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ABSTRACT
Predictive AI with deep learning is vulnerable to adversarial
examples—subtle, human-imperceptible modifications that can in-
duce classification errors or evade detection. While most research
targets digital adversarial attacks, many real-world applications
require attacks to function in the physical domain. Physical ad-
versarial examples must survive digital-to-analog and analog-to-
digital transformations with minimal perturbation. In this pa-
per, we investigate two white-box physical-domain evasion attacks.
First, we target an AI-based source printer attribution system,
which identifies the printer used to produce a printed document.
This task is particularly challenging because the Print and Scan
(P&S) process reintroduces printer-specific features, potentially
nullifying the attack. To address this, we adopt Expectation Over
Transformation, incorporating a realistic simulation of the P&S
process using two Generative Adversarial Network models trained
specifically for this purpose. To demonstrate the generality of
our approach, we also apply it to attack a License Plate Detector.
The crafted adversarial examples remain effective even after being
printed and recaptured using a mobile phone camera. Experi-
mental results confirm that our method significantly improves the
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attack success rate in both applications, outperforming baseline
approaches. These findings highlight the feasibility and effective-
ness of robust physical-domain adversarial attacks across diverse
computer vision tasks.

Keywords: Adversarial examples, generative adversarial networks (GANs), li-
cense plate detection, physical domain, print and scan simulation,
source printer attribution

1 Introduction

Despite their effectiveness, predictive Artificial Intelligence (AI) systems based
on Deep Learning (DL) are vulnerable to various malicious attacks, including
adversarial examples [34], backdoor attacks [14] and inversion attacks [12] (for
a taxonomy of possible attacks, see [35]). Adversarial examples involve subtle,
human-imperceptible perturbations that lead to misclassifications or other in-
correct behaviors. Most research has focused on pixel-level digital adversarial
examples [13], assuming that the attacker has full control over the image’s
digital representation. In contrast, physical adversarial examples [20, 31] ex-
ploit variations in texture, shape, and lighting, processed through the system’s
sensor inputs. Examples include specific patterns applied to physical objects,
such as stop signs, that cause misidentification by the autonomous vehicle
vision system. Despite the potential risks, there is significantly less research
on generating and defending against physical adversarial attacks compared to
digital ones.

This paper primarily focuses on attacks against printed-image document
authentication via source printer attribution, first introduced in [29], which
is crucial for legal, governmental, and financial sectors that handle sensitive
and confidential information. Ensuring document integrity is vital to prevent
forgery and fraud, as these can have significant consequences. The Federal
Trade Commission reported 2.6 million fraud cases, resulting in $10.3 billion
in losses in 2023 [7] due to piracy. Ensuring the authenticity of printed doc-
uments is essential for protecting sensitive information and maintaining trust
in official processes.

Within this framework, the first goal of this paper is to study the vulner-
ability of an image printer source attribution classifier based on DL against
physical adversarial examples. The classifier is trained to identify a docu-
ment’s originating printer using a diverse set of documents from multiple
printers. We aim to generate adversarial examples that remain effective af-
ter reprinting through the application of different attack algorithms. Tradi-
tionally, adversarial examples in the physical domain are created by adding
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perturbations directly to digital images, which are then transformed into a
physical document or 3D object and fed to the AI model, successfully mis-
leading the system. In our case, the attacked digital images are printed again
by the same printer and scanned before being fed to the classifier. The Print
and Scan (P&S) process applied to the attacked images poses several chal-
lenges to the creation of effective attacks. First, the P&S process degrades
the attack’s perturbation, requiring it to be stronger. Second, and most im-
portantly, the features the attribution network relies on are reintroduced when
the attacked digital image is printed for the second time, possibly nullifying
the effectiveness of the attack.

Following previous work on the generation of physical adversarial examples,
we use Expectation Over Transformation (EOT) [1] to craft perturbations that
survive the distortion introduced when transition-ing from the physical to the
digital domain. Our experiments confirm that EOT alone is not sufficient
to maintain the effectiveness of adversarial examples after the P&S process,
due to the reintroduction of printing artifacts on top of the adversarial at-
tacked image. For this reason, we propose incorporating a generative AI P&S
simulator within the EOT framework to generate adversarial attacks that pre-
emptively account for the subsequent reprinting process. In particular, we use
a Pix2Pix Generative Adversarial Network (GAN) [17] and a CycleGAN [42]
to simulate the P&S transformation. We then integrate EOT with P&S into
the Iterative Fast Gradient Sign Method (IFGSM) and the Carlini & Wag-
ner (C&W) attacks, achieving a high Attack Success Rate (ASR) even after
reprinting.

