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ABSTRACT
Electrolaryngeal (EL) speech is artificial speech produced using
an electrolarynx to aid laryngectomees in communicating with-
out vocal fold vibrations. Compared with normal speech, EL
speech lacks essential phonetic features and differs in temporal
structure, resulting in poor naturalness, speaker identity, and in-
telligibility. Sequence-to-sequence (seq2seq) voice conversion (VC)
emerges as a promising technique for overcoming the challenges
in EL-speech-to-normal-speech conversion (EL2SP). Nonetheless,
most VC studies for EL2SP focus on converting clean EL speech,
overlooking real-world scenarios where EL speech is interfered with
background noise and reverberation. To address this, we propose a
novel seq2seq VC-based training method. In contrast to relying on
extra augmentation modules to tackle interferences, our method
requires only a single framework. First, we pretrained a normal-to-
normal seq2seq VC model, adapted from a text-to-speech model.
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Then, we employed a two-stage fine-tuning in a many-to-one style
leveraging pseudo-noisy and reverberant EL speech data generated
from limited clean data. We evaluated several system designs of
our method. The intermediate representations of these systems
were also analyzed to understand their role in filtering the interfer-
ences. Comparative experiments demonstrated that our method
significantly outperforms EL2SP baselines, non-trivially handling
both clean and noisy-reverberant EL speech, which sheds light on
possible directions for improvement.

Keywords: electrolaryngeal speech, sequence-to-sequence voice conversion, real-
world scenarios, noisy, reverberant

1 Introduction

A speech utterance spoken by a healthy speaker consists of two types of in-
formation: (1) clear linguistic content, and (2) rich paralinguistic information
[79] such as prosody, emotion, and speaker identity, which are essential for hu-
man speech communication. However, individuals with speaking disabilities
cannot completely convey the above information and thus face serious com-
munication barriers. One typical group of such individuals is laryngectomees.
Although they retain the ability of how to speak, they cannot produce speech
due to the permanent loss of important sound source organs, including vocal
folds, after undergoing surgery to remove the larynx to treat laryngeal cancer
[69]. To communicate, laryngectomees rely on an electrolarynx to simulate
vibrations of the vocal folds to produce artificial speech, termed electrolaryn-
geal (EL) speech [61, 18, 80]. Unfortunately, there is a big gap between EL
speech and normal speech owing to the two significant issues. First, intense
noises from the high-energy excitation signals of the electrolarynx cause poor
quality and unsatisfactory intelligibility of EL speech. Second, since the me-
chanically generated excitation signals cannot simulate variable F0 contours
of healthy voice [44], EL speech sounds unnatural and robotic without any
natural prosody or emotion. These limitations not only make EL speech dif-
ficult to understand but also cause discomfort for both users and listeners
during communication.

Voice conversion (VC), which refers to a methodology that was originally
designed to convert a speech from one speaker to another while preserving
the underlying linguistic contents [9, 70, 49], has been applied as a promising
enhancement approach for EL-speech-to-normal-speech conversion (EL2SP).
Widely studied approaches to EL2SP focus on developing conventional statis-
tic VC models that employ a frame-wise paradigm. Such models directly map
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and convert the features of source EL speech to those of target normal speech
frame-by-frame [52, 14, 68, 34, 35, 57], as depicted at the top of Figure 1.
However, the fundamental problem of such a paradigm is that it relies on the
explicit alignment of corresponding frames between source and target speech,
forcing the temporal structure of converted speech to be the same as that of
EL speech. It leads to the inaccurate inference of time-variant characteristics,
such as rhythm and duration.

The sequence-to-sequence (seq2seq) model [64], which has emerged in
recent years, provides a different strategy by decomposing the conversion
paradigm [30], i.e., an encoder first disentangles linguistic contents from source
speech features as intermediate representations. Through an attention mech-
anism, a decoder subsequently consumes these intermediate representations
alongside target characteristics to reconstruct the features of converted speech,
as shown in the middle of Figure 1. Thanks to such an encoder–decoder frame-
work with the attention mechanism, seq2seq VC can automatically determine
the duration of output and capture long-term dependencies such as prosody,
suprasegmental characteristics of F0, and speaker identity [29]. Tanaka et
al. [67] demonstrated that seq2seq VC surpasses conventional VC in normal-
to-normal VC tasks. Coincidentally, recent advances in broader speaking-aid
fields, such as dysarthric VC [25, 28], EL speech recognition [77, 76], and
EL2SP [74, 87], are also largely attributed to the adoption of seq2seq models.
Notably, the attempts described in [87] likewise highlight the advantages of the
seq2seq model over non-seq2seq approaches for EL2SP. In summary, seq2seq
VC shows promise in effectively bridging the complex alignment inherent in
EL2SP.

Although the promising properties of seq2seq VC for EL2SP are exciting,
there are two critical challenges that need to be addressed.

• C-1: Constraints of limited data. Most seq2seq VC models re-
quire a large amount of high-quality, parallel training data to ensure
an ideal and generalized performance, whereas the available parallel
data for EL2SP is practically low-resource. This results in the quality
degradation of the converted speech, including mispronunciations and
repeated/skipped phonemes [88].

• C-2: Complexity of real-world scenarios. Primary works on EL2SP
depend on high-quality recordings from simple, clean environments to
allow the model to focus on addressing the difficult mapping between
EL and normal speech. However, in real-world scenarios, speech signals
are often entangled with background interferences including noise and
reverberation. The complex nature of the corruption of speech signals
caused by interferences would make the distributions of speech-related
information, such as linguistic contents and speaker identity, highly dif-
ferent from those in clean speech [78, 63]. On this basis, the current
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Figure 1: Overview of VC techniques for EL2SP. Top: conventional VC based on frame-wise
function; middle: seq2seq VC that disentangles the spoken content of clean EL speech; bot-
tom: seq2seq VC adapted to real-world EL2SP can generate intermediate representations
by filtering out the interferences contained in EL speech.

approach would limit the models’ capability to adapt to more complex
real-world conditions.

A prevalent methodology for addressing C-1 involves transferring knowl-
edge from a more accessible, large-scale dataset to a downstream fine-tuning
dataset via a pretraining–fine-tuning scheme. As opposed to training from
scratch, the compact, high-level representations from an extensive out-of-
domain dataset can be leveraged to improve the performance of the target
task, which has been widely validated in computer vision [58, 3], natural
language processing [13], and speech signal processing [59].

Following this methodology and drawing inspiration from the Voice Trans-
former Network (VTN) [27], our prior work [43] developed a pretrained seq2seq
VC model adapted from a text-to-speech (TTS) database of normal speech
instead of acquiring a large VC corpus, which relaxes the high demand for
parallel training data since only a single speaker’s speech set is required. Fur-
thermore, to reduce the restriction on transferability due to the huge domain
shifts between EL2SP dataset and normal speech corpus, we employed a data
augmentation approach to obtain more task-specific synthetic data (SD). Be-
cause the original EL2SP dataset is too small to build high-performance TTS
models, we expanded it using low-quality parallel SD (PSD), in contrast to
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most works [5, 38, 53] that depend on high-quality SD. This approach builds
on the earlier findings [42], which demonstrated the viability of imperfect
SD for normal-to-normal VC tasks. Our other focus [43] was to propose a
novel two-stage fine-tuning technique to maximize useful knowledge from the
extended EL2SP dataset while minimizing the accuracy drift due to PSD,
thereby enhancing transfer learning efficacy.

For C-2, existing works are mainly from the perspective of extending the
VC framework to improve its robustness for interfered conditions. A straight-
forward idea is to apply speech enhancement (SE) [71] as a preprocessing
module. These works adopt an enhancement–conversion pipeline by incor-
porating extra components such as a denoising module (e.g., DCCRN [22])
and/or a dereverberation module (e.g., TasNet [40]), to develop noise- and/or
reverberation-robust VC systems [83, 10]. However, such framework relies
essentially on the prior knowledge of the interferences and the performance of
the SE modules. Since the available SE modules are trained on normal speech,
their effectiveness is compromised when applied to EL speech owing to the
huge differences between EL and normal speech. Another critical drawback is
that the speech information will be inevitably distorted during the processing
and transmission of SE modules [85], adversely affecting the downstream VC.
Moreover, most works employ frame-wise VC, which fails to solve the difficult
alignments of EL2SP.

