figure 8a, when
we optimize with a single-modal FR system, both objective functions yield
similar results and efficiency. However, for cross-modal optimization, using
a score-based objective function causes the optimizer to focus on improving
individual performance while ignoring the need to find a “cross-modal space.”
As a result, the FMR of the master face generated by the score-based function
is much lower than the one generated by the FMR-based function, as shown
in Figure 8b.
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(a)

(b)

Figure 8: Training curves with score-based and false matching rate-based objective func-
tions. Figure 8a shows training curves for four master faces, two generated using different
objective functions, guided only by feedback from the 2D FR system, and the other two
guided only by the 3D FR system. As shown in Figure 8a, these two different objective
functions achieved similar FMRs in the 2D-only scenario. For 3D FMR, the score-based
function performed better. However, Figure 8b shows that the score-based function failed
to jointly attack the 2D and 3D FR systems. After 1,000 iterations, the FMR-based func-
tion has an FMR of 6.6%, while the score-based function holds only 0.06%.

3D Morphable Face Model Regularization
One crucial point to note in the implementation of our method is that with
3DMM, its parameters are assumed to follow a Gaussian distribution with a
mean of zero. This assumption is violated during the optimization process of
the CMA-ES solver, and the objective function we use leads the optimizer to
focus only on improving the FMR without regard for whether the generated
shapes are anatomically plausible. To address this problem, we introduce a
regularization term into the objective function to penalize shape codes that
deviate too far from the zero vector, as depicted in Section 3.2.

However, this regularization term to some extent limits the ability of the
CMA-ES solver to optimize shape variables, as shown in Figure 9. Therefore,
choosing an appropriate weight is important to balance between a high FMR
and an anatomically plausible shape.

Shape images of two master faces generated with the same settings except
for the weight for the regularization term are shown in Figure 10.
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Figure 9: Training curves for two master faces generated using our methods with different
weights of regularization term, guided only by feedback from the 3D FR system. It is
evident that the larger regularization term limited the ability to further craft the shape
code, resulting in a lower 3D FMR.

(a) (b) (c) (d)

Figure 10: Shape images generated with different settings for reference. That in Figure 10a
is from the initialized face with a zero vector as shape code. That in Figure 10c is from
the master face generated using the FMR-based objective function and a larger weight of
regularization term (1e-2). That in Figure 10b is from the master face generated using
the score-based objective function and a smaller weight of regularization term (1e-3). That
in Figure 10d is from the master face with the best 3D FMR, generated using the
FMR-based objective function and a smaller weight of regularization term (1e-3).

5 Defense Against 3D Master Face Attack

Our research has identified significant concerns regarding the vulnerability of
2D and 3D FR systems against controllable 3D master face attacks. Despite
extensive research on security for 2D FR systems in the past decade, these
findings do not seamlessly extend to 3D FR systems. For example, presenta-
tion attack detection [29, 16] and deepfake attack detection [47, 31, 38, 66,
28] can be readily adapted to counter physical and digital 2D morphing face
attacks, respectively. However, similar work has not yet been done for 3D
FR systems, which highlights the urgent need for research and development
in this area. Another concern is the generalizability of detectors for both
2D and 3D FR systems, which remains an active research topic in biometric
security.
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6 Limitation

Our 3DMM-based method for 3D master face generation has below limitations:
1) Most 3DMM models have limited texture resolution and therefore cannot
generate high-fidelity 2D faces that would convincingly deceive human eyes.
This means that if the 2D FMR can be increased by improving the texture
quality, it may be possible to increase the joint FMR. 2) The LVE algorithm
is less efficient as it can optimize only one latent vector at a time. 3) Black-
box master face attacks do not succeed when the distribution of the training
dataset is dissimilar to that of the attack dataset.

Future work includes exploring potential countermeasures against 3D con-
trollable and morphable master face attacks as our evaluation results revealed
that these attacks are significant threats. It also includes enhancing the qual-
ity of 2D facial appearance generated by 3DMM to further improve joint
FMRs, or utilizing the differentiable properties of 3DMM to learn distribu-
tions of master faces, rather than individual latent vectors, to reduce the time
cost of the master face generation.

7 Discussion and Conclusion

Existing methods cannot be effectively applied to real-world attack scenar-
ios due to the following limitations: 1) Ill-posed 3D face reconstruction
from a single 2D image: Current approaches that generate 2D master
faces and then reconstruct 3D master faces from them suffer from significant
information loss. 2) High computational cost: Existing methods are ex-
tremely costly, requiring weeks of computation to generate a large number of
master faces for achieving relatively effective attacks in a greedy manner. 3)
Lack of flexibility and controllability: Current methods lack the adapt-
ability needed to bypass face authentication systems equipped with liveness
detection techniques, such as active presentation attack detection systems,
which demand dynamic user interactions such as facial expressions or specific
movements.

We propose, for the first time, a method to generate deformable, con-
trollable, and morphable master faces using a 3D Morphable Face Model,
allowing the production of master faces capable of effectively compromising
both 2D and 3D face recognition systems in real-world scenarios. Our ap-
proach directly generates and optimizes 3D faces without a lossy reconstruc-
tion procedure to improve the FMR. We further generate a large number of
master face morphs that also possess master face capability to improve the
generalizability of the master face when performing gray-box and black-box at-
tacks. Compared to the reconstruction-based baseline [20], our method is over
ten times faster in generating more master faces. Furthermore, the controlla-
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bility of our master face represents a significant advancement in overcoming
limitations posed by liveness detection technologies.

We employ multiple 3D face datasets and 2D/3D face recognition systems
to simulate real-world gray-box/black-box attacks. As the first study to evalu-
ate master face attacks across various attack scenarios, our greedy generation
and morph creation method demonstrated the potential to compromise face
authentication systems even when the architectures of the face recognition
systems or face gallery distributions are unknown. In addition, by using dis-
entangled parameters, we can easily change the facial expressions and poses
of the master faces while retaining the ability to achieve false matching. Our
findings have revealed significant security risks associated with controllable
and morphable master face attacks and emphasize the need for research on
defense strategies.

In conclusion, we propose a novel master face attack method that lever-
ages 3D morphable face models for generating morphable and controllable
master faces and evaluate its performance on various attacking scenarios sim-
ulating real-world gray-box and black-box attacks. Our results demonstrate
the potential threat posed by such master face attacks to existing active face
authentication systems, highlighting the necessity for further research into
effective defense mechanisms.
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