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ABSTRACT
Voice conversion (VC) in a noisy-to-noisy (N2N) scenario aims to
convert the speaker identity of noisy speech to a target speaker
while preserving both the linguistic content and background noise.
In our previous work, we proposed an N2N framework for this con-
version. Notably, our VC approach relies solely on noisy speech
data for training without requiring clean speech data from either
the source or target speakers. Additionally, the framework enables
the retention or removal of the noise component in the converted
speech during conversion. However, significant performance degra-
dation was observed in the N2N framework when certain noisy
conditions were present in the training data. In this paper, we fur-
ther investigate adverse noisy conditions affecting our framework’s
performance. We identify two key factors contributing to perfor-
mance degradation: the lack of noise diversity leading to feature
entanglement and noise bias during training. To address these
issues, we introduce a mutual information approximation and a
noise dropout strategy into the N2N framework. Objective and
subjective evaluations validate the effectiveness of our approach

∗Corresponding author: xie.chao@g.sp.m.is.nagoya-u.ac.jp.
Acknowledgements: This work was partly supported by JST CREST JPMJCR19A3 and
JST AIP Acceleration Research JPMJCR25U5, Japan.

Received 13 February 2025; revised 26 March 2025; accepted 02 May 2025
ISSN 2048-7703; DOI 10.1561/116.20250008
© 2025 C. Xie and T. Toda

http://creativecommons.org/licenses/by-nc/4.0/


2 Xie and Toda

in improving converted speech quality and mitigating VC perfor-
mance degradation under adverse noisy conditions.

Keywords: Voice conversion (VC), noisy-to-noisy VC, noisy speech modeling,
mutual information, noise dropout

1 Introduction

Voice conversion (VC) is a technique for converting non-/para-linguistic in-
formation of a source voice to a target one without changing its linguistic
content. VC has been studied for several decades, evolving from early sta-
tistical methods to deep learning-based approaches. Recent achievements in
VC research have led to various applications, such as noise-robust VC [54, 2,
38, 7], movie dubbing [14, 9], and singing voice conversion [31, 51, 21, 67].
However, these new applications necessitate additional requirements because
the usage scenarios differ from experimental ones. For instance, both training
and test speech data are relatively clean and high-quality in experimental en-
vironments, whereas the test data in real-world scenarios are often corrupted
with various kinds of noise. Besides, as deep learning-based VC techniques
are data-driven, Web-crawled speech data are also an important resource for
training, although they often contain undesired background noise extremely
degrading the performance of the VC model in terms of speech naturalness
and similarity.

Although background noise is often treated as interference in many studies,
it can also be valuable in certain tasks to be preserved. For example, in movie
dubbing and singing voice conversion, background sound and accompaniment
are typically removed beforehand to ensure the quality of the vocal conver-
sion, but they should be retained during inference. Furthermore, recent VC
techniques have been employed for data augmentation in downstream tasks,
such as low-resource text-to-speech (TTS) [23, 57, 46], automatic speech recog-
nition (ASR) [52, 48, 62], and speaker verification [50, 49, 43, 13, 17]. The
original speech datasets used in these tasks often contain inherent background
noise, which can enhance the models robustness and should therefore be re-
tained as a valuable training resource after conversion.

In our previous work [64], we proposed a noisy-to-noisy (N2N) VC frame-
work capable of converting the speaker identity of noisy speech while also
allowing control over the noise component. Notably, the VC model within
the N2N framework does not require clean speech data for training. However,
in our subsequent work [63], we observed significant degradation in VC per-
formance under specific noisy training conditions. We hypothesized that the
degradation was caused by the entanglement between speaker identity and
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noise conditions. Although a data augmentation method was proposed to
mitigate this issue, subjective evaluation results suggest that it is not suffi-
ciently effective. Moreover, how noise influences the modeling of noisy speech
remains unclear.

In this paper, we categorize noise conditions and conduct targeted exper-
iments to better analyze the causes of VC performance degradation and the
impact of noise on noisy speech modeling. Our findings reveal that the previ-
ous hypothesis about speaker-noise entanglement is inaccurate: Speech-noise
entanglement is the primary cause of VC performance degradation. To miti-
gate this entanglement, we use a mutual information (MI) approximation [5]
jointly trained with the VC model without requiring additional data. Further-
more, we identify noise bias in training as another major factor. To address
this, we apply noise dropout in training to reduce the models excessive focus
on noise reconstruction. Integrating the MI estimator and noise dropout into
the N2N framework mitigates VC performance degradation, as confirmed by
objective and subjective evaluations. The main contributions of this paper
are summarized as follows:

• We investigate the causes of VC performance degradation identified in
our previous work [63] and analyze the impact of noise on the modeling
of noisy speech. To this end, we segment the previously used noisy
training sets by noise categories and conduct separate experiments to
analyze the individual effects of each noise type on the VC model.

• Our experimental results indicate that the entanglement between speech
content and noise, along with noise bias during training, are the primary
contributing factors to the degradation of VC performance.

• To improve the speech naturalness and similarity of the N2N VC frame-
work, we introduce two methods: an MI approximation network to mit-
igate the entanglement issue and a noise dropout strategy to counter
noise bias.