Considering the fundamental deficiencies of these sophisticated frameworks
for real-world EL2SP, our resolution builds on the successes of previous efforts
to overcome C-1. Starting from a new perspective of adaptation, we aim to
develop a noise- and reverberation-robust seq2seq EL2SP system using small-
scale clean data, which can realize a direct conversion for interfered EL speech.
Specifically, we keep the seq2seq architecture and input EL speech with diverse
noise and reverberation properties to fine-tune the model for fine-grained real-
world scenarios. An important motivation here is derived from the definition
of VC, i.e., the objective of an effective encoding is always pure linguistic inter-
mediate representations closely tied to speech information. When VC adapts
to real-world scenarios, we expect that non-speech interferences can be treated
as extraneous information and filtered out, as depicted in the bottom of Fig-
ure 1. Another motivation is that the conversion target in our study is always
clean normal speech. This clear objective not only aligns with major settings
in real-world EL2SP, but also makes the decoder contribute to improving the
accuracy of intermediate representations by optimizing towards a well-defined
goal. Note that we augment our training data by simulating EL SD with noise
and reverberation properties to facilitate addressing real-world EL2SP tasks.
Given the benefits of low-quality EL SD for clean EL2SP [43], incorporating
such imperfect data with interfered information is presumed to somewhat en-
rich knowledge and disentangle speech and non-speech information, leading
to better conversion performance.
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In this study, we aim to improve transfer learning for real-world seq2seq
EL2SP by developing training methods that utilize data augmentations with
different attributes. With the stepping stone provided by our preliminary
studies [43, 41], we not only design various systems in pursuit of state-of-
the-art (SOTA) performance, but also present a comparative study through
systematic experiments. The contributions are summarized as follows:

• This work represents a new effort to cope with real-world EL2SP using
practically limited clean data. In this paper, we propose a many-to-one
framework that integrates different noisy and reverberant EL SD with
corresponding clean normal SD, enabling a simultaneous handling of
multiple interferences without requiring any extra modules, labels, or
strict alignment patterns.

• We design four systems of different fine-tuning levels on the basis of vari-
ous EL data. Moreover, we follow the study outlined in [10], introducing
both denoising and dereverberation SE modules to the EL2SP systems.
Apart from using SE modules pretrained on normal datasets, we further
fine-tune them on EL data through either cascading or joint training ap-
proaches, ensuring more optimized EL2SP baselines. Nonetheless, our
SOTA system outperforms all these baselines.

• We extend the two-stage fine-tuning strategy, initially proposed for our
seq2seq-based EL2SP systems, to SE network training. The experi-
mental results confirm that this approach effectively enhances the ro-
bustness of SE modules, offering benefits for downstream EL2SP and
further demonstrating methodological generalizability of the two-stage
fine-tuning.

• For the first time, we visualize the hidden representation spaces of
learned EL2SP systems when dealing with real-world conditions and
how those are related to the performance.

• We evaluate, through objective and subjective experiments, our systems
under conditions of clean-, noisy-, and/or reverberant-EL speech. The
reasonable results obtained in terms of speech quality, naturalness, and
speaker similarity verify the generalizability of our methods.

2 Background and Related Works

2.1 Interference-robust VC

Following the discussion in Section 1, we hereafter detail three widely used
categories for interference-robust VC: (1) statistical methods, (2) SE methods,
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and (3) representation learning methods. Whereas the seminal works of latter
two were both applied to TTS [71, 6],[21], we mainly focus on the most relevant
papers on VC.

2.1.1 Interference-robust VC with Statistical Methods

Leveraging the sparse representations based on the non-negative matrix fac-
torization (NMF) function [37] is a common statistical method for developing
interference-robust VC. Takashima et al. [66] proposed an exemplar-based
VC, wherein NMF decomposed the spectral features of the acoustic signals
into a linear combination of sparsely represented exemplars and their corre-
sponding weight vectors. During inference, the noisy speech, comprising both
noise and speech exemplars, was converted into the clean target speech by us-
ing target exemplars and the weights of source exemplars. However, besides
the issues of its own frame-wise architecture, NMF is a computationally in-
tensive algorithm that requires rigorous parameters and high training costs to
obtain accurate sparse representations. Although Aihara et al. [2, 1] endeav-
ored to reduce the reliance on parallel data and improve training efficiency,
their methods still cannot outperform other conventional VC models.

2.1.2 Interference-robust VC with SE Methods

SE methods, which involve connecting external SE modules or processing
stages, are the mainstream approaches to address speech interferences. Miao
et al. [48] realized a noise-robust VC but required complex dual noise-filtering
strategies for preprocessing and postprocessing. In preprocessing, low-pass
filtering is employed to eliminate noise in inputs. In postprocessing, Mel-
cepstral coefficients (MCEPs) undergo statistical filtering to reduce noise in
converted coefficients. Furthermore, the input MCEPs are extended and only
the sub-band cepstrum is converted to mitigate interferences in high-quefrency
components. This method, although somewhat effective, relies heavily on in-
tricate filtering techniques to handle noise throughout the VC process. In
contrast, Xie et al. [83] developed a noise-controllable VC framework based
on a different approach. A pretrained denoising model is firstly utilized to
separate noisy speech into noise and speech signals. Subsequently, the down-
stream Vector Quantized-Variational AutoEncoder (VQ-VAE)-based VC [72]
is trained on the denoised speech, eliminating the need for clean training data.
During inference, the separated noise can be selectively superimposed onto
the converted speech on the basis of specific scenarios. However, since the
quality of the denoised speech used for VC training is inferior to that of clean
speech, the VC performance is degraded. To reduce such impact, Xie et al.
[82] and Xie and Toda [81] successively proposed several improvements, such
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as using the separated noise as a VC condition to directly model the noisy
speech and implementing diverse data augmentations, all of which entailed
increased architectural complexity and training costs.

To sum up, because SE and downstream VC have independent architec-
tures and require different features, additional feature transformations are
often necessary in the aforementioned works, thus causing feature distortions.
Although Chan et al. [8], focusing on noisy condition, designed a lightweight
SE module to achieve joint training with VC components incorporating gen-
erative adversarial networks (GANs) [17] and various loss functions, such
multi-component models still require accurate configurations and balanced
loss weights. In addition, under more complex interfered conditions where
noise and reverberation coexist, a more comprehensive SE module should be
designed to handle a broader range of distortions [10]. On the other hand,
the authors of some VC studies [83, 10, 82, 81] affirmed that they did not rely
on clean training data because of the use of the fixed SE module, but the SE
pretraining still requires extensive clean data to ensure its performance.

2.1.3 Interference-robust VC with Representation Learning Methods

The primary objective of representation learning methods is to enhance deep
perceptual insights into interfered data. Autoencoder-style denoising mod-
els [60, 20] provided some early inspirations in this direction. Afterwards,
an attempt to address noisy condition using GAN-based domain adversarial
training was proposed in one-shot VC [12], where two groups of gradient re-
versal layers and domain classifiers were assigned to the speaker and content
encoders, respectively [15]. Therefore, training objective included not only
the reconstruction loss but also domain classification losses. By learning en-
coded features that are invariant to noise, the framework is able to handle
unseen noise types. Despite this, the need for clearly labeled noisy/clean con-
ditions and sufficient training data remains as potential issues. On the other
hand, a few studies considered overcoming the reverberation. Huang et al.
[23] explored general interference-robust VC that combined adversarial and
denoising training to tackle noise and reverberation. To achieve effective ad-
versarial training, the embedding attack [24] was additionally used to generate
adversarial samples, which were distributed to each mini batch together with
other types of data augmentation. Although the work demonstrated prelimi-
nary robustness, some of its case studies revealed adverse impacts. Mottini et
al. [51] suggested a VC framework that can overcome noisy-reverberant con-
dition. However, besides acoustic signals, this framework requires transcrip-
tions, which are consumed by extra phonetic and acoustic-automatic speech
recognition (ASR) encoders for providing textual information, to enhance the
efficiency of representation learning. In a similar study, Choi et al. [11]
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proposed a reverberation-robust VC consisting of a VC module and a rever-
beration time (T60) estimator, which introduces essential T60 information for
realizing controllable reverberation.

Altogether, representation learning methods have mainly achieved a single-
shot training process without significant data distortion compared with SE
methods. However, most still depend on sophisticated frameworks involving
either GANs or multiple components, which necessitates supplementary train-
ing data and labels. Moreover, the application of these studies to real-world
EL2SP is extremely rare.

Our method has some similarities with representation learning methods,
but unlike all the aforementioned methods for addressing real-world scenarios,
our method is more convenient and efficient in various aspects, as follows:

• Data processing. Since our method requires speech features exclusively
and simultaneously accomplishes both SE and VC, a unified preprocess-
ing for speech features is carried out, eliminating the need for additional
intermediate data processing and analysis.

