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ABSTRACT

Over the past few decades, Al generative methods have advanced
significantly, making it increasingly challenging to distinguish gen-
uine photographs from Al-generated images, sometimes also re-
ferred to as deepfakes. In response, numerous deepfake detection
methods and models have been developed, achieving high accu-
racy. However, the evaluation of these detection methods is often
limited to a single dataset, which is typically created by generating
multiple images using a specific deepfake generation methods and
a fixed set of hyperparameters. This dataset is then randomly split
into training and testing sets, but such an approach cannot take
into account the variations of hyperparameters on deepfake detec-
tion performance. This paper addresses the fundamental question
of source mismatch, where a model is trained on a specific deep-
fake generation source (including hyperparameters) and tested on
a different one, highlighting the need to investigate the causes and
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impacts of such a mismatch as well as to develop solutions to this
critical issue.

Keywords: Deepfake, diffusion model, generative Al, source mismatch, detec-
tion, distribution-shift, empirical evaluation, experimental meth-
ods

1 Introduction

The recent advances in the development of artificial intelligence, and especially
in the field of computer vision, have made possible the creation of highly
realistic images and videos that can deceive naked eyes, even when carefully
inspecting such media. In addition, such tools for audio, image or video
generation or modifications have also been made available to a very wide
audience without specific knowledge [3]. With generative-Al powered tools
readily available, it is possible, for instance, to use the latest text-to-image
and image-to-image models to generate photorealistic images, or modify an
existing photograph. The results are almost indistinguishable from their real-
world counterparts, which raised fundamental concerns about their potential
misuse, especially to spread disinformation. This concern is now widely shared
by political decision-makers, following public reports such as the one from the
National Science and Technology Council (NSTC) [48]. This awareness among
the general public and policymakers is partly explained because, as noted
in [22]: “innovations in AI have enabled foreign influence actors to produce
seemingly authentic and tailored messaging [...] In fact, we have already seen
generative Al being used in the context of foreign elections.”

In response to this growing threat of the use of so-called deepfakes,! re-
searchers have been actively developing detection methods and models. These
methods aim at distinguishing between genuine photographs from Al-gener-
ated content. Many such detection methods already achieve very high accu-
racy [40, 39, 42]. However, the evaluation of these detection methods is often
limited to a specific dataset, which is typically created by generating mul-
tiple images using a specific deepfake generation method and a fixed set of
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IThe term “deepfakes” refers to a media (sound/image/video) modified or generated
by deep learning methods and while the term “fake” can imply a malicious purpose the
terms is nowadays used in a broader context. For simplificy, in the present paper we will
use the term deepfake for content modified or created by generative AI models regardless
of the aim of its creator. However, the work presented in this paper focus on text-to-image
diffusion-based generative Al models.
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hyperparameters. This dataset is then randomly split into training and test-
ing sets. While such an approach has merits, for instance, it is reproducible
and allows a fair comparison; it also has some fundamental limitations. First,
such a practical assessment assumes that the generative AI models are known.
Second, it also makes comparisons difficult because, even for the same genera-
tive AT models, the dataset used in one study can be generated using specific
hyperparameter values, which are often not clearly precise, making a global
benchmarking process almost impossible. More problematic, this approach
hides the possible impact of intra-model hyperparameter variation on deep-
fake detection performance and, in fact, does not allow studying this effect.
Furthermore, a vast majority of deepfake detection methods are based on ad-
vanced deep learning models. While this approach is generally very efficient,
it generally lacks explainability and interpretability [50], and it depends very
much on the training dataset, which, even in the case of deepfake detection,
may be biased, as pointed out in [59]. Additionally, deep learning methods are
generally facing issues with overfitting of the training data. This problem has
already been identified in [27] which explored the related challenge of deepfake
attribution as a simple yet effective tool to improve deepfake detection. As
pointed in [30], this tends to increase reproducibility issues and at least par-
tially explains why, generally, performances under laboratory conditions do
not reflect the actual accuracy observed by forensic practitioners in real-life
applications.

This source mismatch problem was identified in machine learning and is
referred to as covariance shift [25] dataset shift [44] or, more generally, distri-
bution shift [17]. However, the aforementioned elements show that in media
forensic analysis one deals with a slightly different problem of both cross-model
generalization as well as intra-model variations which makes the definition of
classes uneasy.

This limitation is closely related to the so-called problem of Cover source
mismatch (CSM) in hidden information detection [34]. While it has been long
recognized as a major barrier for moving hidden information detection from
laboratories into the real world [29], only recently the origin of the CSM has
been clearly identified and comprehensively evaluated [18, 19]. Deepfake con-
tent identification and hidden information detection also share the common
characteristics that it is aimed at detecting a rather very weak signal in a
complex media. It is known that, in such a context, a small change in the
dataset can lead to a very important loss in terms of detection accuracy or
can simply make the evaluations of detection algorithms irrelevant. In ste-
ganalysis, source mismatch occurs when the training set is created using a
specific steganographic algorithm and a very specific source of images, which
is characterized by acquisition settings, such as the camera model and the ISO
exposure/sensitivity, and the image processing process, including demosaick-
ing, denoising, sharpening, etc. Generally speaking, the problem of hidden
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information is much easier when the source of media is known and hence the
training and the testing set are from the same source. On the opposite, it is
hardly possible to detect advanced data hiding methods when image sources
are unknown, in which case the training set is necessary from a different source
than the (unknown) one used in the testing set.

Similarly, in the context of deepfake detection, source mismatch can occur
when a model is trained on a specific deepfake generation source (including
hyperparameters) and tested on a different one. As discussed in Section 2
generalization over different generation model has been pointed out in the
literature. However, intra-model hyperparameter effects on detection perfor-
mance has been seldom studied in the field of deepfake detection. This is
even more surprising considering that, in a real-world scenario, it is hardly
possible to assume that the potential source of deepfake (the generative AI
models and all its hyperparameters) is perfectly known. While assuming that
the source is known can be justified in the field of hidden information by Ker-
choffs’ principle [43] that one wants to evaluate the security of data hiding
algorithms, such an analogy does not hold in deepfake detection. As a conse-
quence, the study of causes, impacts and potential solutions to the problem
of source mismatch in deepfake detection is urgently needed.

This paper aims to address this knowledge gap by investigating the prob-
lem of source mismatch in deepfake detection. The main contribution of
our study is to propose a thorough and systematic assessment of all possible
causes of source mismatch on deepfake detection. As a second contribution, we
present a few solutions to prevent the source mismatch and evaluate their rel-
evance throughout numerical experiments. Our study is based on the largest
dataset collected for deepfake detection, which, upon acceptance of the paper,
we will make available to the scientific community. We strongly believe that
our work provides a solid and comprehensive study of the source mismatch
problem in deepfake detection and will contribute to further development in
this direction. Last but not least, the present paper focuses on digital images
and diffusion-based generative AI models but the issues we study also hold
true for other types of media, such as video and audio deepfakes.