• We conduct both subjective and objective experiments to evaluate the
effectiveness of our methods in improving VC performance. Additionally,
an ablation study is performed to highlight the individual contributions
of the MI estimator and noise dropout to the observed performance
gains.

2 Related Work

VC techniques have been extensively studied for decades, even before the ad-
vent of deep learning. Early approaches primarily relied on the statistical
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modeling of speech signals. Many proposed methods, such as exemplar-based
sparse representation [55], vector quantization (VQ) [1], and Gaussian mix-
ture modeling [53] have established the foundation for modern approaches.
With the emergence of deep learning, neural network-based methods have
continuously advanced the naturalness and similarity of synthesized speech
[69]. Numerous approaches have been the focus of recent VC studies, includ-
ing generative adversarial networks (GANs) [25, 26, 27, 28, 11], variational
autoencoders (VAEs) [15, 24, 47, 59, 66, 36], automatic speech recognition
(ASR) combined with text-to-speech (TTS) [30, 56, 22, 37, 40], and diffusion
probabilistic models [32, 42, 70, 6].

The rapid advancement of VC technology in recent years has also driven
efforts to apply it in real-world scenarios. These practical applications intro-
duce new challenges, such as addressing environmental interferences like noise.
However, compared to conventional VC which has been extensively studied,
research on noise-robust VC systems remains limited. Moreover, most existing
studies treat noise as an interference to be removed, with only a few focusing
on noise-robust VC approaches that preserve the background noise.

2.1 Noise-robust VC

Before the advent of deep learning, researchers had already explored noise-
robust VC. Takashima et al. [54] proposed a sparse-representation-based VC
method using non-negative matrix factorization to optimize source and target
basis matrices with a shared activity matrix. By representing both source
and noise components with separate dictionaries, the method isolates source
speech features effectively while minimizing noise interference.

With the advancements in deep learning, its application to complex tasks
has become increasingly prevalent, surpassing the performance of traditional
methods in most tasks, particularly in speech enhancement (SE). Conse-
quently, employing deep learning-based SE models for noise-robust VC is a
straightforward and practical way. Valentini-Botinhao et al. [60] proposed
a pioneer research on neural network-based TTS for noisy environments. A
recursive neural network (RNN)-based SE model is used as a preprocessing
stage to the TTS system to effectively remove noise before it is passed to the
TTS model. Similarly, Chan et al. [2] proposed a noise-robust VC framework
that incorporated a lightweight SE component ahead of the VC model to mit-
igate the effects of noise. Miao et al. [38] proposed a noise-robust VC method
that improved voice clarity by leveraging high-quefrency boosting through sub-
band cepstrum conversion and fusion. By separating the speech signal into
sub-bands and applying cepstrum-based conversion, this method selectively
boosts high-quefrency components, which are less affected by noise. Choi et
al. [7] proposed a cascading VC framework that employs two sequential SE
modules to address background noise and reverberation separately, enabling
independent control over both factors in the converted speech.
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Although using an SE model for noise preprocessing is straightforward, it
can introduce additional distortions to the denoised speech features. As a
result, several noise-robust approaches have been proposed that avoid relying
on SE models. Du et al. [12] adopted domain adversarial training (DAT) to
achieve noise-robust VC. Their approach builds on the zero-shot VC frame-
work AdaIN-VC [8], which is trained in a denoising manner: it takes both clean
and noisy data as input but predicts only the clean reconstructed output dur-
ing training. DAT is applied to the encoders to extract noise-invariant speaker
and content representations. Chen et al. [3] proposed a noise-robust VC by
conducting adversarial training to suppress noise components. Two noise de-
coupling discriminators are employed to extract noise-invariant content and
speaker identity representations. Huang et al. [19] combined denoising and
adversarial training to develop a generalized degradation-robust VC model.
The training dataset is augmented using the adversarial examples generated
by embedding attacks [20], along with degradations randomly selected from
background noise, reverberation, and band rejection. During training, the
VC model processes clean speech, speech with augmented distortions, and
adversarial examples, while the loss is computed based on the corresponding
clean speech. Xue et al. [33] proposed a noise-robust VC method based on
noise-controllable Glow-WaveGAN [10]. The training data is augmented by
superimposing noise onto clean speech to create paired clean and noisy sam-
ples. A robust feature extractor is then trained to obtain noise-independent
acoustic representations of speech, along with a vocoder incorporating addi-
tional embeddings to control the clean or noisy attributes of the generated
speech.

2.2 Noise-Robust VC with Background Noise Preservation

With the growing application of VC techniques to various tasks, such as speech
data augmentation and singing VC, there is a growing need to preserve infor-
mative background sounds as a resource. As a pioneering effort, Hsu et al.
[16] proposed a background noise-controllable VC method based on a TTS
model with data augmentation and adversarial factorization. The training
data is augmented by adding noise to clean speech while retaining the origi-
nal transcripts and speaker labels. A VAE model is jointly trained with the
TTS model to disentangle speaker identity and noise conditions from noisy
speech, with domain adversarial training further enhancing this factorization.
During inference, two latent factors representing speaker characteristics and
background noise are extracted and fed into the TTS model, enabling control
over the noise characteristics in the converted speech. However, the quality
of the generated noise remains poor, often resembling white noise.