While adversarial examples were initially studied in the context of image
classification, they have also been observed in Deep Neural Network (DNN)
models applied to tasks such as object detection [36], intrusion detection [37],
and voice recognition [39]. Among these, attacking object detectors in the real-
world poses unique challenges since it requires the attack to be robust against
significant changes in viewpoints and distance from the camera as the detector
must localize and classify objects under varying spatial configurations. Un-
like classifiers, which operate on globally cropped and aligned inputs, object
detectors process the entire scene and are sensitive to object scale, orienta-
tion, occlusion, and background clutter. Additionally, the attacks have to be
restricted to modifying the objects themselves, which correspond to limited
regions of the images taken as input by the detectors.

To demonstrate the applicability of our approach in the context of an ob-
ject detection task, we apply it to attack a License Plate Detector (LPD),
which is a critical component in traffic enforcement, automated tolling, and
surveillance. In particular, we focus on attacking an LPD model based on
Single Shot MultiBox Detector (SSD) [23]. While we did not test the abil-
ity of the attack to work in a fully realistic scenario where the perturbation
is mapped into a real license plate mounted on a car, we verified that the
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attacks maintain their effectiveness when the perturbation is strictly limited
to the area occupied by the plate, and the attacked image is printed and
photographically recaptured.1

Given the above, the main contributions of this work are:

1. We introduce two P&S simulators utilizing Pix2Pix GAN and Cycle-
GAN image translation models.2

2. We integrate the P&S simulators as an additional transformation step in
the EOT attack and use it to attack a source printer attribution classi-
fier, in such a way that the attack withstands reprinting and recapturing
process, successfully deceiving the target source printer attribution clas-
sifier.

3. We extend our framework to attack a license plate detector, showing
that using the P&S simulator in the EOT step further improves the
robustness of the attack in the presence of printing and recapturing.

This work is an extension of [29], where the P&S simulators were only
used to attack a source printer attribution system. By extending the attack
to an object detection system, like the license plate detector considered in this
paper, we demonstrate the versatility of our approach, suggesting its general
applicability to a wide range of applications.

The paper is organized as follows: Section 2 reviews adversarial attacks
in digital and physical domains against image classifiers and object detectors.
Section 3 details the development and performance of the P&S simulators.
Section 4 focuses on the generation of robust adversarial examples for the
source printer attribution task. Section 5 analyzes the experimental results
regarding the printer attribution system. Section 6 describes the extension
of the attack to the generation of robust adversarial examples targeting the
LPD task. Section 7 summarizes our findings and suggests directions for
future work.

2 Related Work

Adversarial examples are subtle input perturbations that mislead machine
learning models while remaining imperceptible to humans. These perturba-
tions often transfer across different model architectures, thereby exposing a

1Print and recapture can be seen as a simplified proxy for a full-fledged attack involving
the creation of a real undetectable license plate.

2The effectiveness of the simulators has also been verified [28] for a completely different
goal, namely, to enhance the robustness of synthetic image detectors against general post-
processing operators.
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key vulnerability of DNNs. They are typically crafted by adding small, norm-
constrained modifications to correctly classified inputs. Common norms in-
clude L0, L2, and L∞, which correspond to pixel count, Euclidean distance,
and maximum change to any pixel, respectively.

Adversarial attacks are generally categorized as either digital or physical
attacks. Digital attacks manipulate input data at the pixel level, assuming
direct access to the digital input. In contrast, physical attacks involve altering
the appearance of real-world objects, which are then captured by sensors or
cameras. Physical attacks are significantly more challenging due to external
factors such as lighting variations, different viewing angles, distances, and
camera limitations, all of which can reduce the effectiveness of the adversarial
perturbations.

2.1 Digital Domain Adversarial Attacks

Adversarial attacks in the digital domain have been extensively studied, form-
ing the basis for more complex scenarios such as physical attacks. These
attacks aim to subtly alter input data in a way that leads DNNs to make
incorrect predictions, while keeping the perturbations visually imperceptible.

Digital adversarial examples are typically generated by solving a con-
strained optimization problem, where a small perturbation is added to a clean
input to induce misclassification. The strength of the perturbation is often
limited by an Lp norm (e.g., L∞ [13], L2, or L0 [2]) to preserve the impercep-
tibility of the attack.