• Data augmentation. Data augmentation is a straightforward approach
to increase the diversity of initial datasets. For clean EL2SP, Yang et
al. [86] utilized synthesized EL speech, created by flattening the F0
contour of normal speech using the WORLD vocoder [50], to increase
the volume of training data. Similarly, Xie et al. [83] and Huang et al.
[24] developed interference-robust VC by simulating different interfered
conditions from clean speech sets. However, these studies encountered
a common limitation: Yang et al. [86] presumed the availability of
ample EL speech for pretraining crucial components, while Xie et al.
[83] and Huang et al. [24] relied on a large amount of high-quality clean
data. In contrast, data augmentation in our method is a significant step
towards more flexible and practical interference-robust EL2SP systems.
We consider two types of data augmentation, i.e., increasing the amount
of essential speech data according to imperfect PSD generated by fine-
tuned TTS models, and then adding different real-world scenarios into
the expanded EL data built.

• Framework. Our method, only focusing on seq2seq VC, offers more
promising and simplified applications than those requiring complex frame-
works. Furthermore, compared with the mainstream seq2seq VC works
relying on recurrent neural networks [67] or convolutional neural net-
works [31], ours is structurally more suitable for handling real-world
scenarios by leveraging the strengths of Transformer [73]. This not
only accelerates training efficiency but also boosts a deep understand-
ing of different types of data, as evidenced by its success across multiple
datasets in large language models [7].
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2.2 Transfer Learning in VC

Our method utilizes transfer learning to adapt to real-world scenarios. Hence,
in this section, we provide an overview of the vast majority of methods used
to improve transfer learning for VC techniques. Transfer learning requires
an extensive pretraining dataset to achieve satisfactory generalization, but
collecting a considerable amount of parallel VC corpus is difficult. Applying
modules from TTS or ASR is a primary direction to attain effective pretrain-
ing, given the architectural commonalities with VC and the availability of
corresponding large datasets. For instance, incorporating the attention and
the decoder from pretrained TTS into VC has proven effective in generat-
ing high-fidelity speech [27, 89]. Similarly, transferring a pretrained encoder
from ASR played a role in enhancing VC performance [26]. Building a more
elaborate VC framework with extra components, such as pretrained phonetic
posteriorgrams (PPGs) from ASR [90] and a text encoder of TTS [56], was
also helpful for VC.

Our method neither requires an extensive, high-quality VC corpus nor
relies on a complex structure. On the basis of our previous work [43], besides
integrating a straightforward TTS pretraining, we designed a two-stage fine-
tuning process combined with multiple types of interfered EL data, simulated
using the imperfect clean EL SD.

3 Proposed Method

Recalling our main challenge—how to enhance the robustness of seq2seq
EL2SP in the presence of interferences, especially when the original data is
limited—the focus of our study is on combining easy-to-obtain SD (particu-
larly simulated EL SD with varying acoustic properties) with transfer learning
to improve the transfer performance in real-world environments. Figure 2 il-
lustrates the process of developing our proposed method, which consists of
two main parts: (1) Data augmentation (on the left) and (2) EL2SP train-
ing (on the right). Starting with the left, we fine-tune two TTS models for
EL and normal speech using the original EL2SP dataset. We then use the
two models to generate PSD, which contains EL and normal SD. Here, EL
SD and the original EL data are further interfered by adding noise, reverber-
ation, or a combination of both (in Section 3.1). Moving to the right, the
pretraining–fine-tuning stages are carried out. We first develop a pretrained
seq2seq VC model by TTS pretraining on a normal TTS database (in Sec-
tion 3.2). This is then followed by a two-stage fine-tuning by incorporating
the data augmentations to achieve the final EL2SP system, which enhances
robustness under noisy and reverberant conditions (in Section 3.3). Lastly,
we construct various systems by adjusting the types of interfered data used
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Figure 2: Overview of the proposed method for building real-world EL2SP, with the sections
labeled to correspond to the description of each process.

during the fine-tuning process. Moreover, we design several typical baseline
architectures by leveraging extra SE modules for fair comparisons with our
method (in Section 3.4).

3.1 EL and Normal TTS Fine-tuning for PSD Generation

Given that only small-scale original data for EL2SP is available in this work,
the process in this section aims to augment the training data by producing
large-scale PSD. As the original dataset is too small to directly train a model,
we fine-tune a pretrained VITS-based TTS model [33] via original source
EL and target normal speech sets, yielding the corresponding EL-TTS and
normal-TTS models, respectively. After this, we input the same external text
set into both EL-TTS and normal-TTS models to generate PSD. Note that,
owing to the low-resource dataset for TTS fine-tuning, the quality of PSD is
poor.

Once the PSD is generated, we can obtain a much larger EL2SP dataset,
in which both EL speech and EL SD are further injected with the unique inter-
ferences including different types of background noise and/or reverberation,
with each EL utterance corresponding to a specific interference. It is worth
pointing out that most interferences are leveraged by the EL SD, owing to
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its size being much larger than the original EL data. All these interfered and
clean EL datasets are then used in the subsequent fine-tuning stages.

3.2 Pretraining of Seq2seq VC Model

We adopt VTN [27] to build a pretrained one-to-one seq2seq VC model by
utilizing Transformer-based TTS pretraining. Motivated by the same decod-
ing mechanism between TTS and VC, we aim to transfer the compact, rich-
linguistic representations, derived from a normal TTS corpus through atten-
tion mechanism, while also sharing the speech decoder from pretrained TTS
onto VC. A significant advantage of this process is that it only requires an ar-
bitrary single-speaker corpus and the corresponding transcriptions to acquire
pretrained knowledge, rather than necessitating parallel corpora of the same
magnitude. This largely relaxes the constraints for developing seq2seq VC.

VTN pretraining includes decoder and encoder pretraining. Initially, de-
coder pretraining involves a typical TTS training with a large normal TTS
dataset, which enables the decoder to effectively associate speech features
with corresponding pure linguistic information from the encoded text. Fol-
lowing this, during encoder pretraining, the TTS corpus serves as both input
and target. A new speech encoder, following an autoencoder training style, is
then updated using a reconstruction loss by keeping the parameters of the pre-
trained decoder fixed. In this manner, the encoder is forced to learn to extract
the rich-linguistic representations from the speech signals instead of from the
text, owing to the inherited intermediate representations and retained ability
of the fixed decoder to recognize linguistic information.

3.3 Two-stage Many-to-one EL2SP Fine-tuning

At the beginning of the fine-tuning process, we employ the pretrained VTN
to impart the effective valid a priori for initializing the seq2seq EL2SP model,
ensuring improved transferability and more efficient convergence speed com-
pared with training from scratch. A large-scale EL2SP dataset is constructed
for the first-stage fine-tuning, where the original EL data, EL SD, and in-
terfered EL data are pooled together as inputs. We hence repeatedly use the
original target normal data and normal SD to form the parallel pairs with their
corresponding EL inputs. These training pairs are fed into the model to for
training in a many-to-one mapping manner, i.e., mapping interfered and clean
EL speech to clean normal speech, to provide the vast essential knowledge
for generalized performance. However, some distorted properties contained
in SD might negatively affect the accuracy of model weights. Therefore, in
the second-stage fine-tuning, aimed at further refining the model parameters,
clean and noisy-reverberant versions of original EL data are used, paired with
their corresponding normal data, to finalize the EL2SP model.
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At the core of the above method is the concept of learning stronger percep-
tion from various acoustic properties in different types of EL speech. Thus,
using more subdivided properties, i.e., clean, noisy-only, reverberant-only, and
noisy-reverberant EL inputs, would facilitate the adaptation to real-world sce-
narios. This naturally motivates us to design different systems, which will be
discussed in Section 3.4.1.

3.4 Proposed Systems

3.4.1 Proposed System Conditions

As depicted in Table 1, we design four systems named Model 1, Model 2,
Model 3, and Model 4. We emphasize that these systems share the same
seq2seq framework, whereas the main difference between them is EL inputs
with different acoustic conditions used during fine-tuning stages.

• Model 1 : Since no SD is used, Model 1 can be viewed as a standard
approach for adapting to real-world scenarios by conducting a direct
fine-tuning on the original EL data containing clean/noisy-reverberant
conditions.