In our primary work [65], we proposed an N2N baseline framework that
follows a cascading design involving SE and VC models. The SE model is
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pre-trained to extract the denoised speech as well as the background noise by
subtracting the denoised speech from a noisy speech in the time domain. The
VC model is then trained on the denoised speech. The separated noise can
be superimposed on the converted speech during inference. However, similar
to other approaches employing SE models, the use of an SE model introduces
additional distortion to the denoised speech, which subsequently degrades the
performance of the VC model trained to reconstruct this distorted data. Fur-
thermore, in our N2N task, a key constraint is the unavailability of clean
speech data for VC training, which restricts the methods that can be em-
ployed.

To address this limitation, in our subsequent work [64], we improved the
N2N framework by incorporating separated noise as an input to the VC model
during training, enabling the VC model to directly reconstruct noisy speech
that possesses full information on speech content, speaker identity, and back-
ground noise. Experimental results show that our improved method reduces
the performance gap between the original VC approach and its upper bound
by up to 60%.

Chen et al. [4] proposed a noise-robust VC framework that supports
noise preservation. The architecture is similar to the baseline of our pro-
posed method [65], consisting of a SE model for separation and a VC model.
The VC model is trained on denoised speech separated by the SE model, while
the noise component is excluded from the training process and is only used
during inference by being superimposed to the converted speech.

In another work [68], Yao et al. proposed a noise-robust VC method that
cascades a SE model and a VC model. The SE model is used to separate
speech and background noise from the noisy input. Unlike our proposed ap-
proach, which is limited to using only noisy speech data for VC training, Yao
et al. do not have this constraint, allowing the SE and VC models to be
jointly trained in a multi-task learning framework. Another key difference is
that, in their method, the separated noise is superimposed externally onto
the reconstructed clean speech to calculate the loss with respect to the noisy
speech. In contrast, our method directly inputs the noise into the decoder of
the VC model, enabling it to learn the reconstruction of the noisy waveform.

3 Analysis of N2N-VC Performance Degradation

In this section, we first introduce the previously proposed N2N method and
analyze its VC performance degradation under specific noisy conditions. To
identify the cause of this degradation, we conduct a series of experiments
based on noise categories to assess their individual impact on VC performance.
Finally, we conclude the causes of performance degradation based on objective
evaluation results.
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3.1 Proposed Noisy-to-Noisy VC Methods

Figure 1 (a) illustrates the original N2N framework from [65] that serves as the
baseline. The framework follows a cascaded design comprising off-the-shelf SE
and VC models. The SE model decomposes the noisy input into speech and
noise components, and the VC model is trained on denoised speech. Although
noise is excluded from training, it can be superimposed onto the converted
speech during conversion.

The SE model is implemented using the Deep Complex Convolution Re-
current Network (DCCRN) [18], which is a single-channel speech denoising
model. It is pre-trained on the DNS Challenge 2020 [45] dataset using scale-
dependent signal-to-distortion ratio (SD-SDR) loss [29], which offers perfor-
mance comparable to the scale-invariant signal-to-noise ratio (SI-SNR) loss
while retaining sensitivity to scaling variations in the estimated speech. This
work focuses exclusively on background noise, with reverberation modeling
reserved for future research.

Figure 1 (a) also illustrates the VC model architecture. It adopts a self-
supervised VQ-VAE approach proposed in [39], which enables non-parallel
conversion and end-to-end generation. The model comprises three main com-
ponents: a content encoder, a vector quantizer, and a decoder. The content
encoder is composed of a series of one-dimensional convolutional layers, batch
normalization layers, and ReLU activation functions, taking the Mel spectro-
gram of denoised speech d as input. The vector quantizer employs a learnable
codebook to map the encoder’s output to a discrete representation z by select-
ing the nearest vectors from the codebook. The decoder is a WaveRNN-based
vocoder [34], which generates the µ-law decoded d conditioned on z from the
quantizer, speaker code s, and the past samples in an autoregressive (AR)
manner. The behavior of the decoder can be characterized as a conditional
joint probability distribution:

p (d | s, z) =
T∏

t=1

p (dt | d1, . . . , dt−1, s, z) . (1)

Figure 1 (b) illustrates the improved N2N framework proposed in [64]. A
major enhancement is training the VC model to reconstruct the noisy speech
so that the distortion introduced by the SE model can be alleviated. To
facilitate noisy speech modeling, the separated noise is incorporated during
training as a conditioning input for the VC model’s decoder. As shown in
Figure 1(b), the decoder comprises two recurrent structures. The first gated
recurrent unit (GRU) extracts the global audio features based on z and s,
producing a coarse speaker-related representation c. The second GRU refines
c by capturing finer details to enhance synthesis precision. To ensure high-
quality noise synthesis, noise vectors derived from the µ-law decoded separated
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(a)

(b)

Figure 1: Overall workflow of the proposed N2N VC framework. (a) Baseline framework
[39]. (b) N2N framework [64].

noise n via an embedding layer are concatenated with c and fed into the second
GRU. On the basis of the baseline’s conditional joint probability distribution
in Equation (1), we modify the noise-conditioned version as follows:

p (y | n, s, z) =
T∏

t=1

p (yt | y1, . . . , yt−1, n1, . . . , nt, s, z)

s.t. y = d+ n.