Based on the optimization strategy, digital white-box attacks can be
broadly classified into two categories:

Gradient-based attacks compute the gradient of the loss function with
respect to the input and apply small perturbations accordingly. A prominent
example is the Fast Gradient Sign Method (FGSM) [13], which perturbs the
input in a single step. While computationally efficient, FGSM often struggles
to achieve high success rates. This limitation led to more powerful iterative
methods such as Iterative FGSM (IFGSM) [20] and Projected Gradient De-
scent (PGD) [26], which apply repeated small updates to generate stronger
adversarial examples.

Optimization-based attacks, such as the Carlini & Wagner (C&W)
attack [2], treat adversarial example generation as an optimization problem.
These methods explicitly balance the size of the perturbation and the objec-
tive of fooling the model, often achieving state-of-the-art effectiveness under
various threat models.
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2.2 Physical Domain Adversarial Attacks

While digital adversarial attacks assume full control over the input data, phys-
ical adversarial attacks target deep learning models by embedding perturba-
tions onto real-world objects that are captured by cameras or sensors. These
perturbations must remain effective despite environmental variations such as
lighting, distance, viewpoint, and sensor noise. By extending traditional dig-
ital attacks into the physical world—through printed images, clothing, sign-
boards, or other tangible surfaces—these attacks pose a significant threat,
particularly in safety-critical domains such as document authentication, au-
tonomous driving, and surveillance.

In the following, we review prior work on physical adversarial attacks,
beginning with those targeting image classifiers, followed by attacks aimed at
object detection models.

2.2.1 Physical Domain Attacks Against Image Classifiers

Physical domain attacks were first introduced by Kurakin et al. [20], who
demonstrated that adversarial examples could survive the transition from
digital-to-physical by printing perturbed images and re-capturing them with
a smartphone. However, their experiments showed that attack success signifi-
cantly dropped due to distortions introduced during the print-and-photograph
process. To improve physical attack robustness, Sharif et al. [31] designed
adversarial eyeglass frames to fool facial recognition systems. They incorpo-
rated a Non Printability Score (NPS) to ensure color reproducibility and a
Total Variation (TV) loss to smooth perturbations. Similarly, Komkov and
Petiushko [19] used TV loss to create adversarial stickers on hats targeting
the ArcFace recognition model.

Lu et al. [25] further highlighted the fragility of physical attacks under
varying viewing conditions, such as different angles and distances, emphasiz-
ing the need for robustness across transformations. To address this, Athalye
et al. [1] proposed the Expectation Over Transformation (EOT) framework,
which optimizes adversarial perturbations over a distribution of input trans-
formations including scale, rotation, brightness, and noise. EOT enables the
generation of robust, universal, and even targeted adversarial examples that
remain effective under diverse physical conditions. Their work included 3D-
printed objects and adversarial patches, which consistently fooled classifiers in
scenarios such as traffic sign recognition [32]. Building on EOT, Evtimov et al.
[5] proposed the Robust Physical Perturbation (RP2) method, which combines
synthetic and real-world transformations to generate adversarial examples on
stop signs using posters or stickers. However, RP2 requires photographing the
printed image from various distances and angles, making the attack generation
process resource-intensive.
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To simulate real-world transformations more efficiently, Jan et al. [18] pro-
posed digital-to-physical transformation (D2P), a pre-EOT transformation
step using a conditional GAN [17, 42] to model the print-and-capture process.
Although promising, their approach requires printing and photographing hun-
dreds of samples to train the simulator, limiting its practicality. A work that
is somewhat similar to the present work is [40]. Even there, the detector relies
on the features that are reintroduced after rebroadcast hence requiring the de-
sign of a particular EOT strategy. However, the rebroadcasting artifacts are
different from those introduced by P&S, hence the method proposed in [40]
cannot be applied in our case.

As a matter of fact, all attacks based on EOT include natural geometric
and color transformations to generate robust adversarial examples. As we will
show later, however, this is not enough when the target system is a printer
source attribution model. For this reason, we integrated the P&S simulators
into the EOT framework. In this way, we were able to significantly improve
the ASR, ensuring that the attack remains effective even after reprinting.

2.2.2 Physical Domain Attacks Against Object Detectors

In addition to adversarial examples designed for DNN models in image classi-
fication, several studies have extended adversarial attacks to object detection
tasks. One of the earliest contributions in this direction was by Xie et al.
[36], who proposed digital adversarial examples targeting object detection
and semantic segmentation models. Following this, researchers began explor-
ing physical adversarial attacks that involve modifying real-world objects to
deceive detection models [3, 24, 33]. For instance, Lu et al. [24] attempted
to deceive the YOLO object detector by printing adversarially modified traf-
fic sign images, though the resulting success rate under real-world conditions
was limited. Song et al. [33] introduced RP2 algorithm, building on [6], which
incorporated physical constraints - such as angle, distance, and lighting - into
the attack generation process. Their results demonstrated that the YOLOv2
detector can be misled using adversarial stickers and printed posters when
captured under specific conditions. Similarly, Chen et al. [3] proposed the
ShapeShifter attack, which targets the Faster R-CNN detector by leveraging
the EOT framework [1] to generate perturbations robust to various physical
transformations.