• Model 2 : Model 2 undergoes the two-stage fine-tuning process. In the
first-stage fine-tuning, clean and noisy-reverberant original/synthetic EL
inputs are utilized, whereas in the second-stage fine-tuning, the same
training data as in Model 1 is applied.

• Model 3 : Compared with Model 2, Model 3 performs the same second-
stage fine-tuning, but the types of EL data used in the first-stage fine-
tuning are expanded to further incorporate inputs with only noise or
reverberation.

• Model 4 : We argue that the types of EL data used in the second-stage
fine-tuning may also impact the training performance. Therefore, in
Model 4, on the basis of the consistent first-stage fine-tuning with Model
3, we conduct the second-stage fine-tuning that differs slightly by addi-
tionally leveraging the original EL inputs with only noise or reverbera-
tion.

3.4.2 Overview of the Composition of Comparable Baselines

To figure out various properties of our proposed method in terms of interference-
robust EL2SP, we conduct a comparative study by introducing several baseline
systems.
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Table 1: Types of input EL training data for individual systems. Here, “ORG” and “SYN”
indicate whether the EL speech is the original or synthetic, while “C”, “R”, “N”, and
“NR” represent the following conditions: clean, reverberant, noisy, and noisy-reverberant,
respectively.

Systems First stage Second stage
ORG/SYN Conditions ORG/SYN Conditions

Model 1 Yes/No C + NR - -
Model 2 Yes/Yes C + NR Yes/No C + NR
Model 3 Yes/Yes C + NR + N + R Yes/No C + NR
Model 4 Yes/Yes C + NR + N + R Yes/No C + NR + N + R

1) Baselines adapted to clean environment: As the first question, we look
simply at how well our systems perform compared with those adapted solely
to a clean environment. To contextualize this, we prepare two fundamental off-
the-shelf baseline systems, named Baseline 1 and Baseline 2 : fine-tuning the
pretrained VTN that is identical to our proposed systems, but without using
any interfered data. Baseline 1 uses only the original clean pairs, whereas
Baseline 2 additionally uses the same low-quality PSD as that of Models 2, 3,
and 4.
2) Baselines using SE methods: Another question being considered is how
effective our systems are under noisy-reverberant condition from an architec-
tural aspect, especially compared with mainstream systems equipped with SE
modules. As a result, aside from the comparisons for proposed systems with
Baselines 1 and 2, we also design four SE methods that are connected to the
same EL2SP framework, to establish corresponding baseline systems. Note
that these baselines, following the enhancement order demonstrated to achieve
SOTA performance in [10], first conduct denoising and then dereverberation
for noisy-reverberant inputs, as shown in Figure 3. The SE modules, named
Extension-pretrain (E-pt), Extension-fine-tuning (E-ft), Extension-ft-cascade
(E-ft-c), Extension-ft-joint (E-ft-j), and Extension-two-stage-ft-joint (E-2ft-j)
are mainly distinguished according to their specific training methods, which
are summarized in Figure 4.

Denoising Dereverb Voice
conversion

Noisy-
reverberant
speech

Converted
speech

SE methods

Figure 3: Overview of the baseline frameworks using SE methods.

• E-pt: In Figure 4(a), E-pt provides a common SE strategy that involves
using interfered data from widely available original normal human cor-
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(d) Upper: Extension-ft-joint (E-ft-j); lower: Extension-two-stage-ft-joint (E-2ft-j)

Figure 4: Training methods for SE models that are connected to EL2SP, where E-ft, E-
ft-c, and E-ft-j are all initialized by the pretrained modules from E-pt. E-2ft-j follows the
same joint framework as E-ft-j but undergoes two-stage fine-tuning, with an additional
initialization using the parameters of E-ft-j. ORG and SYN indicate whether the training
data is original or synthetic.

pora to train denoising and dereverberation models. These SE models
are then directly used to enhance interfered EL speech.
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• E-ft: Owing to significant differences in acoustic properties between EL
and normal speech, the direct use of the two SE modules generated by
E-pt may not generalize well to EL speech. Thus, the interfered EL
speech, simulated using both the original and synthetic clean EL speech
datasets, is further used as downstream data to separately fine-tune the
two SE modules, thus constructing E-ft, as depicted in Figure 4(b).

• E-ft-c: As plotted in Figure 4(c), E-ft-c follows the fine-tuning using
the interfered EL speech of the same volume as E-ft, but enhances the
process by integrating the denoising and dereverberation models in a
cascade, where the output from the denoising model serves as input for
training the dereverberation model.

• E-ft-j: As we have indicated in Section 2, intermediate output would
inevitably bring some distortions, potentially limiting SE performance.
Therefore, E-ft-j, illustrated in upper block of Figure 4(d), while inher-
iting the pretrained weights from E-pt, combines the two SE modules
into a joint network, utilizing both original and synthetic data for train-
ing. This method ensures that the training data only includes noisy-
reverberant and clean EL data, without intermediate generation during
SE inference.

• E-2ft-j: Motivated by the two-stage fine-tuning methodology in our pro-
posed seq2seq VC framework, we hypothesize that this approach can
also be generalized to SE training. To demonstrate its generalizability,
we further extend E-ft-j. Specifically, we adopt the same joint frame-
work and initial training process as E-ft-j for the first fine-tuning stage,
where the pretrained SE model is fine-tuned using interfered synthetic
and original EL data, along with their clean counterparts. In the sec-
ond stage, we solely use the interfered and clean original data to refine
the final SE model, thus establishing E-2ft-j, as illustrated in the lower
block of Figure 4(d).

The SE methods are then individually ensembled with various EL2SP
systems to deploy the corresponding baseline systems with higher comparative
appeal. We specifically design three types of baseline systems based on above
SE methods, all of which adopt the same inference process: The SE modules
first process the interfered EL inputs to generate enhanced data, which is
subsequently converted by the downstream EL2SP part.

• The first type of system employs a straightforward approach, directly
combining the SE module with an EL2SP model trained on clean data.
On the basis of this approach, we form four systems by pairing E-pt,
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E-ft, E-ft-c, and E-ft-j with Baseline 1, resulting in systems named E-
pt-Base1, E-ft-Base1, E-ft-c-Base1, and E-ft-j-Base1, respectively. Al-
though some distortions are contained in processed EL data, these sys-
tems are expected to achieve better conversion results than Baseline 1.
We evaluate them to determine (1) how the distortions affect the con-
verted speech when downstream model is trained only on clean data,
and (2) the performance differences with other proposed systems.

• The second type aims to further improve the adaptability of the down-
stream EL2SP to the processed EL data. Here, we specifically use E-ft-c
and E-ft-j to separately process the interfered version of the training
data from Baseline 1. The processed data is then used to fine-tune their
respective downstream EL2SP models. Accordingly, these two systems
are named E-ft-c-d-Base1 and E-ft-j-d-Base1.

• The last one follows a similar manner to the second while processing the
much larger-scale, interfered version of the training data from Baseline
2, which is used to investigate the potentially positive impact of low-
quality SD. For this, we utilize E-ft-j and E-2ft-j as the SE modules and
name the entire systems E-ft-j-d-Base2 and E-2ft-j-d-Base2.

We therefore construct progressively deeper baselines, taking into account
the factors including SE performance, adaption to processed EL data, and
SD effects, to facilitate systematic comparative studies between them and our
proposed systems.

4 Experimental Evaluations

In this section, we first outlined the experimental protocol for our study (in
Section 4.1), which comprises the datasets used, model architectures with their
implementation configurations, and the metrics for evaluating the experimen-
tal results. Subsequently, we carried out a series of comprehensive objective
evaluations and subjective listening tests to systematically present and analyze
the proposed systems, comparing them with various baseline systems under
specific real-world conditions (in Section 4.2). The aspects we investigated in-
clude the effectiveness of our two-stage many-to-one fine-tuning, performance
discrepancies under different conditions, and an analysis of the intermediate
representations in our systems.

4.1 Experimental Protocol

4.1.1 Datasets

The three types of datasets used for the proposed method are as follows:
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• TTS database: To accomplish the pretraining mentioned in Sections
3.1 and 3.2 for the seq2seq VC and VITS TTS models, we utilized
the Japanese JSUT database containing 7696 utterances [62], which
amounts to approximately 10 hours of speech. All transcriptions from
the JSUT database were also selected for generating PSD.

• Original EL2SP datasets: To develop and evaluate EL2SP systems, we
constructed two small-scale and semi-parallel EL2SP datasets, referred
to as Patient 1 dataset and Patient 2 dataset, with totally different utter-
ance contents. Both were recorded under identical recording conditions:
in a professional soundproof booth, using a Shure SM58 dynamic micro-
phone, and a Roland Rubix 22 audio interface connected to Audacity
recording software. All speakers involved in the recordings are native
Japanese speakers.