However, we shall also acknowledge that the present paper focus on the state-
of-the-art diffusion-based text-to-image generative Al model all that the find-
ings presented in this paper may not generalize to other forms of deepfakes.

The present paper is organized as follows. First, Section 2 briefly surveys
the state of the art on deepfake detection and presents the cover-source mis-
match in steganalysis. We especially point out the limitations of prior works in
terms of the lack of consideration for the source mismatch problem in deepfake
detection. This section also proposes an introductory example to emphasize
the potential impact of the source mismatch problem in deepfake detection
and the needs for the present study. Section 3 briefly recalls the principle
of diffusion-based generative-Al models in order to explain the role of the
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hyperparameters included in the present analysis of the causes of the source
mismatch problems in deepfake detection. Section 4 presents the setup of the
methodology used in the present empirical study. We detail the list of gener-
ative Al models used, the different hyperparameters considered in this study
as well as the deepfake detection approaches used. The numerical results are
presented and discussed in Section 5. In this section the impact on deepfake
detection performance of each parameter of a diffusion-based text-to-image
generative Al model is empirically analysed. Each subsection of Section 5 fo-
cus on one specific component or parameters of generative AI models. Then,
Section 6 presents three solutions to mitigate the source-mismatch problem
and improve the detection performance in the cases of potentially multiple
different sources of deepfakes. Finally, Section 7 concludes the paper by sum-
marizing the lesson of the present study and drawing potential future research
directions.

2 State-of-the-art and Position of the Present Paper

The existing literature on deepfake detection has seen significant advance-
ments in recent years.

The paper presented by Rossler [47] marked one of the first milestones: it
presents a large dataset of collected deepfake face images and evaluated several
methods from the image forensics community, including models for steganogra-
phy signal detection and CNN-based face swapping and replacement methods.
This paper showed that simple classifiers could detect deepfakes generated by
the same model. Similarly, it has been shown in [38] that simple classifiers
can detect images created by an image translation network [26],
Alternatively, DeepfakeHop [6, 5] proposed an improved facial landmark de-
tection method using an effective unsupervised feature selection method based
on DFT for the detection of upsampling artefacts. However, their study was
limited to examples of GAN-based detectors directly available from reference
codes.

A majority of prior works on deepfake detection rely on deep learning meth-
ods; Mandelli et al. [36], for instance, proposed an ensemble of five "orthog-
onally trained" EfficientNet-B4 networks, each trained on different datasets
that include content, postprocessing, and GAN-based generative-Al images.
The authors developed a patch aggregation strategy that classifies an image
as a deepfake if at least one of the orthogonal classifiers labels it as such.
However, it is worth noting that their study only examined the robustness of
their detector to JPEG compression, which was later addressed in a follow-up
paper [37].

Other notable studies include PatchForensics [4], which developed a fully
convolutional classifier based on local patches with limited receptive fields
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over an XceptionNet backbone. Liu et al. [2] proposed a detector that ex-
ploits the inconsistency between real and fake images in the representations
of learned noise patterns, combining spatial and frequency information to im-
prove classification. While interesting, this work typically does not consider
the generalizations of the detection and presents results over similar training
and testing datasets.

LGrad [58] worked on extracting gradients through a pre-trained CNN
model to filter out image content and transform a data-dependent problem
into a transformation-model dependent problem. Their study focused on ex-
plainable detection using a gradient Class Activation Map (gradCAM), but
did not address the source mismatch problem.

Ojha et al. [41] proposed a simple classifier working on pre-trained Con-
trastive Languagelmage Pre-training (CLIP) features, trained on a large data-
set of real and synthetic images. Interestingly, their study showed that most
existing methods for detecting fake images from generative models are inef-
fective against newer breeds of models, and that the resulting classifiers are
biased towards detecting fake patterns rather than distinguishing between real
and fake images.

While these examples show promising results for deepfake detection, they
did not consider the transferability of the detection across different genera-
tive Al models, database or image content: their generalization has not been
studied. However, the problem of generalization has long been identified as a
main issue for the detection of deepfakes.

One of the first work pointing out this problem was carried out by Cozzolino
et al. in [13]; they found that forensics classifiers transferred poorly between
models. However, the authors also proposed a new representation learning
method, based on autoencoders, to improve transfer performance between dif-
ferent generative models.

Similarly, it has been shown in [65] that classifiers often generalize poorly
between GAN models. To address this issue, it has been proposed an em-
pirical method called AutoGAN for simulating upsampling artefacts that are
commonly found in GAN-based generated images. The authors tested the
resulting detection technique on two types of GANs, which limits the study
of transferability.

Wang et al. [60] introduced a Convolutional Neural Network (CNN) detec-
tor for identification of deepfake images based on ResNet50, which has become
a reference point in the research community. Their work also introduced a
large dataset of images generated by various GAN-based generative Al mod-
els (often referred to as LSUN/ProGAN datasets) that has been extensively
adopted for model training in subsequent studies. Interestingly, their work
also addresses the problem of transferability across different generative models
and they proposed a data-augmentation technique to improve the generaliza-
tion of the proposed deep-learning based detector. While this work marks an
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important milestone for the study of deepfake detection transferability, it only
considers generative models as a whole and ignores all other aspects, such as
cross-database transfer, image content and tuning of the generative models,
which typically limit significantly the study of the source mismatch problem
in deepfake detection.

Building upon this work, Gragnaniello et al. [20] proposed a simple modifi-
cation to the ResNet50 architecture to preserve better low-level forensic traces.
Their approach was also trained and tested on the same dataset used in Wang
et al.’s work, showcasing the importance of using the same dataset for model
evaluation.

Corvi et al. [11] performed strong augmentation to gain robustness and
increase generalization, training their detector on a large dataset of latent
diffusion models. Their study included the detection of “image fusion” by
averaging the outputs of Al-generative networks, but this was a rather limited
exploration of the source mismatch problem.

Last but not least, NPR [57] worked on residual images computed as the
difference between the original image and its interpolated version. Their clas-
sifier was trained on only 4 classes of the ProGAN dataset and tested on
the merging of 5 datasets encompassing 28 generative-Al models, which is an
interesting study on source mismatch. However, their paper only presented
results on the testing dataset with limited interpretation of the impact and
solution for the source mismatch problem.

From the previous brief review of the literature, it seems clear that while
the problem of generalization across different generative AI models has long
been recognized, it has seldom been studied and generally focused on cross-
model transferability. In addition a vast majority of the works that study
the problem of generalization in deepfake detection only focus on practical
solutions.