More recently, Zhao et al. [41] categorized physical attacks into two distinct
types: hiding attacks, which aim to suppress the detection of existing objects,
and appearing attacks, which aim to fabricate detections by making non-
existent objects appear real to the detector. Huang et al. [15] introduced the
Universal Physical Camouflage (UPC) attack, which generates a universal
adversarial pattern capable of deceiving detectors across all instances of a
specific object class (e.g., all cars in a scene).
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While many physical attacks rely on altering the target object itself [24,
3, 33, 41, 15], another line of works explores adversarial strategies that do
not require modifying the object directly. Huang et al. [16] proposed an
adversarial signboard designed to resemble a benign advertisement. When
placed strategically in the scene, this signboard misleads the Faster R-CNN
detector, causing it to miss nearby stop signs. Lee and Kolter [21] devel-
oped a large, environment-placed adversarial patch capable of suppressing
detections in YOLOv3 across a wide field of view. Li et al. [22] introduced
a camera-level attack using a translucent sticker placed on the camera lens,
which manipulates the input image stream and misleads downstream DNN
classifiers, offering a novel threat model where the adversary compromises the
sensor rather than the scene. Yang et al. [38] proposed a physical adversarial
attack targeting license a plate detection model, particularly SSD, by man-
ufacturing real-world metallic adversarial objects. Their work demonstrated
attack transferability across multiple detectors and commercial platforms un-
der varying physical conditions.

Despite advancements in physical adversarial attacks, many existing meth-
ods suffer from key limitations, often requiring overly strong perturbations or
relying on large, intrusive artifacts such as signboards and patches (appear-
ing attacks). In this work, we focus on an object detection model aimed at
detecting license plates and apply our attack strategy to this domain. By in-
tegrating EOT with the P&S simulator based on image-to-image translation,
we show that we can craft low-perceptibility perturbations that remain effec-
tive after digital-to-analog and analog-to-digital conversion via license plate
printing and photographic recapture.

3 Print and Scan Simulation

Printing and scanning an image involves converting the digital image to a phys-
ical copy and back to the digital domain, introducing various distortions and
artifacts. Printing can cause color shifts, ink diffusion, and minor geometric
distortions due to the printer’s mechanical characteristics and type of paper
used. Scanning adds further distortions and noise depending on the scanner’s
resolution, color response, and mechanical misalignments. These steps affect
pixel values and introduce artifacts specific to the printer and scanner, along
with minor geometric alterations due to imperfect paper positioning within
the scanner.

Given the time-consuming and costly nature of manually creating large vol-
umes of printed and scanned images, we developed two P&S simulators3 to

3The trained P&S simulators are publicly available at: https://github.com/
NischayPurnekar/print-and-scan-simulator.

https://github.com/NischayPurnekar/print-and-scan-simulator
https://github.com/NischayPurnekar/print-and-scan-simulator
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be directly included within the EOT process, enabling the vast generation of
training images without the expense and effort of physical P&S. Research on
simulating the P&S process by means of deep learning is sparse. A significant
contribution in this domain comes from Ferrara et al. [8], who demonstrated
that integrating a simulated P&S transformation during training improves the
accuracy of face morphing attacks on printed and scanned face images. Their
model estimates the pixel distortions incurred during printing and scanning,
considering various critical parameters such as the responsivity of the acqui-
sition device, the sampling function characterizing the digitization process of
printed images, the point spread function of the printer and scanner, noise
levels, and color transformations. However, the presence of device-dependent
unknown parameters complicates real-world adaptations, as calculating the
point spread functions of printers and scanners is challenging, and fine-tuning
each parameter can be time-consuming, especially across multiple devices.
Mitkovski et al. [27] also utilized a Pix2Pix GAN to emulate the P&S process
for biometric applications.

To start with, and similarly to [27], we trained a Pix2Pix GAN [17] simu-
lator. Training the Pix2Pix GAN, however, requires pixel-wise alignment of
digital and P&S images for effective computation of the mean square error
loss. To address this problem, we employed image alignment techniques dur-
ing training. We also trained a CycleGAN P&S simulator, which supports
unpaired image-to-image translation. In fact, CycleGAN does not necessitate
paired images, thus greatly simplifying the preparation of the dataset.