– Patient 1 dataset consists of 200 EL utterances totaling less than
10 minutes, and 413 normal utterances around 20 minutes. The
EL speech was recorded from a male laryngectomee using an elec-
trolarynx. Due to a complete laryngectomy for cervical esophageal
cancer, his normal (pre-surgery) speech was unavailable. To pro-
vide a reference for healthy speech, a healthy male speaker recorded
the normal speech under the same recording conditions.

– Patient 2 dataset includes 573 EL utterances approximately 29 min-
utes, and 373 normal utterances roughly 18 minutes. This dataset
was recorded from a male laryngectomee diagnosed with severe hy-
popharyngeal cancer. His larynx was completely removed, and he
underwent a jejunal graft transplantation from his abdomen. His
normal speech was recorded prior to the surgery. Despite the pres-
ence of the disease, his vocal cords were not significantly affected
at the time of recording, so his normal voice remained largely un-
affected. Given these conditions, this dataset simulates a scenario
where pre-surgical speech from laryngectomees is available.

To address the semi-parallel nature of Patient 1 and Patient 2 datasets,
we leveraged fine-tuned TTS models to add the corresponding EL SD
(213) for Patient 1 dataset and normal SD (200) for Patient 2 dataset,
respectively, maximizing the utilization of all feasible original data dur-
ing EL2SP training. In both datasets, the development and test sets
consisted of 20 and 40 original clean utterances, along with their noisy-
reverberant counterparts, while the remainder was used for training.

• Noise and reverberation settings: We leveraged 8109 and 8269 noise clips
along with their corresponding room impulse responses (RIRs) from the
WHAMR! dataset [45], to generate interfered EL data for Patient 1 and
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Patient 2 datasets, respectively. We first created the reverberant ver-
sions of the original and synthetic EL data by convolving them with
RIRs, whose T60 range was from 0.1 to 1.0 seconds. Subsequently,
noise clips with five signal-to-noise ratios (SNRs) (0, 5, 10, 15, and 20
dB) were mixed with all the clean and corresponding reverberant EL
data to create noisy and noisy-reverberant versions. Each EL utterance
was assigned a unique noise clip and a distinct set of RIR parameters,
ensuring both the diversity of the dataset and the complete separation
between training and test sets. We emphasize that all noise clips and
RIR parameters in the training set, including those from original EL
data and EL SD, were strictly different from those in the test set. Thus,
the interferences in the test set were entirely unseen during model train-
ing.

Given the necessity for SE methods in establishing baselines, we addi-
tionally introduced two datasets for training the denoising and dereverber-
ation models of E-pt. Following the work presented in [16], we used 1000
utterances from LibriSpeech [54], which were mixed with noise clips of the
CHIME3 dataset [4], to conduct denoising training. Concurrently, still using
the LibriSpeech dataset as the basis, 10,000 clean speech samples were dy-
namically converted into reverberant speech on-the-fly to adequately pretrain
the dereverberation model. Afterwards, the interfered original/synthetic EL
data were further employed as the fine-tuning dataset to establish E-ft, E-ft-c,
E-ft-j, and E-2ft-j.

4.1.2 Configuration Settings

The EL data was initially processed at 16 kHz during interference simulation
for the training of denoising and dereverberation modules. During EL2SP
training, both EL and normal data were then resampled at 24 kHz and pro-
cessed using the 80-dimensional Mel filterbanks with 2048 FFT points and
a 300-point shift to extract acoustic features. The implementations of the
Transformer-based pretrained seq2seq VC and VITS TTS models were accom-
plished with the ESPnet toolkit [47, 19], following the official configurations.
We additionally completed denoising training using a complex time-frequency
mask (TFMask) network [32] and specifically referred to the configurations in
[16]. Leveraging the Asteroid platform [55], the dereverberation module ap-
plied Conv-TasNet [39] as the backbone, following its original configurations.
We utilized Parallel WaveGAN (PWG) neural vocoders [84] to reconstruct
the waveforms of the EL2SP outputs, while the PSD was synthesized directly
from the VITS TTS models. Two speaker-dependent PWGs were trained
from scratch, each corresponding to the target normal speech of Patient 1
and Patient 2, respectively.
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4.1.3 Evaluation Metrics

1) Objective evaluation: We employed the following two objective evaluations
for measuring different aspects of the evaluated EL2SP systems.

• MCD: The Mel cepstrum distortion (MCD, in dB) was used to measure
the spectral distortions between the ground-truth target samples and
the converted samples. This measurement, which can be viewed as an
intrusive, L2-norm-based metric, is expressed as

MCD[dB] = 10

ln 10
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mensional coefficients of the target and converted MCEPs, respectively.
A general assessment of quality performance can be verified on the ba-
sis of the MCD value, where a lower value indicates a higher quality of
converted speech with less distortion.

• CER: We assessed the intelligibility accuracy and character consistency
of converted samples using the character error rate (CER, in %). This
metric, following a non-intrusive measurement, is calculated with an
ASR engine trained as in [75].

In this study, we also explored the performance of the systems that use
extra SE methods. Hence, we applied the scale-invariant signal-to-distortion
ratio (SI-SDR, in dB) [36] and short-time objective intelligibility (STOI) [65]
to evaluate the processed speech within the SE modules.

• SI-SDR: SI-SDR was used to assess the quality of audio signals indepen-
dent of their scale. It measures the energy ratio between the original and
the distortion components of the processed signal after scale alignment.
A higher SI-SDR value indicates lower distortion and higher signal fi-
delity.

• STOI: STOI measures the intelligibility of speech signals. It assesses the
similarity between the temporal envelopes of the original and processed
speech by correlating short-time segments from both. The metric yields
a value between 0 and 1, with a higher value representing enhanced
intelligibility.

2) Subjective evaluation: Two subjective tests were carried out to evaluate
the perceptual performance of the EL2SP systems on the generated speech.
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• MOS test: An opinion test to assess naturalness was conducted in terms
of the mean opinion score (MOS). During the test, listeners were asked
to rate the naturalness of each given speech sample in a one-to-five scale
(5-Excellent, 4-Good, 3-Fair, 2-Poor, or 1-Bad).

• SIM test: During the speaker similarity (SIM) test, listeners were pre-
sented with pairs of speech samples at the same time, one from normal
target speech and one from test speech. Listeners were asked to judge
whether they were spoken by the same speaker or not, by choosing one of
four given levels: Definitely the same, Maybe the same, Maybe different,
Definitely different.

Six randomly converted samples of clean and noisy-reverberant EL input
from Models 1, 2, and 3, and Baseline 1 were chosen for each listener. Fifteen
Japanese native speakers were recruited. Audio samples are available online1.

4.2 Experimental Results and Analysis

4.2.1 Objective Evaluation Results

1) Comparison with seq2seq baselines: We compare all the proposed systems
with the baselines trained on clean data, during which we simulate different
acoustic properties on the EL test set to obtain conversion results under var-
ious interfered conditions. The results for Patient 1 dataset are documented
in Tables 2, 3, and 4. Additionally, we conduct experiments on Patient 2
dataset, using the same set of representative interfered test conditions as in
Table 2. The corresponding results are presented in Table 5. Models 2 and 3
include results from both the first- and second-stage fine-tuning, whereas only
the second-stage fine-tuning results are shown for Model 4. We caution that
Models 3 and 4 share the same first-stage fine-tuning. Thus, for conciseness,
the first-stage results of Model 4 are omitted from these tables.

We first examine the results for Patient 1 dataset. Significant advance-
ments in the proposed systems over the baselines across all the interfered
conditions are readily apparent in Tables 2, 3, and 4. In addition to this,
when looking at Table 2, an interesting finding is noted under the metrics for
converting clean EL speech. Here, owing to the use of low-quality PSD for
training as well [43], Baseline 2 outperforms Model 1, with 6.15 versus (vs.)
6.44 in MCD, and 32.1 vs. 39.2 in CER. However, Models 2, 3, and 4 ex-
cel over Baseline 2, despite essentially leveraging the same volumes of speech
data. Moreover, there is a consistent improvement observed from Models 1 to
4. We expect that incorporating a broader range of interferences into the EL
SD will assist the model in learning more robust and discriminative features.