(2)
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The VC model is trained by minimizing the loss:

LV C = − log p (y | z,n, s) + β∥E(d)− sg(e)∥2, (3)

where the first term represents the reconstruction loss, and the second term
corresponds to the commitment loss. E() denotes the encoder of the VC
model, sg() represents the stop-gradient operator in the vector quantizer, and
e is the nearest embedding of E(x) indexed from the codebook. β is the weight
for the commitment loss, which is set to 0.25 as in the original VQ-VAE [61].

3.2 Experimental Setup and VC Performance Degradation

In our previous works [64, 63], we used the VCC2018 dataset [35] as the clean
corpus, and ESC-50 [41] and DEMAND [58] as noise sources. The VCC2018
comprises 972 utterances in the training set and 420 utterances in the test set
from 12 speakers with a balanced gender distribution. Of these, eight speakers
were designated as sources, while the remaining four served as targets. The
ESC-50 dataset provides diverse noise types with 2,000 recordings spanning 50
categories. In contrast, the DEMAND dataset includes six noise categories,
further divided into 18 subcategories, while effectively representing diverse
real-world environments. Each subcategory contains a five-minute, 16-channel
recording, where we used channel 01 for all subcategories in our experiments.

Based on the characteristics of ESC-50 and DEMAND, we employed
two noise sampling strategies to construct the noisy datasets, referred to as
speaker-independent (SI) and speaker-dependent (SD), respectively.

In the SI strategy, for each utterance in VCC2018, we uniformly sampled
a noise clip from the noise dataset and a signal-to-noise ratio (SNR) level
between 0 and 20 dB to synthesize noisy speech. In contrast, in the SD
strategy, a noise category was first assigned to each speaker in VCC2018
to associate each speaker’s identity with a specific noise type. Then, each
utterance from a given speaker was mixed with a randomly sampled noise
clip from the assigned noise category at a fixed SNR of 5 dB. Considering the
differences in noise diversity between ESC-50 and DEMAND, we applied the
SI strategy to ESC-50 (denoted as E-SI) and the SD strategy to DEMAND
(denoted as D-SD). In the test set, noise clips from unseen E-SI categories
were sampled using the SI strategy and mixed with VCC2018 test utterances.

Figure 2 presents the Mel cepstral distortion (MCD) results for models
trained on E-SI and D-SD. N2N refers to the improved method with noise
conditioning illustrated in Figure 1 (b). The upper bound refers to the base-
line VC model trained on the clean VCC2018 dataset, representing the N2N’s
theoretical maximum performance. The red frame in Figure 2 highlights VC
performance degradation where N2N fails to surpass the baseline with the
D-SD training set. When trained on the E-SI training set, N2N significantly
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Figure 2: MCD results for methods trained on the E-SI and D-SD datasets. The red frame
highlights the performance degradation observed when N2N is trained on the D-SD training
set.

outperforms the baseline. However, when using the D-SD training set, noise
conditioning in N2N hinders the improvements in VC performance. The base-
line, trained solely on denoised speech, achieves an MCD of 9.09, whereas
noise-conditioned N2N achieves a subpar MCD of 9.49.

In our previous work [63], we attributed the observed performance degrada-
tion to speaker-noise entanglement. We reached this conclusion based on the
noise dataset characteristics and sampling strategy. The DEMAND dataset
has limited noise diversity comprising only 18 noise subcategories, each with
a single noise recording, while the D-SD dataset includes just 12 noise subcat-
egories. Moreover, the SD sampling strategy assigns each noise category to a
specific speaker and further exacerbates this lack of diversity. Together, these
factors lead to speaker-noise entanglement. Therefore, we proposed a noise
augmentation strategy [63] to enhance noise diversity. However, the improved
N2N method still remains inferior to the baseline.

3.3 Investigating the Causes of VC Performance Degradation

We conduct a series of experiments to identify key factors affecting VC per-
formance degradation. First, we evaluate the impact of the noise sampling
strategy, which is employed to establish speaker-noise entanglement. In the
previous experiment, SI and SD strategies were exclusively applied to ESC-50
and DEMAND. We expand the setup by applying the SI strategy on DE-
MAND and the SD strategy on ESC-50. Additionally, while earlier experi-
ments used denoised speech and separated noise for training and testing, we
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now use the original noisy dataset instead. In this setup, the noise-conditioned
VC model in N2N uses clean speech as input and conditions on raw noise to
reconstruct noisy speech. By removing the influence of the SE model on
the downstream VC task, the adjustment allows a more targeted analysis of
additional contributing factors.

Figure 3 illustrates the MCD results for models trained on noisy datasets
using SI and SD strategies. The upper bound remains the same as in the
previous case, representing the original VC model trained solely on clean
speech without noise conditioning, which serves as the theoretical performance
upper bound of the N2N framework. ESC-50 and DEMAND denote the noise
sources of the training data.

Figure 3: MCD results for models trained and tested on the original noisy datasets using
SI and SD noise sampling strategies.