3.1 Architecture of the Simulators

Pix2Pix and CycleGAN have been extensively used to address various gener-
ative tasks. In our case, the objective of the Pix2Pix generator is to translate
the input images from the digital to the P&S domain, while the discriminator
is asked to distinguish between real P&S and digital pairs and their synthetic
counterparts. The CycleGAN generators aim to translate images from the
digital to the P&S domain and vice versa, ensuring cyclic consistency. With
respect to classical CycleGAN training, we did not use the identity loss. In
fact, printing a printed and scanned image again should not result in the iden-
tity operator, as the second P&S process would further degrade the image
quality.

3.1.1 Pix2Pix

The Pix2Pix architecture is tailored for paired image-to-image translation
tasks. It consists of a generator and a discriminator, as illustrated in Figure
1. In our case, the objective of the generator is to translate the input im-
ages from the digital domain to the P&S domain, while the discriminator is
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Figure 1: Overview of the Pix2Pix GAN Architecture including generator and discriminator.

asked to distinguish between real P&S and digital pairs and their synthetic
counterpart.

The Pix2Pix network is trained by relying on two main losses: the adversar-
ial loss and the L1 loss. The adversarial loss Ladv ensures that the generated
images are realistic enough to deceive the discriminator, and is defined as:

Ladv(G,D) = Ex,y[logD(x, y)] + Ex[log(1−D(x,G(x)))] (1)

where G and D indicate, respectively, the functions implemented by the
generator and the discriminator. The L1 loss enforces pixel-level similarity
between the generated and actual P&S images, and is defined as:

LL1(G) = Ex,y[∥y −G(x)∥1] (2)

The generator is trained to minimize a linear combination of the above
two losses, while the discriminator is trained to maximize Ladv:

G∗ = argmin
G

{[
max
D

Ladv(G,D)
]
+ λLL1(G)

}
(3)

In our implementation we used a U-Net architecture for the generator,
featuring an encoder-decoder structure with skip connections. The encoder
captures high-level features through convolutional and pooling layers, while
the decoder reconstructs images using upsampling layers, preserving fine de-
tails with skip connections. The input size of the network is 256×256×3. Each
U-Net skip connection block includes a convolutional layer, batch normaliza-
tion, and leaky ReLU activation. For the discriminator, we used three con-
volutional layers with batch normalization and leaky ReLU activation. Both
networks were trained with Adam optimizer, ensuring stable convergence.
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3.1.2 CycleGAN

A CycleGAN comprises of two generators and two discriminators, with the
generators aiming to translate images from the digital to the P&S domain and
vice versa. The key concept behind CycleGAN is to ensure cyclic consistency,
meaning that when the output of the first generator is used as input for the
second generator, the resulting image closely resembles the original input. Fig-
ure 2 illustrates the general architecture of CycleGAN and the paths followed
to compute the two main losses used for training: the adversarial loss and the
cycle consistency loss. The adversarial loss ensures that the generated P&S
images resemble real P&S images. CycleGAN uses two adversarial losses, one
for each direction of translation:

Figure 2: CycleGAN architecture overview, featuring two generators and two discriminators.
The figure illustrates the pathways between the digital domain and the print-and-scan (P&S)
domain, highlighting the processes for adversarial and cycle consistency losses.

Ladv(G1, D2, X, Y ) = Ey∼pdata(y)[logD2(y)]

+ Ex∼pdata(x)[log(1−D2(G1(x)))]
(4)

Ladv(G2, D1, Y,X) = Ex∼pdata(x)[logD1(x)]

+ Ey∼pdata(y)[log(1−D1(G2(y)))]
(5)

G1 and G2 are the generators for digital to P&S and P&S to digital transla-
tions, respectively. D1 and D2 are the discriminators that distinguish between
real and generated images in each domain. The cycle consistency loss ensures
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that an image can be translated to the other domain and back without signif-
icant changes. This involves two losses: one for translating a digital image to
P&S and back, and another for translating a P&S image to digital and back.

Lcycle(G1, G2) = Ex∼pdata(x)[∥G2(G1(x))− x∥1]
+ Ey∼pdata(y)[∥G1(G2(y))− y∥1]

(6)

With respect to the classical CycleGAN architecture, we did not use the
identity loss. In fact, printing a printed and scanned image again should
not result in the identity operator, as the second P&S process would further
degrade the image quality.