1https://silenticymoon.github.io/APSIPA-demo/

https://silenticymoon.github.io/APSIPA-demo/
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Table 2: Objective evaluation results based on Patient 1 dataset, where the inputs are
clean, noisy (N), reverberant (R), and noisy-reverberant (NR) EL conditions. Stage I and
Stage II represent the first- and second-stage fine-tuning conducted for Models 2, 3, and 4,
respectively.

Systems Clean EL NR-EL N-EL R-EL
MCD / CER MCD / CER MCD / CER MCD / CER

Model 1 – 6.44 / 39.2 7.11 / 55.9 7.08 / 54.3 6.82 / 42.3

Model 2 Stage I 5.89 / 29.3 6.33 / 38.4 6.00 / 33.0 6.06 / 30.9
Stage II 5.71 / 27.0 6.09 / 36.7 5.83 / 32.5 5.88 / 27.1

Model 3 Stage I 5.80 / 27.8 6.30 / 37.4 6.10 / 33.3 5.93 / 30.2
Stage II 5.69 / 24.5 6.06 / 35.9 5.89 / 33.0 5.78 / 27.0

Model 4 Stage II 5.61 / 25.3 6.02 / 34.6 5.82 / 32.8 5.74 / 27.9
Baseline 1 – 6.71 / 41.4 8.81 / 77.7 8.19 / 64.6 7.66 / 63.0
Baseline 2 – 6.15 / 32.1 11.29 / 86.9 10.11 / 69.1 9.60 / 70.5

Table 3: Objective evaluation results based on Patient 1 dataset, when the EL input is
noisy-reverberant with the fixed SNRs (−5, 2, 12, and 22 dB).

Systems SNR: −5 SNR: 2 SNR: 12 SNR: 22
MCD / CER MCD / CER MCD / CER MCD / CER

Model 1 – 8.70 / 73.2 7.59 / 63.7 6.82 / 46.5 6.63 / 47.1

Model 2 Stage I 7.65 / 64.1 6.35 / 39.2 6.06 / 33.0 6.03 / 31.1
Stage II 7.56 / 58.4 6.24 / 39.4 6.00 / 32.9 5.90 / 29.2

Model 3 Stage I 7.58 / 58.3 6.41 / 38.2 6.05 / 30.6 6.03 / 29.9
Stage II 7.43 / 56.9 6.20 / 39.1 5.87 / 30.5 5.79 / 27.7

Model 4 Stage II 7.42 / 56.4 6.15 / 37.8 5.80 / 31.5 5.75 / 27.8
Baseline 1 – 11.04 / 74.4 10.29 / 75.8 8.76 / 83.9 7.98 / 63.7
Baseline 2 – 11.43 / 87.1 12.05 / 89.6 11.25 / 84.8 9.94 / 81.5

Table 4: Objective evaluation results based on Patient 1 dataset, when the EL input is
noisy-reverberant with the fixed T60s (1.0, 0.80, 0.40, and 0.20 seconds).

Systems T60: 1.0 T60: 0.80 T60: 0.40 T60: 0.20
MCD / CER MCD / CER MCD / CER MCD / CER

Model 1 – 7.79 / 62.4 7.22 / 56.6 7.30 / 53.0 6.97 / 52.6

Model 2 Stage I 6.75 / 47.7 6.15 / 38.5 6.05 / 35.7 5.99 / 30.8
Stage II 6.75 / 45.2 6.07 / 36.6 5.94 / 34.3 5.81 / 30.6

Model 3 Stage I 6.59 / 46.3 6.10 / 35.3 6.18 / 32.9 5.98 / 29.5
Stage II 6.45 / 45.0 6.04 / 34.2 5.93 / 35.5 5.76 / 30.3

Model 4 Stage II 6.37 / 46.2 6.01 / 34.8 5.92 / 35.4 5.74 / 29.2
Baseline 1 – 9.71 / 73.6 9.52 / 78.5 8.63 / 66.0 8.03 / 61.3
Baseline 2 – 12.00 / 84.3 11.45 / 83.9 11.17 / 81.7 9.91 / 71.0

These are beneficial for identifying linguistic information and thus enhancing
the conversion of clean EL inputs. Conversely, Baseline 2 performs worse than
Baseline 1 under the interfered input conditions. We argue that using low-
quality PSD reduces the generalizability of the system to real-world scenarios
if there are significantly large environmental mismatches.

We subsequently examine the conversion results of tests under interfered
EL input conditions shown in Tables 2, 3, and 4. On this broader evaluation
suite, the benefits of our proposed method are clearer, as consistent improve-
ments can be observed from Models 1 to 4. Among the models shown in the
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Table 5: Objective evaluation results based on Patient 2 dataset, where the test inputs are
clean, noisy (N), reverberant (R), and noisy-reverberant (NR).

Systems Clean EL NR-EL N-EL R-EL
MCD / CER MCD / CER MCD / CER MCD / CER

Model 1 – 7.36 / 47.1 7.77 / 54.0 7.71 / 52.7 7.68 / 52.4

Model 2 Stage I 6.19 / 32.2 6.60 / 40.0 6.51 / 37.7 6.41 / 36.9
Stage II 6.14 / 31.3 6.50 / 38.0 6.28 / 35.0 6.25 / 37.1

Model 3 Stage I 6.09 / 30.9 6.56 / 38.7 6.25 / 36.1 6.30 / 33.7
Stage II 6.06 / 30.8 6.51 / 36.7 6.25 / 34.2 6.24 / 32.8

Model 4 Stage II 6.02 / 30.0 6.43 / 35.9 6.25 / 34.0 6.19 / 32.0
Baseline 1 – 7.42 / 48.6 9.29 / 74.0 9.01 / 73.0 8.07 / 55.9
Baseline 2 – 6.45 / 34.7 8.96 / 92.3 8.31 / 87.3 7.82 / 57.2

tables, Model 4 shows the highest performance in 17 out of the total 22 re-
sults (covering MCD and CER metrics) across all eleven conditions, whereas
Model 3 mainly takes the second place. This reinforces the effectiveness of
using diverse types of processed EL SD during two-stage fine-tuning to trans-
fer the adaptation knowledge of real-world scenarios. Furthermore, among
Models 2, 3, and 4, the second-stage fine-tuning mainly optimizes the results
of the first stage, where MCD has a clearer optimization than CER (e.g., for
“NR-EL” in Table 2, MCD / CER decrease from 6.33 / 38.4 to 6.09 / 36.7 for
Model 2, and from 6.30 / 37.4 to 6.06 / 35.9 and 6.02 / 34.6 for Models 3 and
4, respectively). We are aware that, although the first-stage fine-tuning pro-
motes recognizing and eliminating non-speech information for the converted
speech, it still needs to contend with the misinformation contained in large-
scale, low-quality SD, which would compromise the speech quality. Then, the
second-stage fine-tuning makes the negative impact of SD negligible, conse-
quently maximizing the advantages of the first-stage fine-tuning.

Next, we focus on evaluating the overall results of Models 2, 3, and 4 in the
three tables. Generally, Model 3 outperforms Model 2 more often than not for
each fine-tuning stage, whereas Model 4 advances further than Model 3. From
the results in “N-EL” and “R-EL” categories in Table 2, the performances of
these three reveal consistent improvements compared with those under the
noisy-reverberant condition, and nearly match the performance under the
clean EL condition. Tables 3 and 4 show a similar trend. Although Models 2,
3, and 4 show degradations in performance when converting noisy-reverberant
EL data with stronger noise or reverberation, i.e., at an out-of-range SNR
at −5 dB, or a T60 of 1.0 second, they are still significantly better than
Model 1 and other baselines. Moreover, the conversion performances gradually
improve and reach their best as the noise/reverberation intensity decreases,
as indicated by the results at a higher SNR or lower T60 in Tables 3 and 4.
The above findings indicate that our methods perform reasonably well under
a wide range of interfered conditions and adapt particularly well to a single-
interference condition or a noisy-reverberant condition with relatively mild
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noise/reverberation effects. On the other hand, we notice that the overall
results of Models 2, 3, and 4 are mainly better in the “R-NL” category than
in the “N-EL” category in Table 2, suggesting that noise more detrimentally
impacts EL2SP performance than reverberation. As the reverberation tends
to stretch the length of EL speech, our models, thanks to leveraging the
seq2seq framework, are more specialized in handling the issue, whereas noise
complicates the speech mapping more directly. Taken together, employing
interfered data, which encompasses a broad range of T60s and SNRs, coupled
with the effective many-to-one training techniques, enables our methods to
recognize varying intensities of reverberation and noise, thereby enhancing
their robustness in real-world scenarios.