In conclusion, SI or SD noise sampling strategies do not lead to VC per-
formance degradation when ESC-50 is used as the noise source. In particular,
the N2N framework trained on E-SI and E-SD achieves MCD scores of 7.86
and 7.83, respectively, approaching the upper bound of 7.85. In contrast,
significant performance degradation is observed with DEMAND as the noise
source, regardless of the noise sampling strategy. The N2N framework trained
on D-SD and D-SI achieves MCD scores of 8.02 and 8.20, respectively, both
exceeding the upper bound. These results suggest that the VC performance
degradation is attributed to the characteristics of the noise dataset rather than
speaker-noise entanglement introduced by the sampling strategy. Moreover,
the performance trends, where the N2N framework performs well when trained
on the E-SI dataset but experiences performance degradation when trained
on the D-SD dataset, are consistent with those shown in Figure 2, even when
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clean speech and raw noise are employed. This consistency indicates that the
SE model is not responsible for the observed performance degradation.

In Section 3.2, we discussed that the DEMAND dataset has limited diver-
sity in noise patterns. In contrast, the ESC-50 provides significantly greater
noise diversity. Although speaker-noise entanglement caused by the SD strat-
egy has been ruled out as a factor in performance degradation, DEMANDs
limited noise diversity may hinder the VC model generalization, potentially
contributing to other forms of feature entanglement. In our previous work
[63], we implemented a noise augmentation approach by sampling noise clips
from ESC-50 using the SI strategy to increase D-SD’s noise diversity. While
the augmentation alleviated the performance degradation to some extent, the
improvements were limited, and the N2N framework still underperformed com-
pared to the baseline. This suggests that, aside from the noise diversity issue,
other aspects of the noise dataset also affect the observed performance degra-
dation.

To further analyze the impact of noise on VC performance, we focus on
the E-SI dataset, which provides a wide variety of noise types. First, we
examine the distribution of noise categories in the E-SI dataset, as illustrated
in Figure 4. The horizontal axis denotes the noise types sampled from the ESC-
50 dataset to construct the E-SI training set, and the vertical axis shows the
number of sampled noise clips per category. Our analysis focuses on the impact
of the top 20 sampled noise categories highlighted in the red frame. Then, we
construct multiple noisy training sets for each noise category, applying two
distinct strategies to train the N2N framework:

• Multi-clip sampling: Multiple noise clips from the category are uni-
formly sampled and mixed with utterances from the VCC2018 training
set at an SNR of 5 dB.

• Single-clip sampling: A single noise clip is uniformly sampled from
the category. To provide sufficient data for training, the sampled clip
is temporally duplicated in the time domain to generate an extended
recording, from which a random segment is extracted to mix with utter-
ances at an SNR of 5 dB.

The test set remains consistent with previous experiments using E-SI set-
tings. Since using clean speech and raw noise clips results in relatively small
MCD differences across models, and the SE model does not influence the ob-
served VC performance degradation, we use the denoised speech as input and
separated noise as the conditioning signal during training and testing.

Figure 5 illustrates the MCD results for the baseline and the N2N frame-
work trained on a series of noisy training sets, each corresponding to a specific
noise category. Within each noise category, both multi-clip and single-clip
strategies were employed. Overall, within the same noise category, the N2N
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Figure 4: Noise distribution in the E-SI dataset sorted by the number of sampled noise
clips. The red frame highlights the 20 most sampled noise categories.

framework trained on datasets using the multi-clip strategy consistently out-
performs those using the single-clip one. Furthermore, performance degrada-
tion of the VC model is more prevalent in the single-clip group. These findings
highlight the importance of noise diversity in the training set to improve VC
performance. Even when the noise data comes exclusively from one noise cat-
egory, a lack of noise diversity can cause feature entanglements that degrade
VC performance.

As the single-clip strategy is overly restrictive and results in VC perfor-
mance degradation of the N2N framework across nearly all noise categories, as
shown in Figure 5 (b), we shift our focus to the experiments of the multi-clip
groups in Figure 5 (a). Although previous experiments demonstrated that
the N2N framework trained on the E-SI dataset does not exhibit performance
degradation compared to that trained on the D-SD dataset, certain noise cat-
egories from the ESC-50 dataset, such as rain, wind, hand saw, and others
still lead to varying degrees of performance degradation.

Initial observations of the results from the multi-clip groups indicate that
stationary noise types are more likely to contribute to VC performance degra-
dation. For example, the N2N framework experiences performance degrada-
tion when trained on rain and insects. The noises in rain exhibit broadband
noise with wide frequency coverage and evenly distributed energy, and the
noises in insects exhibit high-frequency dominance and consistently stable
temporal distribution. In contrast, the noises in can opening and crying baby
demonstrate dynamic and complex temporal properties, trained on which the
N2N framework outperforms the baseline. However, although the noises in
vacuum cleaner are wide-band and temporally stable, reflecting characteristics
of stationary noise, the N2N framework trained on vacuum cleaner achieves
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(a)

(b)

Figure 5: MCD results for the baseline and N2N trained on noisy datasets with individual
noise categories using different noise sampling strategies. The horizontal axis represents
the noise category involved in the training set. (a) Multi-clip noise sampling strategy. (b)
Single-clip noise sampling strategy.

an MCD of 9.03, surpassing the baseline score of 9.13. This suggests that
factors beyond stationarity possibly contribute to performance degradation.
However, quantifying and further analyzing these characteristics remains a
significant challenge.