L(G1, G2, D1, D2) = Ladv(G1, D2, X, Y )+

Ladv(G2, D1, Y,X) + λLcycle(G1, G2)
(7)

where λ controls the relative importance of the two objectives. We aim to
solve:

G∗
1, G

∗
2 = arg min

G1,G2

[
max
D1,D2

L(G1, G2, D1, D2)
]

(8)

LD1 = Ladv(G2, D1, Y,X) (9)

LD2 = Ladv(G1, D1, X, Y ) (10)

Training the CycleGAN involves balancing these losses, with the genera-
tors minimizing an aggregate loss that is the sum of the adversarial loss and
the cycle consistency loss, and the discriminators distinguishing between real
and generated images within their respective domains. When training, we
noticed that without identity loss, after around 200 epochs the outputs began
to exhibit slight color shifts, sporadic speckling, and an increasing cycleconsis-
tency error. To address this, we employed a 50image replay buffer, applied a
linear learningrate decay starting at epoch 150 over 600 epochs, used instance
normalization with LeakyReLU activations, and implemented early stopping
based on FID and SSIM evaluations on a printedandscanned validation set.
After training, we obtain two generators: one simulating the P&S process and
one attempting to recover the original digital image from its P&S version. In
this work, we only use the first generatorthe one simulating the P&S process.
We utilized the same architectures used for the Pix2Pix simulator. Specifi-
cally, the generators employed a U-Net architecture with input dimensions of
256×256×3, while the discriminators consisted of three convolutional layers,
incorporating batch normalization and leaky ReLU activation. Both networks
were trained using the Adam optimizer.
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3.2 Dataset

To train the simulators, we used a dataset derived from the second version of
the VIPPrint dataset [10]. This dataset employed in prior work such as [11],
consists of human face images printed with various modern color laser print-
ers, each operating at different resolutions. Acquisition was performed using
a TaskAlfa 3551 multi-functional scanner at 600×600 dpi resolution, and the
images were saved using lossless compression. The size of the digital images is
1024×1024×3, while the P&S images are approximately 2036×2038×3, with
slight variations of 5 to 10 pixels in both dimensions introduced during scan-
ning. To align the resolutions of digital and P&S images, the digital images
were upsampled to match the P&S image resolution. Our experiments focused
on a subset of P&S images printed by one of the 12 printers in the VIPPrint
dataset, specifically a Kyocera P5021 CDN Color Laser printer. We used a
subset of 200 printed and scanned images from this printer for our experiments.
To match the input size of the Pix2Pix and CycleGAN networks, we trained
the networks on image patches extracted from 100 printed and scanned images
along with their corresponding digital images. The patches were 256×256×3
in size and were extracted without pixel overlap. For Pix2Pix, we aligned
the digital and printed and scanned patches using [4]. If alignment was chal-
lenging or significant pixel differences were detected, the corresponding patch
was skipped. This approach yielded 4,678 aligned digital and P&S patches.
In contrast, CycleGAN training utilized unaligned digital and P&S patches,
leveraging the ability of CycleGANs to handle unpaired image data. In total,
4,914 digital and P&S patches were used to train the CycleGAN simulator.

3.3 Training

The Pix2Pix GAN simulator was trained for 800 epochs using the Adam op-
timizer with parameters β1 = 0.5, β2 = 0.999, and a learning rate of 1× 10−4.
The network utilized 64 filters and a Leaky ReLU activation function with a
slope of 0.2, while the batch size was restricted to 1. For training CycleGAN,
we used the same hyperparameters as the Pix2Pix GAN simulator over 600
epochs. Both the GAN adversarial loss and cyclic consistency loss weights
were set to 10. After training, we assessed the performance of both simula-
tors by inputting original digital patches. To introduce variability, we added
Gaussian noise with zero mean and variance of 0.0625 to the digital images
before feeding them to the simulator. This ensured that multiple inputs of
the same digital image yielded slightly different simulated outputs, mimicking
real-world variations when an image undergoes printing and scanning multiple
times.

We evaluated the quality of the simulated images both visually (Figure
3) and quantitatively using metrics such as the Structural Similarity Index
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Figure 3: Examples of digital and simulated P&S patches with corresponding ground truth.
The first column shows digital inputs; the second and third show outputs from Pix2Pix and
CycleGAN P&S simulators; the last column shows real printed and scanned patches which
are the ground truth patches.

Table 1: Similarity metrics between simulated and real P&S images. Higher SSIM and
lower FID indicate better simulation quality.