Amongst the additional examples, Epstein et al. [16] collect a dataset gener-
ated by 14 well-known diffusion models and simulates a real-world learning
setting with incremental data from new diffusion models. They find that the
classifiers generalize to unseen models, while also observing important loss of
performance when the diffusion-model architecture was considered very differ-
ent.

With a different approach, Ojha & al. [41] and Cozzolino & al. [12] exploits
pre-trained models, respectively Vision Transformers (ViT) and Contrastive
Language-Image Pre-training (CLIP), to achieve high generalization across
different diffusion models. Following the example of Wang et al. [60] it has
more recently also been proposed in Yan et al. [62] to address the problem
of generalization using data augmentation approaches to improve detection
generalization.

Last but not least, Dogoulis et al. [15] addresses the generalization of detec-
tors in cross-concept scenarios (e.g. when training a detector on human faces
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and testing over synthetic animal images). They propose an original strategy
to address this generalization issue with a resampling strategy that consid-
ers image quality scoring for sampling training data to learn a specific and
dedicated classifier, which shows superior performance compared to random
sampling.

Interestingly, one shall also note that quite a lot of datasets of deepfake
media have also been proposed. However these datasets also generally consider
one generative Al model as a whole and, generally, do not provide any details
on how the images in the dataset were generated. For instance the paper from
Wang et al. [60] was associated with a very large dataset of images generated
by GAN-based models. However, the paper does not explain precisely how
those images were created and how exactly the models were trained, which
limits the study of the problem of source transferability in deepfake detection.

More recently, Yan et al. [63] proposed an extensive database of 15 state-of-
the-art detectors and gathered 9 deepfake datasets with the goal of addressing
the problem of the lack of a standardized, unified, comprehensive benchmark
in deepfake detection. This work also standardized the evaluation metrics
and uniformized the data processing pipelines. While this important work
facilitates benchmarking, it does not address specifically the difficult issue of
generalization even though the dataset can be used for this purpose.

The work proposed by Li et al. [31] addressed the problem of generalization
and source mismatch by proposing a so-called continual deepfake detection
benchmark (CDDB). Their goal is to address the problem of generalization
across different datasets and generative models by proposing a smooth tran-
sition between known models to datasets made with unknown generative Al
models.

All these examples show that the generalization problem is a well-recog-
nized and difficult problem in deepfake detection. However, the previous brief
review of the current art also point out that this problem is not generally
considered and when studied, it is with two main limitations: (1) considering
generalization cross various generative Al models without and (2) assuming
that a generative Al model always produces images of the same kind, ignoring
all possible sources of discrepancy that causes a source mismatch. On the
opposite, the present paper considers that a diffusion-based generator does
not always generate homogenous data and that the detection of the resulting
generated image largely depends on the hyperparameters used to generate the
media.

From the brief overview of the current art, it is clear that there is an
urgent need for a study that analyses how a generative-Al model is set and
the impact this setting may have on the ensuing detection of deepfake media
it generates.
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2.1 An Introductory Example

In order to highlight the needs for a study on the cause and the assessment of
source mismatches in deepfake detection, we have conducted a small-scale in-
troductory experience. We used the detection method as proposed in [11]? as
it is one of the recent state-of-the-art reference approaches for the detection of
images generated with diffusion-based generative Al. The results are reported
in Table 1. First we evaluated the detection accuracy of this method over
the five diffusion-based text-to-image generative models used in the present
paper, that is, Stable Diffusion XL Turbo, Stable Diffusion 3 medium, Wuer-
stchen, Kandinsky 2.2 and FLUX.1 Schnell, see details in the Table 2. For
comparison, the first row of Table 1 also shows the “true-negative rate” over
the ALASKA [10, 9] dataset of real images. Then the next row shows the
results of each of the text-to-image diffusion-based generative models used
in the present paper along with the accuracy when one single part of the
generative model is changed. The deepfake detection accuracy as reported
in Section 1 corresponds to the “true-positive rate”, also referred to as the
recall or the sensitivity. Unsurprisingly, it is obvious from Table 1 that the
detection method proposed in [11] achieves overall excellent results except for
FLUX.1 Schnell that was released after the detection method, hence consti-
tuting a typical case of generalization cross generative Al models. While this
also holds true for Stable Diffusion 3, the detection remains much higher in
this latter case. However, one can note that when the generative Al model is
changed, the detection accuracy can drop drastically. This is especially true
when replacing the Variational AutoEncoder (VAE) from Stable Diffusion XL
Turbo and when changing significantly the number of diffusion steps for Sta-
ble Diffusion 3 and for Kandinsky 2.2. Surprisingly, modifying Wuerstchen by
replacing the noise variance scheduler of the diffusion process actually helps
the detector by a rather important margin.

It is difficult from this single experience to draw general conclusions on
the impact of each hyperparameter of the diffusion-based generative model
of the detection of the resulting image. However, the present introductory
example clearly confirms that, on the one hand, the setting of the generator
greatly influences the ensuing problem of detection of generated images, hence
showcasing that the generalization across different generative AI models is not
always sufficient. On the other hand, this example also emphasizes the urgent
need for a thorough study to assess the problem of source mismatches in
deepfake detection as well as to study the origin of such mismatches.

2The source-code of the detection method proposed in [11] is available on GitHut on
the page of Naples’ University Image Processing Research Group (GRIP).
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Table 1: Accuracy of the diffusion generative AI model proposed in [11]; the quantity is
the Truth Negative rate for the ALASKA2 dataset [10, 9] of genuine photographs and true
positive rates for all other generative-Al image datasets.

Source Accuracy
ALASKAZ2 real photographs 97.80%
Stable Diffusion XL Turbo 85.01%
—— with Consistency Decoder VAE | 7.79%
Stable Diffusion v3 96.07%
—— with 2 diffusion steps 16.93%
Wuerstchen 85.01%
—— with DDIM noise scheduler 96.20%
Kandinsky v2.2 93.85%
—— with 64 diffusion steps 7.79%
FLUX.1 Schnell 53.81%
—— with Finetuning #1 63.78%
—— with Finetuning #2 47.76%

Table 2: List of text-to-image generative Al based on diffusion used in the present paper
along with their source.

Name URL / Source
Diffusion Transformer models
FLUX.1 schnell HuggingFace

Stable Diffusion 3 HuggingFace

Diffusion models

Kandinsky v2.2 HuggingFace
Stable Diffusion XL-Turbo HuggingFace
Woauerstchen HuggingFace

Finetuning from Stable XL Turbo

lem-LoRa SDXL Turbo HuggingFace
Fire Generation HuggingFace
DreamBooth HuggingFace
SDXL Turbo DPO LoRA HuggingFace

Finetuning from FLUX.1 Schnell

Miniature people HuggingFace
Studiopellosh HuggingFace
flux-schnell-realism HuggingFace

flux-schnell-lora HuggingFace
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https://huggingface.co/victoremanuelgo/sdxl-turbo-fire-generation
https://huggingface.co/Shawt/Shawt
https://huggingface.co/radames/sdxl-turbo-DPO-LoRA
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3 Primers on Al-generative Method in Image

Because the present paper studies the impact on deepfake detection of each
and every part of state-of-the-art generative AI models, we shall first start
by recalling briefly how generative AI models work. To this end, the present
section reviews recent advances in Al-generative image models, with a focus
on state-of-the-art diffusion-based models.