Additionally, we also observe that the models loss function LV C in Equa-
tion 3 evaluates the reconstruction of noisy speech as a whole. The lack of an
additional loss term for speech reconstruction suggests that the model assigns
equal importance to speech and noise components during training. However,
when the noise component dominates the noisy speech or exhibits complex and
hard-to-learn patterns, the VC model may allocate more capacity to model-
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ing noise, potentially at the expense of the speech component. Therefore, we
realize that the difficulty in noise modeling could also impact VC performance.

Although SNR is a direct metric for quantifying noise interference in a
signal, it does not effectively reflect the level of noise dominance in our tasks.
As shown in Figure 5 (a), despite all noisy utterances having a consistent SNR
of 5 dB, datasets of some noise categories still cause performance degradation
to a certain extent. Therefore, we explored and computed three additional
metrics: MCD, PESQ, and STOI, to assess the degree of noise dominance.
Specifically, those metrics were calculated between the clean utterances and
their noisy counterparts from the noisy training sets in Figure 5 (a), E-SI,
and D-SD. A higher MCD value indicates greater noise dominance, whereas
higher PESQ and STOI scores suppose lower noise dominance.

Detailed results for these metrics can be found in Figure A.1 in the ap-
pendix. Here, MCDN denotes the MCD between the clean corpus and its
noisy counterpart in the training sets, and MCDV C denotes the MCD for the
converted samples produced by N2N framework. To demonstrate the relation-
ship between noise dominance and VC performance, we computed the Pearson
correlation coefficients between MCDN , PESQ, STOI, and MCDV C .

As presented in Figure 6, PESQ and STOI show relatively strong negative
correlations with MCDN , which is in our expectation that these metrics can
reflect the noise dominance of the noisy dataset to some extent. In the cases
of MCDV C , MCDN demonstrates the strongest correlation, PESQ shows a
moderate negative relation, and STOI exhibits only a weak negative relation.
This suggests that MCDN is more effective in explaining the relationship
between VC performance and the original speech distortion in training data,
i.e., the level of noise dominance. Overall, the correlation coefficients indicate
that when the level of noise dominance is high, the N2N framework performs
worse in speech conversion, because the noise-conditioned model tends to
focus more on modeling the noise component. As a result, we refer to this
phenomenon as noise bias.

4 Proposed Method

As discussed in Section 3.3, the primary factors contributing to the degrada-
tion in VC performance are the limited diversity of noise leading to feature
entanglements and noise bias during training. To address these issues, we use
a mutual information approximation for feature disentanglement and a noise
dropout to mitigate noise bias. Finally, these two approaches are integrated
into the N2N framework to enhance VC performance.
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Figure 6: Pearson correlation coefficient between MCDs, PESQ, and STOI.

4.1 Mutual Information Approximation

As one of the primary factors contributing to VC performance degradation, the
limited diversity of noise can lead to potential feature entanglement. However,
simply increasing noise diversity through noise augmentation is problematic,
as some noise types could further degrade VC performance, which is shown
in Figure 5 (a). Although Section 3.3 discusses metrics for evaluating noise
dominance, the threshold at which VC performance degrades in the N2N
framework remains unclear and hard to quantify. Consequently, we explore
an alternative approach to mitigate feature entanglement to avoid introducing
additional noise data.

Mutual information (MI) is a fundamental metric that is used to quantify
the dependency or shared information between two random variables. For-
mally, the MI between variables X and Y is defined as:

I(X;Y) = Ep(x,y)

[
log

p(x, y)

p(x)p(y)

]
, (4)

where p(x, y) is the joint probability distribution of X and Y, p(x) and p(y)
are the marginal probability distributions of X and Y, respectively.

However, directly computing MI is often intractable, because it involves
estimating the joint and marginal probability densities p(x, y) and p(x)p(y)
in high-dimensional spaces, which is a particularly hard task. To address this,
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Cheng et al. [5] proposed a variational contrastive log ratio upper bound
(vCLUB) to estimate an upper bound on MI using contrastive learning and a
reformulation of the log-ratio of probabilities. The vCLUB reformulates the
Equation 4 as:

IvCLUB(X;Y) = Ep(x,y) [log qθ(y | x)]
−Ep(x)p(y) [log qθ(y | x)] , (5)

where the variational distribution qθ(y | x) is the estimation to p(y | x) by an
approximation network with parameters θ.

In our task, we adopt vCLUB to estimate the upper bound of MI between
the coarse content representation c and the noise vectors nv to reduce their
dependency, as illustrated in Figure 7. The representation c is the output
of the first GRU, which encapsulates speaker identity and content vectors.
Meanwhile, nv is the continuous representation of the discrete noise input n
obtained through an affine transformation. Based on Equation 5, the unbiased
estimation for vCLUB between c and nv is given by:

IvCLUB(C;Nv) = Ep(c,nv) [log qθ(c | nv)]

−Ep(c)p(nv) [log qθ(c | nv)] . (6)

The variational approximation qθ(c | nv) is implemented with a simple neural
network consisting of a stack of CNNs and linear layers. During the training
process, approximation network is trained first to maximize the log-likelihood:

LMI = Ep(c,nv) [log qθ(c | nv)] . (7)

After the optimization of the approximation network, its parameters are fixed,
and the VC model is subsequently trained to minimize the total loss:

LTotal = LV C + λIvCLUB(C;Nv), (8)

where IvCLUB is the estimated upper bound of MI by the approximation
network, and λ represents the weight used to control the disentanglement
level and is set to 1e−3 in our experiments.