P&S Simulator SSIM Score (↑) FID Score (↓)
Pix2Pix GAN 0.84 47
CycleGAN 0.87 45

(SSIM) and Fréchet Inception Distance (FID) (Table 1). The SSIM scores are
0.84 for Pix2Pix GAN and 0.87 for CycleGAN, while the FID scores are 47
for Pix2Pix GAN and 45 for CycleGAN. As shown in Figure 3, the images
generated by the P&S simulators closely resemble the corresponding ground-
truth images, demonstrating their effective learning of the distortions inherent
in the P&S process.

4 Physical Domain Adversarial Examples Against Printer Source Attribu-
tion

In this section, we detail our physical domain attack against printer source
attribution. First we present the threat model to frame the attack. Then, we
outline the targeted printer source attribution model and the training dataset
we utilized. Finally, we describe the attack methodology.
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4.1 Threat Model — White-Box Evasion Attack

We consider an attack aiming at altering an image printed by a specific printer,
P, in such a way that the printer source attribution model can no longer iden-
tify P as the source printer (untargeted attack) after the image is reprinted
by P. The challenge is to ensure the attack’s effectiveness even after the at-
tacked image undergoes reprinting and scanning. The attacker has white-box
access to the source attribution model, including its weights and architecture.
This allows the attacker to optimize and evaluate the adversarial examples
in the digital domain before executing the physical-world attack by printing,
scanning, and strategically placing the attacked images.

4.2 Targeted Model

The printer source attribution system targeted by our attack is the one de-
scribed in [9]. This system, trained on the VIPPrint dataset Ferreira et al.
[10], analyzes the 10 highest-energy 224×224×3 patches of the image and uses
a majority voting decision for classification. Preliminary experiments in [9]
showed that a basic reprinting black-box attack can deceive the original clas-
sifier. To enhance resilience against such attacks, the authors fine-tuned the
model using a dataset of reprinted images, resulting in a more robust (hard-
ened) source attribution model, which is the focus of our attack. Since the clas-
sifier operates on patches, the adversarial attacks are applied to 224×224×3
image patches. However, because the attack may slightly alter the energy of
the patches, the classifier could potentially analyze different patches after the
attack. Therefore, we decided to attack all the patches in the image. This
approach also prevents the introduction of visible discontinuities at patch
borders. The success of the attack hinges on inducing sufficient patch mis-
classifications to misclassify the true printer as the most voted option. Our
target is specifically the Kyocera-ecosys P5021cdn laser printer, identified as
class #12 in the attribution system’s multiclass classification.

4.3 Attack Pipeline

The attack pipeline (Figure 4) begins with printing and scanning a digital im-
age, followed by the application of an adversarial attack in the digital domain.
To maintain the effectiveness of the adversarial perturbation after printing and
scanning, we use EOT in combination with a P&S simulation implemented
using generative AI models. The adversarial digital image is then physically
printed using the same printer. Finally, the printed image is scanned and
analyzed by the source attribution model, which is a predictive AI system
designed to identify the origin of the document.
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Figure 4: Attack pipeline for the generation of robust adversarial examples.

4.3.1 Digital Domain Attack

Initially, we assessed the effectiveness of digital domain attacks (without EOT)
in inducing misclassifications when the attacked image is subsequently printed
and scanned. Adversarial examples were generated using a non-targeted ver-
sion of I-FGSM [20] and C&W attack [2]. For I-FGSM, we set ε = 0.03,
with a step size of 0.01 over 100 iterations. Similarly, for the C&W attack,
we let ε = 0.1, with a binary search step size of 9 and a learning rate of
0.01 across 1000 iterations. These hyperparameters were selected to ensure
effective attack coverage across most of the patches in the P&S image.

4.3.2 Physical Domain Attack

To generate robust adversarial examples in the physical world, we integrated
the I-FGSM and C&W attacks into an EOT framework, effectively addressing
the domain shifts between digital and physical domains. EOT involves defin-
ing a pool of transformations T to simulate these shifts. The transformations
used in our EOT attack are detailed in Table 2, including their parameters, es-
sential for replicating practical domain shifts. Additionally, we incorporated
the Pix2Pix and CycleGAN P&S simulators within the transformation set.
Results were averaged over 10 transformed samples to assess attack effective-
ness. Through extensive experiments, we identified an optimal combination of
transformations T (Table 2) that consistently produce successful adversarial
examples. Our setup includes rotation (2.0 to 10.0 degrees), zoom blur (fac-
tors between 1.05 and 1.10), and pixel shifts (5 pixels in all directions) with
an inclusion probability of 100%. For color transformations, brightness deltas
(10 to 40) and a fixed contrast factor of 0.3 are applied with 50% probability.
Additionally, either CycleGAN or Pix2Pix GAN simulators are chosen with a
probability of 50% to simulate P&S effects.
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Table 2: Set of transformations used in the EOT attack. Each transformation is applied
with the corresponding probability during optimization.