The timeline of representative studies for text-to-image generation begins with
AlignDRAW, released in 2015, which is often considered the first text-to-image
generative Al. AlignDRAW extended the DRAW architecture by conditioning
it on text sequences, achieving a significant breakthrough in creating images
from text prompts, albeit with limited realism and diversity.

In 2016, text-conditional GAN emerged as the first fully end-to-end dif-
ferential architecture [46], extending from character-level input to pixel-level
output. However, GANs produced high-quality images only when trained on
small, domain-specific datasets, such as faces [67].

The subsequent development of autoregressive models, such as DALL-E in
2021, captured widespread attention due to their ability to generate complex
and realistic images from text prompts, thanks to large-scale training. These
models [45, 14] are typically based on a discrete Variational Autoencoder
(VAE), an autoregressive decoder-only Transformer, and a CLIP pair of image
encoder and text encoder. However, their autoregressive nature leads to high
computation costs and sequential error accumulation.

Inspired by non-equilibrium thermodynamics, diffusion models have
emerged as the leading method in text-to-image generation. Diffusion Proba-
bilistic Models (DPM) emerged in 2015 [54]; it is defined in [23] as a param-
eterized Markov chain trained using variational inference to produce samples
matching the data after a finite time. The core of this algorithm involves
a forward process that converts a complex data distribution into a simpler
one, and then learns the mapping by reversing the diffusion process. Then,
score-based generative models (SGM) propose perturbing data with different
levels of Gaussian noise and jointly estimating the corresponding scores [56].
SGM generates samples towards decreasing noise levels and trains the model
by estimating score functions for noisy data distributions.

The combination of SGM and DPM led to the development of Denois-
ing Diffusion Probabilistic Models (DDPMs), a class of Markov chain-based
models that generate images from noise through a finite sequence of trans-
formations [23]. During training, the model learns to reverse the process of
adding noise to natural images by estimating the noise that was added at each
step [64]. This process is illustrated in Figure 1.

As shown in Figure 1 one shall distinguish the joint distribution pg(xq.7),
so-called the reverse process, from the distribution g(x¢|x;—1), referred to as
the forward process. What distinguishes diffusion models from other types of
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Figure 1: Illustration from [23] of the diffusion process and conditional distribution proba-
bility learning during the inference step.

latent variable models is that the posterior ¢(xr|x¢), the forward process or
diffusion process, is approximated as a Markov chain, which iteratively adds
Gaussian noise, according to a variance schedule (1, ..., 87, until the content
of the input data xq is completely obliterated :

q(x¢|xe—1) = N(x¢; /1 = Bxi—1, BiI).

Here x1,...,xp are latents of the same dimensionality as the data xo ~ q(xo).
The entire diffusion process then satisfies:

T
g(xrlxo) = [ [ alxelxi-1).
t=1

The training is carried out by optimizing the log-likelihood ratio between
distributions p and ¢ :
_Zl Po(xi— 1|Xt)

>1 q(xe|xi-1)

The reverse process, or the backward diffusion, aims at generating a possi-
ble data pyg(xo) starting from a noisy input drawn from pg(xr) thank to
the outcome of the training, which learn approximating the reverse process
Po(Xi—1X¢).

Early experiments with Generative Adversarial Models (GANs) have found
that adding a label to the generated images can significantly help create more
realistic images as well as improve their quality. This technique, referred
to as “classifier guidance”, works by combining the model’s score with the
feedback from an image classifier. However, this approach requires training
an additional image classifier, whose availability can be an issue. Indeed, in
practice, it’s not always easy to find a suitable image classifier, especially since
the model is trained on noisy data, which prevents the use of a standard pre-
trained classifier. Fortunately, research has shown that it’s possible to achieve
similar results without an auxiliary classifier [24]. This novel approach, called
classifier-free guidance, uses only the generative model itself to guide the image
creation process, eliminating the need for an extra classifier; hence classifier-
free guidance can be thought of as classifier guidance without a classifier, as
pointed out in [24]
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With this short and rather general description of the diffusion-based model
for generative Al we can have a clear idea of the main components of such a
model and the hyperparameter whose impact on deepfake detection shall be
studied. As shown in the Figure 2, the first and foremost is related to the
prompt, which is the text input, its tokenization and its embeddings. Then
comes the guidance scale and the number of diffusion steps. The scheduler
of the noise variance used during each diffusion step can also be changed to
analyse its impact. Last but not least, the Variational AutoEncoder (VAE)
which is the ultimate step that “decodes” the latent into a rendered image as
shown in the Figure 2.

User “prompt”:
A cactus with a happy face

“Noisy
Latent
Seed”

Text conditioned
Latent Net
Noise
Scheduler
Classifier-Free
guidance
process
/
Condi-
Repeat N Ltloned
“diffusion steps” atents
/

Varational
Auto-Encoder
Decoder

Figure 2: Illustration of a typical diffusion-model-based generative AI model highlighting
the elements studied in the present paper.

In addition to these hyperparameters of diffusion-based generative text-
to-image we have also studied the impact of the more global “finetuning”
which consists in retraining a model over a specific dataset with the goal of
generating specific content. This, together with the overall impact of the
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generative model, is studied before we studied in more detail the impact of
the hyperparameters.

While the description of diffusion model-based generative image approach,
the main parameters which can have an impact on the detection of deepfake
can be clearly identified. On one the text tokenizer and embedding method
shall be analyzed. Second the diffusion process is generally defined several
parameters such as the noise scheduler, the number of diffusion steps and the
guidance parameter. Last but not least the last step made of autoencoder can
also have an impact on deepfake detection performance. This set of parame-
ters largely defines a generative model and hence their impact shall be studied
systematically to assess the problem intra-model cover source mismatch.

4 Definitions and Methodology for the Study of Source-mismatch Prob-
lem

As exposed in Section 2.1, the motivation of our study is based upon the
observation that even small changes in the generative AI models can dramat-
ically impact the ensuing problem of detection of generated images, so-called
deepfakes. However, before analysing, in more detail, the impact of the source
mismatch, we need to define what a source is, what exactly the problem of
the source mismatch problem is and to measure its importance.

4.1 Definition of Concepts

First of all, even though it may seem obvious, we must start by defining the
core element studied in the present paper: deepfakes.

As its name implies, the term “deepfake” is derived from the combination of
“deep”, referring to deep learning, and “fake”.