Furthermore, we examine the results for Patient 2 dataset in Table 5. Base-
line 2 exhibits better MCDs for interfered conditions than Baseline 1, which
differs from the observations in Patient 1 dataset. We attribute this to the
larger size of the original EL data in Patient 2 dataset, which results in higher-
quality interfered EL SD and, consequently, improved converted speech qual-
ity. However, the higher CERs of Baseline 2 still indicate that imperfections in
SD introduce environmental mismatches, negatively impacting real-world con-
version intelligibility. More crucially, the findings for proposed systems align
closely with those from Patient 1 dataset (Table 2): (1) Across all test condi-
tions, the proposed systems significantly outperform the baseline systems and
handle interfered conditions well. (2) Incorporating SD with two-stage fine-
tuning leads to continuous improvements in system performance, ultimately
yielding the best-performing model. (3) Comparing different proposed mod-
els, we find that during the two-stage fine-tuning, introducing augmented data
with more fine-grained interference properties can further enhance model per-
formance, making Model 4 the optimal system. By and large, these findings
further verify the generalizability and robustness of our methodology across
different EL2SP scenarios.

2) Comparison with seq2seq baselines using extra SE modules: Given that
the noisy-reverberant condition represents the most severe challenge, we lever-
age Patient 1 dataset to provide a detailed summary and analysis of the per-
formance differences among Baseline 1 and the baselines using SE modules
under this condition, as shown in Table 6. Also, as shown in Table 7, we carry
out experiments similar to those outlined in [10] to thoroughly show the per-
formances of all SE methods used by quantitatively comparing the processed
EL data with the initial noisy-reverberant EL inputs in terms of SI-SDR and
STOI metrics.

Note that, compared with the lower bound, E-pt presents more negative re-
sults in Table 7. The quality of the processed speech continues to deteriorate
after undergoing both denoising and dereverberation processes. This indi-
cates that the two SE models in E-pt based on normal training data are not
generalizable to noisy-reverberant EL inputs. This inadaptability inevitably
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Table 6: Comparison results of baseline systems using SE training methods when the EL
input from Patient 1 dataset is noisy-reverberant. Baseline 1 represents a lower bound.

Baseline systems NR-EL
MCD / CER

Baseline 1 8.81 / 77.7
E-pt-Base1 9.32 / 74.1
E-ft-Base1 7.95 / 58.7

E-ft-c-Base1 7.70 / 58.6
E-ft-j-Base1 7.61 / 58.3

E-ft-c-d-Base1 7.00 / 50.1
E-ft-j-d-Base1 6.91 / 49.5
E-ft-j-d-Base2 6.34 / 38.8

E-2ft-j-d-Base2 6.25 / 36.9

Table 7: Evaluation results of the modules based on different SE methods, according to
the comparison between processed and clean EL data from Patient 1 dataset. The final
processed data from noisy-reverberant (NR) input after both denoising (dn) and derever-
beration (dr) is evaluated. Specifically, the intermediate denoised data, processed by E-pt,
E-ft, and E-ft-c is also evaluated. The comparison result between NR inputs and the corre-
sponding clean speech is used as a lower bound.

SE modules Comparison Evaluation metrics
SI-SDR STOI

NR vs. clean 2.08 0.62

E-pt dn-NR vs. clean 2.12 0.59
dn-dr-NR vs. clean 1.45 0.57

E-ft dn-NR vs. clean 4.42 0.69
dn-dr-NR vs. clean 6.65 0.70

E-ft-c dn-NR vs. clean 4.42 0.70
dn-dr-NR vs. clean 10.09 0.72

E-ft-j dn-dr-NR vs. clean 10.25 0.73
E-2ft-j dn-dr-NR vs. clean 10.86 0.73

leads to accumulated errors during enhancement processing. Conversely, E-ft
and E-ft-c, both fine-tuned using additionally interfered EL SD, demonstrate
improved performance compared with the lower bound, suggesting that even
using imperfect SD also aids SE training. E-ft-j exhibits a further enhanced
performance for both SI-SDR and STOI, which demonstrate the effectiveness
of the joint training we proposed. Furthermore, E-2ft-j, which extends E-ft-j
through two-stage fine-tuning, achieves the SOTA performance among all SE
methods, with SI-SDR and STOI scores of 10.86 and 0.73, further verifying
that the two-stage fine-tuning strategy is effective not only for VC but also
for SE training.

In Table 6, the poor SE effect of E-pt also affects the conversion results of
E-pt-Base1, rendering it even worse than those of Baseline 1. In addition, all
systems based on Baseline 1, namely, E-pt-Base1, E-ft-Base1, E-ft-c-Base1,
and E-ft-j-Base1, exhibit a progressive optimization trend consistent with the
performance of the SE methods documented in Table 7, reflecting their intrin-
sic reliance on the performance of SE modules. However, the improvement of
these systems remains limited owing to the fact that Baseline 1 cannot adapt
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to the processed inputs. In contrast, through the training with processed
data, E-ft-c-d-Base1 and E-ft-j-d-Base1 handle this issue effectively. When
compared with the proposed models (see “NR-EL” results in Table 2), both
unsurprisingly achieve better performance than Model 1 in terms of MCD
and CER. Surprisingly, although E-ft-j-d-Base2 is further improved by addi-
tionally using processed EL SD with the same speech volume as Models 2, 3,
and 4, it reaches the equivalent performance as the first-stage fine-tuning of
Model 2 (6.34 vs. 6.33 in MCD, and 38.8 vs. 38.4 in CER), and still clearly
underperforms the second-stage fine-tuning of Models 2, 3, and 4. Further-
more, thanks to the SOTA SE framework, E-2ft-j-d-Base2 further enhances
performance, achieving MCD and CER of 6.25 and 36.9, respectively. How-
ever, it still falls short compared to the second-stage fine-tuning of Models 2,
3, and 4.

To further validate the effectiveness of joint-framework-based SE modules,
we also used Patient 2 dataset to develop E-ft-j and E-2ft-j. Similarly, we com-
pared the baselines extended with these SE modules, namely E-ft-j-d-Base2
and E-2ft-j-d-Base2. The experimental results are documented in Tables 8
and 9. The findings are aligned with those in Tables 7 and 6, reinforcing the
effectiveness of the joint framework and the two-stage fine-tuning approach.

Table 8: Evaluation results of E-ft-j and E-2ft-j, according to the comparison between
processed and clean EL data from Patient 2 dataset. The result between NR inputs and
the corresponding clean speech is used as a lower bound.

SE modules Comparison Evaluation metrics
SI-SDR STOI

NR vs. clean -0.32 0.69
E-ft-j dn-dr-NR vs. clean 10.01 0.86

E-2ft-j dn-dr-NR vs. clean 10.10 0.87

Table 9: Comparison results of baseline systems using SE training methods when the EL
input from Patient 2 dataset is noisy-reverberant. Baseline 1 represents a lower bound.

Baseline systems NR-EL
MCD / CER

Baseline 1 9.29 / 74.0
E-ft-j-d-Base2 6.61 / 41.4

E-2ft-j-d-Base2 6.55 / 39.2

The overall comparative study makes the validity of our model clearer.
We enhance the seq2seq VC framework with more fine-grained interfered SD
that represents complex real-world scenarios, leveraging knowledge transfer
and error calibration achieved through two-stage fine-tuning. Consequently,
our model efficiently achieves SOTA performance, surpassing the widely used
frameworks that rely on extra SE modules.
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4.2.2 Subjective Evaluation Results

Figure 5 depicts the MOS and SIM results, incorporating eleven types of
speech mixed into the respective test set based on Patient 1 dataset. Both
metrics exhibit a smooth optimization trend in the tasks of converting clean
and noisy-reverberant EL speech. Consistent with the results of objective
evaluations, the proposed systems significantly outperform Baseline 1, with a
progressive enhancement from Models 1 to 3. Particularly in noisy-reverberant
EL2SP, Models 2 and 3 reveal the closer speaker similarity and naturalness
to the target compared with Model 1, underscoring the effective robustness
achieved through the two-stage fine-tuning with interfered SD. Moreover, the
edge of Model 3 over Model 2 confirms the benefits of utilizing a broader range
of interfered data. On the other hand, the narrow distinctions between these
two can be attributed to their utilization of noise and reverberation across
varied levels, facilitating robust adaptation to intricate real-world scenarios.
It is surprising to see Models 2 and 3 yield results under the noisy-reverberant
condition comparable in naturalness and speaker similarity to those under the
clean condition. This showcases the superiority of our models in converting
more natural speech with a closer speaker identity to the target under the
noisy-reverberant condition.