4.2 Noise Dropout Strategy

As discussed in Section 3.3, another key factor contributing to the degrada-
tion of VC performance is noise bias, which refers to the tendency of the
noise-conditioned VC model to focus excessively on reconstructing noise com-
ponents during training under specific noise categories. Consequently, the VC
model does not sufficiently capture speech features, which degrades the overall
quality of the reconstructed speech.
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Figure 7: Improved N2N framework with MI approximation network

One possible cause of this issue is that the VC model’s loss function LV C

in Equation 5 primarily focuses on reconstructing the noisy speech as a whole.
A straightforward solution is to introduce an additional loss term specifically
for the speech component reconstruction. However, clean speech data are
unavailable for the VC task in our setting, yet such loss functions typically
assume clean utterances as the target. In our previous work [63], we faced sim-
ilar constraints and suggested reducing reliance on denoised speech as ground
truth. Over-reliance on denoised speech compromises the benefits of the noise-
conditioned model, which leverages noisy speech as ground truth to alleviate
the distortions introduced by the SE model.

Inspired by the dropout mechanism in deep learning, we propose a noise
dropout strategy to mitigate noise bias. During training, the entire noise
signal is randomly replaced with a zero sequence with a certain probability.
This encourages the model to reconstruct the denoised speech serving as the
loss target, thus shifting the models focus back to the speech component.
As previously discussed, minimizing the use of denoised speech is preferable.
Therefore, the dropout rate is kept low to balance the trade-off effectively.
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5 Experimental Setup

5.1 Experimental Datasets and Training Details

We adopted the same training and testing configurations as described in the
previous work [63]. All audio data were sampled at a rate of 16 kHz.

The DNS Challenge 2020 dataset [44] was used to train the SE model
implemented as DCCRN, as mentioned in Section 3.1. This dataset contains
500 hours of multilingual speech from over 2,000 speakers and 70,000 noise
recordings spanning 150 categories. We uniformly sampled 10,000 clean ut-
terances and 8,000 noise clips for the validation set, while the remaining data
were used to construct the training set. Clean utterances and noise clips were
mixed at SNRs uniformly sampled between 0 and 20 dB. The SE model was
trained with the ADAM optimizer and an initial learning rate of 2e−4. The
learning rate was adaptively adjusted based on validation performance, using
a reduction factor of 0.5 and a patience parameter of 3 epochs. The SE model
converged after 55 epochs.

As our focus is mitigating VC performance degradation, we trained the
models on the D-SD datasets described in Section 3.2. The test set was con-
sistent with previous experiments, where noise clips from categories excluded
from the E-SI training set were sampled using the SI strategy and mixed with
the VCC 2018 test set. The VC models were trained using the ADAM op-
timizer, initialized with a learning rate of 2e−4. The training phase lasted
for 500k steps employing a step-based learning rate schedule. The learning
rate was halved at step 100k and step 200k to improve convergence. The MI
approximation network followed the same configuration as the VC models but
featured a different learning rate schedule, with the rate halved at 50k and
150k steps. The noise dropout rate is empirically determined as 10%.

5.2 Methods to be Evaluated

The experiments involved two frameworks referred to as the baseline and
N2N. The main difference between them is that the baseline employs the
conventional VC model trained on denoised speech data, while N2N uses the
noise-conditioned version trained with denoised speech as input and separated
noise as a condition to model noisy speech. To differentiate method variations,
we append the suffixes "MI" for mutual information approximation and "ND"
for noise dropout strategy during training. We adopt the naming convention:
TypeOfModel ProposedMethod. The objective evaluation was conducted as an
ablation study including the baseline, N2N, N2N MI, N2N ND, and N2N
NDMI, where N2N NDMI denotes the N2N framework incorporating both
noise dropout and MI approximation. Following the objective evaluation re-
sults, the baseline and N2N NDMI were further assessed in the subjective
evaluation.
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5.3 Evaluation Metrics

We conducted both objective and subjective evaluations to validate the effec-
tiveness of the proposed methods. Since our previous work has demonstrated
the consistently high quality of the noise component generation and this study
addresses speech component degradation, all noise-conditioned models gener-
ate the speech samples without background noise for evaluation.