Definition 1 (of deepfake). The term deefake generally refers to the manip-
ulation of existing media (image, video and/or audio) or generation of new
(synthetic) media using deep learning-based approaches [1].

Despite the word “fake”, which indicates a will to use manipulated or
synthesized media for the purpose of disinformation, there exist quite a lot
of applications in which the creator is not malicious, such as, for instance,
for entertainment, illustration and arts. With this respect, the term “deep
synthesis” has been proposed as a more neutral alternative [32]. This new
term, however, has not been widely adopted and in the present paper, the
term deepfake is mostly used to refer to text-to-image synthesis using diffusion-
based methods.

For the subsequent definitions, we will mostly rely on the prior works [34,
18, 19] that review and study the related problem of cover-source mismatch
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for the detection of information hidden within digital media, also referred to
as steganalysis.

Based on these prior works, we can use the following definition for the
source of generated images.

Definition 2 (of a Source of generated images). A source of images gener-
ated with generative AI models can be defined as a model, its components com-
bined with a set of hyperparameters, including the prompt, as post-generation
processing operations. The images generated from a single source can have
different content, even for the same prompt; however, they shall carry similar
properties, such that they can be identified as a single homogenous set.

Note that it is not clear what are the properties that allow identifying im-
ages as a source. It is clear that when using a generative AI model and that all
its hyperparameters are fixed, including the prompt, all the generated images
come from the same source. However, we are aware that our definition is cer-
tainly a bit too restrictive but the goal of the present paper is, among others,
to clarify what makes a source and what hyperparameters are superficial to
define a consistent source.

Note that in the proposed definition of a source, we also included the post-
generation processing, as this may deeply influence the statistical properties of
the ensuing images. For instance, two images generated by the same diffusion-
based model with the same hyperparameters but compressed with different
JPEG quality factors will be assumed from different sources.

Based on the work presented in [34] we propose the following definition of
the source mismatch problem:

Definition 3 (source mismatch problem). The problem of source mismatch
for the detection of deepfake content occurs when a classifier is trained over
images from source A and tested over images from a different source B. More
precisely, the problem of source mismatch is associated with the decrease in
the performance of a classifier trained and tested on different sources.

This definition of the source mismatch problem is much more practical,
as it implies that without loss of detection performance there is no problem
with source mismatch. This relation between the source mismatch and the
practical problem it creates on the performance of the detector is fundamental
in the operational context but also limits the study on the relation between
the hyperparameters and the ensuing properties of generated media.

4.2 Methodology for Assessment of Source Mismatch

In order to further study the source mismatch problem in the detection of
deepfake images, one needs to define how to measure the impact on the de-
tection accuracy. To this end we will use a toy example illustrated in Table 3
with two sources of generated media, respectively sources A and B.
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Table 3: An illustrative example for defining qualitatively the metric that assesses both “in-
trinsic difficulty” (when using the same source for training and testing) and “inconsistency”
(difference when using different training and testing sources), here the prediction error is
measured by the average error rate.

.. Testing Source A | Source B
Training
Source A 0.2 0.38
Source B 0.33 0.35

Definition 4 (Source Intrinsic Difficulty). The intrinsic difficulty of detecting
content generated by source A is defined as the detection accuracy of a given
classifier to identify content generated with source A when both the training
and the testing set are generated with source A, hence in the absence of a
source mismatch.

In the present paper, we will not focus on the definition of the source of
genuine media, that is, digital photographs in the case of images. Therefore,
we assume that the classifier is trained to distinguish deepfakes from pho-
tographs using a specific set of photographs and that the intrinsic difficulty
typically corresponds to the false-negative rate. Of course, the set of genuine
media used to distinguish those created by the generative AI models does
impact the intrinsic difficulty but this aspect falls outside the scope of the
present paper, which focuses on the definition of the source of deepfake.

The problem of source mismatch in deepfake detection can be assessed by
measuring the loss of performance when the training is carried out a different
dataset:

Definition 5 (Source Inconsistency). The inconsistency between sources A
and B appears when one trains a classifier over source A while it is later
tested later over source. In this situation one will obtain a different detection
accuracy as compared to one obtained when training on source B. Generally
speaking, this can be seen as a lack of generalization of the classification rule.

The toy example reported in Table 3 shows via a practical example these
notions of intrinsic difficulty and source inconsistency. The row corresponds
to the detection error rate obtained when training over the sources A and B.
On the opposite, columns report the detection error rate when testing over
sources A and B. The elements on the diagonal correspond to the cases where
both the training and testing are carried out over the same source, hence the
absence of a mismatch. Therefore, the detection performance reported on
the diagonal corresponds to the intrinsic difficulty. On the opposite, the out-
of-diagonal elements correspond to the cases in which the source mismatch
occurs. While the Table 3 is a fictional illustration, note the asymmetry
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of the impact of the source mismatch problem: when testing over source
B, the mismatch increases the detection error rate by only 3%, compared
to the intrinsic difficulty. On the opposite, when testing over source A, a
mismatch creates a much higher increase of the detection error from 20%, in
the matched case, hence the intrinsic difficulty, to 33% in the presence of the
source mismatch problem. Such phenomena are often seen in real cases, as
we shall observe in Section 5.

In practice, the present paper uses the minimal error rate under equal
prior, which is defined concretely as the mean of the false positive and false-
negative rates. For each experiment, the decision threshold is computed to
minimize the error rate. The reason for this choice is to avoid measuring
artificially high loss in terms of detection accuracy only because of a poorly
chosen detection threshold. In other words, when training and testing over
images from different sources, the detection threshold shall be adjusted to
measure the inconsistency more precisely.

5 Numerical Results and Analysis

5.1 Common Core of All Experiences

In our experimentation we generated between 12.000 and 15.000 for each
generative Al model and hyperparameter settings, among which 2.000 were
used for testing and evaluation of the detection accuracy and the remaining
10, 000 images were used for training. This number was large enough to train
a specific classifier for all the models we used for detection and we did not
observe any convergence issues with our classifiers. We generated images
of size 512 x 512 pixels in colour, but all the experimentations were made on
grayscale images of size 128 x 128 otherwise must have results reported almost
detection, which limits the analysis of the findings.

Note that the results presented in the present paper were obtained using
EfficientNetv2 and Dual Vision Transformers (DaViT) because these are inter-
estingly representative of deep learning architecture, CNN for EfficientNetv2
and Trasformers-based for DaViT, and because prior works show that they
are amongst the most accurate [8]. The results we obtained were always con-
sistent with those two models; hence our choice to limit the presentation to
only one of those two models in a vast majority of the cases.