4.2.3 Visualizations of the Hidden Representation Spaces

Since our technique is expected to assist the model’s encoder in filtering out
interferences and extracting speech-related knowledge, particularly linguistic
representations, we provide visual evidence by conducting uniform manifold
projections [46] to further demonstrate this. Leveraging Patient 1 dataset, we
specifically analyze Models 1, 2, and 3, and use the results of Baseline 1 as a
lower bound. Hidden representations of the test sets are extracted from the
trained encoders of these systems. These representations are then visualized
at utterance and phoneme levels, as shown in Figures 6 and 7, respectively.
Note that we assess the encoding results under four conditions, namely, clean,
noisy, reverberant, and noisy-reverberant.

1) Utterance-level visualization: Besides the impact of environmental in-
terferences on encoding effects, the difference in linguistic content across utter-
ances is the critical variable, affecting utterance-level representations. In this
context, we find that Baseline 1 presents a relatively clear clustering effect for
clean EL inputs, but the hidden representation space for interfered EL inputs
exhibits poor discriminability. This suggests that Baseline 1 cannot adapt to
the interfered scenarios.

Models 1, 2, and 3 show the roughly similar representation spaces, yet
there are notable differences that warrant further analysis. Compared with
Baseline 1, Model 1 shows better clustering. It is not difficult to infer that,
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Figure 5: MOS (upper) and SIM (lower) results with 95% confidence interval under clean (C)
and noisy-reverberant (NR) conditions, where B.1, M.1, M.2, and M.3 denote the outputs
of Baseline 1, Model 1, and the second-stage outputs of Models 2 and 3, respectively. Clean,
noisy-reverberant EL, and target normal speech are also used as the lower and upper bounds,
denoted as C-EL, NR-EL, and C-SP, respectively.

as interferences are eliminated during encoding, speech with the identical lin-
guistic content tends to cluster closely. Nevertheless, some areas of the hidden
representation space still show weak separation performance, indicating that
Model 1 struggles to effectively differentiate between features of different sen-
tences owing to its performance limitations and the impact of interferences.
Conversely, Models 2 and 3 exhibit more effective clustering. Both of them
not only achieve more compact clustering for the same utterance contents
but also form well-separated clusters for different utterance contents. These
observations closely match our expectation, demonstrating the effectiveness
and potential of our method based on the seq2seq architecture.
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clean noisy reverb nr

(a) Baseline 1 (b) Model 1

(c) Model 2 (d) Model 3

Figure 6: Visualizations of utterance-level hidden representations extracted from Baseline 1,
Model 1, and the second-stage fine-tuning of Models 2 and 3. Each utterance’s frame-wise
mean from the latent space is represented as a single dot, and different colors correspond
to different conditions. “nr” in labels represents noisy-reverberant.

2) Phoneme-level visualization: Since in this study, we utilize Japanese
dataset, we color the five most common Japanese vowel phonemes and their
corresponding hidden representations to simplify the plots. As shown in Fig-
ure 7, the phoneme level provides more microscopic and explicit visualization
effects than the utterance level. Note that, in each figure, the color of the
points indicates the phoneme type, and the shape indicates the environmen-
tal condition. Theoretically, an effective representation should clearly cluster
the same phonemes regardless of environmental conditions.

In Baseline 1, the five phoneme representations from the clean condition
are relatively discretized. However, across all conditions, there is considerable
overlap among different representations, suggesting that Baseline 1 does not
distinctly differentiate phoneme features. Model 1 shows a clearer distribu-
tion of the same phonemes, yet overlaps still persist, albeit slightly improved
from Baseline 1. Model 2 further exhibits a stronger degree of clustering
effect, although the minor overlap reflects the difficulties in distinguishing
phonemes with similar pronunciation mechanisms due to interferences (e.g.,
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clean_a clean_i clean_u clean_e clean_o noisy_a noisy_i noisy_u noisy_e noisy_o
reverb_a reverb_i reverb_u reverb_e reverb_o nr_a nr_i nr_u nr_e nr_o

(a) Baseline 1 (b) Model 1

(c) Model 2 (d) Model 3

Figure 7: Visualizations of phoneme-level hidden representations extracted from Baseline
1, Model 1, and the second-stage fine-tuning of Models 2 and 3. The representations of the
five Japanese vowels, “a”, “i”, “u”, “e”, and “o”, are plotted. In total, 20 types of phoneme
representations are visualized (5 phonemes × 4 environmental conditions), distinguished by
the colors and shapes of the dots. “nr” in labels represents noisy-reverberant.

the phonemes “a” in reverberant speech and “e” in noisy-reverberant speech).
Looking at Model 3, we find that the visualization of some phoneme represen-
tations, such as the phonemes “a” and “u”, show a high degree of cluster pu-
rity, indicating the effective filtration of interferences and enhanced phoneme
recognition. In addition, Model 3 ensures that the same phoneme types under
different conditions cluster closely, and the overlaps between various phoneme
representations are almost negligible. It demonstrates the clear delineation
and robust grouping for the phonetic features of EL inputs across environ-
mental variations. However, note that Models 2 and 3 do not consistently
conform to the above theoretical assumption, in that a number of the same
phoneme representations do not form compact clusters owing to the different
acoustic properties between interfered and clean EL speech. This also reflects
the performance difference of our models when converting interfered input
compared with clean input.
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Overall, although capturing subtleties between phonemes poses a greater
challenge than utterance-level representations, the notable improvement from
Models 1 to 3 underscores the efficacy of our method.

5 Discussion and Conclusion

In this study, we developed and evaluated the training strategy in a seq2seq
framework to address two critical issues for the EL2SP task: (1) the prac-
tically low-resource EL2SP data available, and (2) the lack of adaptation
to real-world interfered conditions. This work was based on interpreting en-
coding mechanism of seq2seq VC and the transfer learning. Aside from a
pretraining process that leverages the attention and the speech decoder from
a normal TTS model, we developed a unified, two-stage fine-tuning technique
to address both problems simultaneously. During this process, we tackled the
minimal-resource data by incorporating readily available, low-quality PSD.
More crucially, by injecting fine-grained interferences into EL SD as the ad-
ditional training materials to construct many-to-one mappings, we improved
model’s generalization to real-world scenarios. Moreover, the two-stage fine-
tuning not only inherits beneficial information, but also diminishes the nega-
tive impact of SD, thus achieving optimal performance.

On the basis of the flexibility of our training framework, we designed sev-
eral systems at different levels. Experimental results demonstrate that our
systems outperform the baseline systems trained on clean data in the EL2SP
task under different test conditions. Furthermore, we systematically compared
our method with mainstream methods using external SE modules. Although
the performance of these baseline systems can be continuously improved by op-
timizing the SE architectures, the SOTA system in our approach still prevails
in direct comparisons.

In addition to outperforming the baselines, another advantage of our method
manifests in its simpler architecture. Adding new modules or architectures of-
ten increases complexity and separately handles interference elimination and
conversion. Such approaches depend on the performance of these modules,
whose networks require considerable training data. The above factors pose
difficulties for actualization in practical scenarios. In contrast, our methods
rely solely on a single seq2seq architecture. Moreover, the proposed fine-tuning
method using SD is efficient and easily applicable in real-world environments.

We hope that our research provides a relatively fresh perspective for re-
searchers, promoting cost-effective training approaches based on advanced
model architectures that enhance adaptation to downstream tasks with lim-
ited resources, and the capability to disentangle non-essential knowledge. At
present, the performance of our method under severe interferences still leaves
room for much improvement compared with its performance under the clean
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condition. In addition, continuing to investigate the potential of seq2seq tech-
niques, optimizing our method, and expanding its applicability domain will
be our other research directions in the future, which specifically contain the
following aspects:

• We plan to enhance the generalizability of our method, including (1)
Expanding our dataset to include more EL speakers to develop a multi-
speaker EL2SP system. (2) Bridging our method to real-world applica-
tions by optimizing and deploying the proposed models with lower la-
tency on mobile platforms, such as smartphones and iPads. This would
facilitate more accessible speech conversion for laryngectomees.

• Integrating multimodal features to improve semantic integrity and speech
quality is another promising direction. For instance, textual and vi-
sual modalities offer clearer linguistic and contextual cues than speech
alone, potentially enhancing conversion quality in real-world environ-
ments. Therefore, we also plan to develop an multimodal EL2SP dataset.
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