For objective evaluation, we use three metrics: MCD, similarity score
(SIM), and word error rate (WER). SIM is calculated using an open-source
speaker verification method1 between the converted sample and its target
reference. WER is measured using a publicly available ASR model.2

For subjective evaluation, we conducted a preference test for natural-
ness and an XAB test for similarity. Based on the objective evaluation
results presented in Section 3.2, we investigate whether the combination of
our proposed methods could enhance the N2N framework to outperform the
baseline under conditions of performance degradation. Thus, we evaluated
two methods: Baseline and N2N NDMI. Four source speakers (VCC2SF3,
VCC2SF4, VCC2SM3, and VCC2SM4) and two target speakers (VCC2TF2
and VCC2TM2) were selected for evaluation. For each conversion pair, we
sampled four converted utterances, resulting in 32 utterances per model. The
evaluation was conducted on Amazon MTurk with 12 participants. In the
naturalness preference test, listeners were presented with paired samples from
both models and asked to choose the more natural and higher-quality sample.
Similarly, the XAB test for similarity has a similar procedure with an orig-
inal target speaker sample as a reference. Based on this reference, listeners
determined which sample sounded closer to the target speech.

6 Experimental Results

6.1 Results for Objective Evaluation

Table 1 shows the objective evaluation results from an ablation study compar-
ing the baseline and the improved N2N framework with noise dropout and MI
approximation. N2N achieves an MCD of 9.49, which is significantly higher
than the baseline’s 9.09. Moreover, it shows lower performance in SIM, scor-
ing 0.743 compared to the baseline’s 0.753, while the WER remains nearly
identical at 30.81 and 30.80.

When MI approximation is applied to N2N, MCD improves from 9.49 to
9.27, with WER reduced from 30.81 to 29.09, while the SIM score remains
nearly unchanged at 0.742. In contrast, N2N ND significantly improves per-
formance compared to the original N2N, achieving an MCD of 9.06, a SIM

1https://github.com/resemble-ai/Resemblyzer.
2https://huggingface.co/facebook/wav2vec2-large-960h-lv60-self.

https://github.com/resemble-ai/Resemblyzer.
https://huggingface.co/facebook/wav2vec2-large-960h-lv60-self.


Noisy-to-noisy Voice Conversion Performance in Various Noisy Conditions 21

Table 1: Objective evaluation results for the baseline and the improved N2N framework
incorporating noise dropout and MI approximation, analyzed through an ablation study.

Methods MCD (dB) SIM WER (%)

Baseline 9.09 0.753 30.80
N2N 9.49 0.743 30.81

N2N MI 9.27 0.742 29.09
N2N ND 9.06 0.750 29.52

N2N NDMI 8.88 0.761 28.07

of 0.750, and a WER of 29.52. However, N2N ND or N2N MI does not
outperform the baseline across all metrics except for WER.

Finally, with the combination of noise dropout and MI approximation,
N2N NDMI achieves an MCD of 8.88, a SIM of 0.761, and a WER of 28.07,
outperforming the baseline across all metrics. These results demonstrate that
the combined use of noise dropout and MI approximation effectively improves
the N2N framework to mitigate performance degradation.

6.2 Results for Subjective Evaluation

Figure 8 shows the subjective evaluation results of the preference tests on
naturalness and similarity. N2N NDMI achieves preference scores of 55.47%
for naturalness and 55.73% for similarity, outperforming the baseline scores
of 44.53% and 44.27%, respectively. The P-values for naturalness (0.032) and
similarity (0.025) are below the significance threshold of 0.05, indicating sta-
tistical differences. However, the respective preference advantages are only
10.94% and 11.46%, and the lower bound of the confidence intervals is close
to 50%. The observed improvements, while meaningful, are relatively limited.
These results highlight that MI approximation and noise dropout contribute
to improving the N2N framework, yet there remains room for further enhance-
ment of the VC performance.

7 Conclusion

In this paper, we investigate the causes of performance degradation in the
proposed N2N framework. A series of experiments were conducted to assess
the impact of noise from different categories on the N2N framework. Based
on the evaluation results, we identify two primary factors contributing to the
VC performance degradation: the limited diversity of noise that leads to the
feature entanglement, and noise bias where the noise-conditioned model tends
to focus excessively on modeling the noise component rather than the speech
part. To address the above issues, we propose an MI approximation method to
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Figure 8: Preference evaluation results in terms of naturalness and similarity with 95%
confidence intervals for the baseline and the N2N framework combined with noise dropout
and MI approximation (P-values for naturalness and similarity are provided in the accom-
panying table).

enhance the feature disentanglement, and the noise dropout strategy during
training to mitigate the model’s focus on reconstructing the noise component.
The objective evaluations were conducted in an ablation way, demonstrat-
ing the effectiveness of the proposed methods. Specifically, employing either
MI approximation or noise dropout individually mitigates the performance
degradation of the N2N framework. When both MI approximation and noise
dropout are combined, the N2N framework achieves the best performance and
outperforms the baseline. However, the subjective evaluations indicate that
the improvements achieved through MI approximation and noise dropout are
still limited, leaving room for further improvements. In future work, we plan
to explore methods for quantifying noise characteristics and continue refining
the N2N framework to address these challenges.

A Supplementary Evaluation Results

Figure A.1 shows the MCD, PESQ, and STOI results calculated between the
noisy training sets in Figure 5 (a) and their clean counterparts to assess the
degree of noise dominance.
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(a)

(b)

Figure A.1: MCD, PESQ, and STOI results for the noisy training sets in Figure 5 (a),
E-SI, and D-SD. MCDV C denotes the MCD for the converted samples produced by N2N
framework. (a) MCD results. (b) PESQ and STOI results.
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