Regarding the classification, all models we used were obtained from the
timm library [61] from which we loaded pretrained model over the imagined
dataset, as it has been shown to greatly improve training convergence in
hidden information detection. To further speed up the training, we used a
curriculum training strategy with the following approach : first, the models
were trained for 5 epochs on grayscale images of size 512 x 512 and coming
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from all the source used in the present paper. The learning rate (LR) was
divided by 2 after each epoch. The resulting pretrained models were used as a
starting point for all the experiments; this second training was carried out us-
ing a decreasing learning rate following stochastic gradient descent with warm
restarts (SGDR) [52, 33, 51]. Given the fact that each classifier is trained over
one source of deepfake only, we used “only” 35 epochs. The initial value of
the learning rate was obtained using the method initially proposed in [53]. In
brief, it essentially consists of a 1-cycle training of the deep-learning method
over so-called mini-batches : the learning rate is gradually increased, at each
mini-batch, from a very low initial value to a final high value. Throughout
this process, the loss is measured at each iteration in order to find the largest
value, with a margin value before the loss begins to diverge.

The learning rate scheduler is thus based on this initial guess and then
slowing decreased over one cycle to a nominal value of 10~°. The initial cycle
length is set to 5, it is doubled for every cycle and the initial learning rate is
divided by two after each cycle. We used three cycles for a total of 35 epochs,
which has been found largely enough in our numerical experimentations.

Another important factor that we noticed in the importance of data aug-
menting to prevent overfitting of the model and ensure a better generalization
even though testing and training sets were generated in the very same manner;
they are, in fact, a random split from the same dataset. This fact has also
been reported in [7, 21]. In our case we carried out data augmentation by
adding the following operation : mirroring, flipping along x-axis and y-axis,
Gaussian i.i.d. noise addition (with standard deviation between 0.05 and
0.15), multiplicative noise addition (with factors between 0.975 and 1.025) re-
sizing (with rescaling factor between 0.95 and 1.05) and rotation (with angles
between —5 and 5 degrees). Each operation was applied independently, using
the Albumentations library, and with a probability p = 0.25 for each. While
each operation within the overall data augmentation process does not mod-
ify the image significantly, and, from a quick search, we did not find interest
in applying more important operations, we have found that these processing
were enough to greatly improve the testing accuracy.

5.2 Impact of Generative-AI Models

We are now ready to study the source mismatch problem in deepfake detection.
The first experience we carried out is reported in Tables 4 and 5. The former
has been obtained with DaViT detection model, while the latter has been
obtained with Efficient Net v2. It consists in a coarse grain assessment of
source mismatch between different generative Al models. First of all, one
can observe the general very low detection error rate over all the generative
AT models. Second, as noted in the toy example presented in Table 3, note
the asymmetry in the intrinsic difficulty. This is especially obvious for the
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Table 4: Inconsistency and intrinsic difficulty of different diffusion-based generative Al
models. Classification error rate and obtained with Dual Vision Transformer —DaViT-
model.
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FLUX.1-schnell || 1.43% | 5.09% | 16.08% | 7.09% | 5.28%
Stable Diffusion 3 || 6.88% | 2.35% |11.48% | 5.19% | 5.64%
SD XL Turbo || 16.19% | 25.47% | 0.93% |18.03% | 17.68%
Whuerstchen || 12.50% | 14.41% | 10.41% | 0.98% |13.11%
Kandinsky 2.2 || 10.70% | 10.64% | 19.64% | 8.79% | 1.78%

Table 5: Inconsistency and intrinsic difficulty of different diffusion-based generative Al
models. Classification error rate and obtained with EfficientNetv2 small.
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FLUX.1-schnell || 0.91% | 4.83% | 23.18% | 9.09% | 5.43%
Stable Diffusion 3 || 5.63% | 1.51% | 16.69% | 4.60% | 6.27%
SD XL Turbo || 18.73% | 31.76% | 1.29% |23.30% | 24.05%
Whuerstchen || 16.12% | 18.87% | 22.21% | 0.61% | 16.69%
Kandinsky 2.2 || 9.13% | 9.57% | 21.78% | 6.40% | 1.26%

Whuerstchen generative model. Indeed, training on this model creates a very
high inconsistency when testing on all other models. In comparison, testing
on Wuerstchen causes a much smaller source mismatch problem. Also, note
the specificity of Stable Diffusion XL Turbo, which is always the cause of an
important inconsistency.

Overall, the results presented in Tables 4 and 5 show a generally impor-
tant source mismatch problem when switching from one generative model to
another with rather important inconsistency as compared to the very low in-
trinsic difficulties. While this result is not very much surprising, as it is in the
line of the observation presented in prior works, see for instance [38, 65, 16],
it will serve as a basis for the assessment of the source-mismatch problem.
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5.3 Impact of Finetuning

In direct line with the first experiment, the second set of results we present
concerns the impact of the fine-tuning of a generative AT model. To this end,
Table 6 shows the intrinsic difficulty and the inconsistencies between FLUX.1
schnell and four of the many available fine-tuning versions that are available
on HuggingFaces website. Surprisingly, one can note a relatively low inconsis-
tency, while we carefully selected fine-tuning that generates photograph-like
images of very different kinds (see Table 2 and the reference therein). We ob-
served similar results with fine-tuning versions of Stable Diffusion XL Turbo.

Table 6: Inconsistency and intrinsic difficulty of different fine-tuning versions of the same
generative Al, namely FLUX.1-schnell. Classification error rate and obtained with Dual
Vision Transformer -DaViT— model.

LUX.1-schnell

Testing
Training
FLUX.1-schnell || 0.91% | 4.44% | 3.42% | 2.23% | 2.52%
Finetuning #1 || 2.79% | 1.35% | 2.21% | 2.97% | 3.37%
Finetuning #2 || 2.43% | 2.18% | 0.93% | 2.90% | 3.18%
Finetuning #3 || 2.61% | 2.80% | 3.75% | 0.98% | 1.81%
Finetuning #4 || 3.12% | 3.51% [ 2.72% | 1.63% | 0.78%

Finetuning #1
Finetuning #2
Finetuning #3
Finetuning #4

F

From these results we can conclude that fine-tuning does have an impact
on the source mismatch problem but a rather limited one.

5.4 Impact of Prompts and Text Embeddings

The first step of all generative AI models is to encode the text input by the
user, so called the prompt. How the prompt is turned into embedding is
the first component whose impact on the source mismatch problem can be
studied. However, it is difficult to modify slightly this process and, there-
fore, we propose to change this part with different elements. In the results
provided in Table 7 we contrast the detection error obtained when training
on Wuerstchen and the inconsistency with several variations of the text to
embeddings process. We first tried generating images with the same prompt
to measure the impact of different prompts. Then we propose using OpenATI’s
CLIP tokenizer.? We replaced the original T5 encoder with T5-xxI which is
supposedly close to the original one. Eventually, we replace the text encoder
with “CLIPTextModelWithProjection” as used in Stable Diffusion 3. Note

3CLIPtokenizer is avaiable on HugginFace Hub.


https://huggingface.co/openai/clip-vit-large-patch14
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Table 7: Inconsistency and intrinsic difficulty of different versions of text embedding for
Whuerstchen. Classification error rate and obtained with Dual Vision Transformer —DaViT—
model.
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Whuerstchen ] 0.98% [ 0.98% [1.14% [ 1.35% [ 1.06%

that we have tried different experiments, but the results presented in Table 7
reflect the general results we obtained.

Unsurprisingly, the change of the prompt and its encoder have almost no
impact on the source mismatch problem. This is not a surprise because this
step is the very first and it is expected that changes at the very beginning of
the generative process have less influence on the image produced in the end.

5.5 Impact of Guidance Scale and Number of Diffusion Steps

The main step in any diffusion-based generative model is the diffustion itself.
As explained in Section 3, during inference there is a very small number of
hyperparameters that can be changed. Tables 8 and 9 present the inconsis-
tency created when changing the number of diffusion steps and the guidance
scale. In both cases the classifier was trained in the “median case”, that is, a
guidance scale of 3 and 12 diffusion steps for Stable Diffusion 3 and a guidance
scale of 1.5 and 8 diffusion steps for Stable Diffusion XL Turbo.

Table 8 seems to point out that these two hyperparameters have a limited
impact on the ensuing mismatch problem even in extreme cases.

On the opposite, Table 8 shows that the number of diffusion steps can
have an important impact on the source mismatch problem. We would like
to acknowledge that in our numerical results this conclusion only holds for a
Stable Diffusion XL Turbo. For all the other generative models, the guidance
scale and the number of diffusion jointly have a very limited impact on the
source mismatch problem, even for FLUX.1 schnell, which is also able to
generate images with a very small number of diffusion steps. We can only
conclude from these divergent results that the hyperparameters guidance scale
and number of diffusion steps can have a significant impact, although this does
not seem to hold true in the majority of cases in our experiments.
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Table 8: Inconsistency and intrinsic difficulty for different guidance scales and number of
diffusion steps for Stable Diffusion 3. Classification error rate and obtained with Dual
Vision Transformer —DaViT— model.

' usion steps 9 4 8 12 16 32 64
Guidance

3.49% | 2.55% | 2.38% | 2.32% | 2.49% | 2.53% | 3.33%
3.40% | 2.48% | 2.34% | 2.31% | 2.44% | 2.48% | 3.27%
3.33% | 2.44% | 2.31% | 2.34% | 2.41% | 2.50% | 3.22%
3.31% | 2.44% | 2.36% | 2.43% | 2.57% | 3.27% | 3.92%
3.42% | 2.76% | 2.57% | 2.60% | 2.65% | 2.69% | 4.12%
3.88% | 3.18% | 3.01% | 2.98% | 2.99% | 3.03% | 4.64%
4.55% [ 3.91% | 3.69% | 3.75% | 3.80% | 3.77% | 4.97%
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Table 9: Inconsistency and intrinsic difficulty for different guidance scales and number of
diffusion steps for Stable Diffusion XL Turbo. Classification error rate and obtained with
Efficient Net v2.

iffusion steps

Guidance 1 2 4 8 12 16 32

13.37% [ 13.14% | 6.93% | 2.33% | 1.73% | 1.37% | 1.83%
12.84% [ 12.67% | 6.84% | 2.31% | 1.80% | 1.31% | 1.85%
11.90% | 11.46% | 6.30% | 2.32% | 1.86% | 1.30% | 1.76%
11.61% [ 11.25% | 6.02% | 2.40% | 1.87% | 1.29% | 1.85%
11.21% | 11.15% | 6.03% | 2.36% | 1.85% | 1.26% | 1.77%
11.34% | 11.20% | 6.13% | 2.33% | 1.89% | 1.34% | 1.76%
11.45% [ 11.21% [ 6.16% | 2.36% | 1.86% | 1.37% | 1.88%
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5.6 Impact of Noise Scheduler

The other main hyperparameter of the diffusion process is the scheduler of
the noise variance. The results presented in the Tables 10 and 11 show the
impact on the source mismatch problem when changing the noise variance
scheduler algorithm. While it was shown in the previous Section 5.5 that
the guidance scale can heavily impact the source mismatch, it seems that
the noise variance scheduler has an overall limited impact. Interestingly, the
case that creates the most mismatch problem is when changing the sched-
uler from Stable Diffusion XL Turbo to the one from Stable Diffusion 3 and
vice versa. On the opposite, the other scheduler for the noise variance, name
https://github.com/Jordach/comfy-consistency-vae, the Denoising Diffusion
Implicit Models (DDIM) scheduler [55], Euler Scheduler [28] and the Trajec-
tory Consistency Distillation (TCD) scheduler [66] all have a very limited
effect on the mismatch problem.
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Table 10: Inconsistency due to changes in the noise scheduler for Stable Diffusion 3 with
Dual Vision Transformer —DaViT— model.

Scheduler from Stable XL Turbo

Scheduler from Kandinsky 2.2
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Table 11: Inconsistency due to changes in the noise scheduler for Stable Diffusion XL Turbo
with Dual Vision Transformer —DaViT— model.
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Stable XL Turbo [[0.93% [5.80% [ 1.10% [ 3.81% [ 1.06% [ 0.81% [4.11%

5.7 Impact of Variational Autoencoder (VAE)

The very last element whose impact on the source mismatch problem is studied
is the variational autoencoder (VAE) that is used at the end of the diffusion
process to turn the latent into a digital image. Surprisingly, Table 12 shows
that this last element has a limited effect on the source mismatch problem,
while it is expected that the ultimate step to have the greatest impact. How-
ever, this is not always the case and Table 13, on the opposite, tends to point
out that this element can have a rather important impact on the source mis-
match problem. Here again it seems difficult to draw a general conclusion: we
can only state that the impact of the VAE can be major is in some cases.
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Table 12: Inconsistency due to changes in the Variational Autoencoder (VAE) for the
Kandinsky diffusion model and with EfficientNet v2small model.

1.5

Testing
Training
Kandinsky 2.2 [[ 1.26% [ 1.41% [ 1.40% | 1.33% | 1.39% [ 1.42% [ 1.37% [ 1.37% | 1.40% | 1.33% [ 1.43% | 1.44%

Autoencoder with KL Loss (AKL)
Autoencoder with KL Loss (AKL) 2

Kandinsky 2.2

Consistency Decoder

VAE from Pixart-a

VAE from SD 2.1

VAE from SD Turbo

VAE from SD XL Turbo
SD1.4 EMA fine-tuned VAE
SD1.4 MSE fine-tuned VAE
SDXL fine-tuned VAE

Tiny AutoEncoder for SD

Table 13: Inconsistency due to changes in the Variational Autoencoder (VAE) for Stable
Diffusion XL Turbo model and with EfficientNet v2small model.

Autoencoder with KL Loss (AKL) 1.5
Autoencoder with KL Loss (AKL) 2

Stable Diffusion XL Turbo
Consistency Decoder

VAE from Kandinsky 2.2
VAE from Pixart-a

VAE from SD 2.1

VAE from SD Turbo

SD1.4 EMA fine-tuned VAE
SD1.4 MSE fine-tuned VAE
SDXL fine-tuned VAE

Tiny AutoEncoder for SD

Testing
Training
Stable Diffusion XL Turbo [[1.29% [ 12.91% [ 16.84% [ 24.17% | 13.44% [ 17.84% | 13.42% [ 13.47% [ 17.65% | 13.32% | 2.14% | 21.08%

5.8 Impact of Post-generation Image Processing Operations

Last but not least, we wanted to highlight the impact of the post-generation
processing operation on the source mismatch problem. Indeed, images are
often processed before being sent; for instance, they can be compressed or
resized when posted on social networks. We have identified 10 common image
processing operations and evaluated the inconsistencies they create. Those
are JPEG compression with different standard quality factors, Upsampling
and Downsampling using Lanczos resampling kernels, denoising, sharpening
and a combination of denoising then sharpening. The results reported in the
Table 14 show that, unsurprisingly, the post-processing operation can create
a major source mismatch problem with inconsistency that can be higher than
20%. This is rather consistent with prior works, see for instance [60, 36,
37], and rather expected, since, as already explained, the last operations are
expected to have a larger impact on the inconsistency between sources.
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Table 14: Inconsistency and intrinsic difficulty of different diffusion-based generative Al
models. Classification error rate and obtained with Dual Vision Transformer —DaViT-
model.
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Kandinsky 2.2 [ 1.27% [ 16.29% | 22.27% [ 25.59% [ 27.98% [ 4.08% [ 6.15% [ 12.39% | 4.16% | 16.86%

6 First Steps Towards Mitigating the Impact of Source Mismatch

Before concluding the present study, we wanted to evaluate two common
strategies for mitigating the source mismatch problem in deepfake detection.
The first one, referred to as “Holystic”, consists in training a classifier over
images generated by all possible sources. It is expected that a classifier trained
over diverse datasets will have higher robustness and, at least, can generalize
better over the sources that are close to those included in the training set. The
second method, referred to as the “atomistic” approach, consists in training
a multi-class classifier, which is used to identify the source with which the
deepfake may have been the most likely generated and then apply a binary
classifier trained to distinguish this specific source from genuine photographs.

Last but not least, we included a third approach proposed in [49] and the
latter used in [35] which is similar to the atomistic approach. First a multi-
class classifier is trained to identify the source of the inspected images. Then
we used the aggregate the results from all binary classifiers but weighted
them according to the “soft output” of the multi-class classifier. In other
words, instead of using one binary classifier, we use them all, while giving
more importance to the sources that the multi-class classifier considers to be
the most likely. While several weighting functions are studied in [49], the
finding of the best aggregation strategy falls outside the scope of the present
paper and we simply apply a softmax function to the soft-output of the multi-
class classifier and weight the output of the binary classifier accordingly. This
approach is referred to as “weighted” in Tables 15 and 16.

Interestingly, these two tables show that the three strategies for mitigating
the source mismatch problem are very efficient. However, it shall be acknowl-
edged that these results are somewhat obtained by eliminating the source mis-
match problem, as all sources are now included in the training set. However,
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Table 15: Inconsistency and intrinsic difficulty of different diffusion-based generative Al
models. Classification error rate and obtained with Dual Vision Transformer —DaViT-
model.

Dernoising then sharpening

JPEG Compression 90
JPEG Compression 80
JPEG Compression 70
JPEG Compression 60
Upsampling 10%
Downsampling 10%

Kandinsky 2.2
Denoising
Sharpening

Holystic || 0.94% | 2.44% | 2.93% | 3.01% | 3.59% | 1.43% | 1.60% | 1.86% | 1.44% | 2.72%
Atomistic || 0.94% | 2.44% | 3.46% | 4.07% | 4.32% | 1.54% | 1.84% | 1.50% | 1.61% | 1.80%
Weighted || 0.94% | 1.42% | 2.33% | 2.79% | 3.32% | 1.12% | 1.31% | 1.68% | 1.07% | 1.68%

Table 16: Inconsistency and intrinsic difficulty of different diffusion-based generative Al
models. Classification error rate and obtained with EfficientNetv2 small.

FLUX.1-schnell
Stable Diffusion 3
SD XL Turbo
Wauerstchen
Kandinsky 2.2

Holystic | 0.77% | 1.44% | 1.19% | 0.563% | 1.14%
Atomistic || 0.80% | 1.49% | 1.27% | 0.57% | 1.17%
Weighted || 0.66% | 1.25% | 1.17% | 0.47% | 0.93%

we observe a general slightly higher generalization capability when training
over various sources but when the testing of a source that is completely absent
from the training set the mismatch problem generally remains.

One can also note that the “weighted” strategy proposed in [49] and [35]
gave the best overall results.

7 Conclusions and Possible Future Works

The present paper proposes the first study on the cause and the impact of the
source mismatch in the field of deepfake detection. We first review the state-
of-the-art emphasizing the lack and understanding of the source mismatch or
even its lack of consideration in the numerical results, which are generally
presented in match conditions between testing and testing sets.
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Based on prior works in the field of hidden information detection, we
propose definitions for the source and the source mismatch problem. In order
to assess the problem in practical cases and compare the impact of the different
elements, we adjusted the definitions for the source intrinsic difficulty and
source inconsistency.

Equipped with those definitions and focusing on the latest diffusion-based
generative Al models, we systematically assess the impact of each element,
from text tokenization to the post-generation image processing operations.

Last but not least, we study the relevance of three methods for mitigating
the problem of source mismatch in deepfake detection. We demonstrate that
when including as many sources as possible in the training set and using an
adapted classification method, this problem can be largely overcome. However,
the problem of Out-of-Distribution source inspection remains largely open.

This leads us to acknowledge that a lot of different works are needed and
that this paper is a first study of this problem, admittedly innovative and
with interesting results, but nonetheless a first step. For instance additional
works are required to understand the key characteristics that make deepfakes
easily detectable and the impact of the source mismatch problem with regard
to these characteristics. Additional works are also required to improve the
generalization of deepfake detection methods to Out-of-Distribution sources.
Our work also focus on image coded as grayscale and it would be interesting
to assess similarly the impact of intra-model variation of hyperparameter on
deepfake detection for other format such as text, audio and video or color
images.

All in all, we believe that the present paper is a cornerstone in the study
of the source mismatch problem for the detection of deepfakes and will un-
doubtedly be a source of future works.
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