Transformation Parameter
Value
Range Probability

Brightness Brightness Delta [10, 40] 50%
Contrast Contrast Factor 0.3 50%
Rotation Rotation Angle [2◦, 10◦] 100%
Zoom Zoom Range [1.05, 1.10] 100%
Pixel Shift Pixel Offset (x/y) 5 pixels 100%
Pix2Pix P&S Simulator GAN Model Trained on P&S pairs 50%
CycleGAN P&S Simulator GAN Model Trained on P&S pairs 50%

The attack algorithms within the EOT framework were configured with
the following hyperparameters: for I-FGSM, ε = 0.15, a step size of 0.03, and
500 iterations were used; for C&W, we employed ε = 0.15, 9 binary search
steps, a learning rate of 0.01, and 1000 iterations. When we incorporated
the P&S simulators into EOT, I-FGSM utilized ε = 0.4, a step size of 0.07,
and 500 iterations, while for C&W we used ε = 0.4, 9 binary search steps, a
learning rate of 0.01, and 1000 iterations. For the physical domain conversion
(i.e., reprinting), we used a Kyocera Ecosys P5021cdn color laser printer at
1200 dpi to print the digitally attacked images on A4-sized glossy paper. The
printed images were then scanned using a Kyocera TaskAlfa 3551ci flatbed
scanner at 600 dpi optical resolution, saved as high-sharpness, lossless images
in .jpg format.

5 Experimental Results on Printer Source Attribution

To demonstrate the robustness of the hardened source attribution classifier
against adversarial examples, we conducted experiments in both the digital
and physical domains. Our study involved various white-box attacks, in-
cluding I-FGSM and C&W, both with and without EOT, and incorporating
P&S simulators within the EOT transformations. These experiments were
performed on a test set of 20 documents, with each document split into 81
patches, totaling 1,620 patches. The hardened classifier achieved perfect docu-
mentlevel accuracy of 100% and correctly classified 1,415 out of 1,620 patches,
corresponding to an 87.3% patchlevel accuracy. To measure the strength of
the perturbation introduced by the attacks, we computed the Peak Signal-to-
Noise Ratio (PSNR) between the original and attacked patches, both before
and after the reprinting and scanning process. PSNR calculations were fo-
cused only on successfully attacked patches. Additionally, we evaluated the
ASR across all patches that were correctly classified before the attack in the
images and on the top 10 highest energy patches, which are generally more
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challenging to attack. After reprinting, the final classification is determined
through majority voting on the results obtained from the top 10 highest en-
ergy patches of each document. To assess the overall robustness of the system,
we also computed the ASR after the majority voting, where the printer with
the largest number of votes among the top energy patches is selected. In all
cases, the ASR was computed only on patches that were correctly classified
prior to the attack, both for the full set of patches and for the top 10 highest
energy patches.

The results of our experiments are reported in Table 3. Analyzing the
second column of the table, we observe that all attacks are highly effective
when they are applied in the digital domain, achieving nearly 100% ASR. As
expected, the attacks incorporating EOT, particularly those utilizing P&S
simulation, exhibit lower PSNR values. The fourth column of the table re-
ports the effectiveness of the attacks in the physical domain, considering the
ASR on all4 patches after reprinting. For standard I-FGSM and C&W, the
ASR decreases dramatically, while the application of EOT with natural trans-
formations limits the ASR drop. Including the P&S simulators in the EOT
transformations further improves the ASR to 79.92% for C&W and 85.79%
for I-FGSM, which is a significant advantage with respect to EOT with natu-
ral transformations. The main advantage of including P&S simulation within
EOT becomes apparent when we limit the analysis to the 10-highest energy
blocks of each image. In this scenario, the ASR with natural EOT is only
33.5% for I-FGSM and 28% for C&W, while EOT with P&S simulation al-
lows to attack 69% and 56.5% of the patches. In the last column of the table,
we report the ASR after majority voting on the 10-highest energy blocks, mea-
suring the final performance against the printer source attribution system (see
Section 4.2). We observe that the ASR after majority voting drops to neg-
ligible values for standard I-FGSM and C&W attacks, showing only slight
improvement with EOT using natural transformations.5 However, when the
P&S simulator is incorporated to EOT, the ASR significantly increases for
both I-FGSM and C&W attacks. Specifically, the ASR for I-FGSM rises from
25% to 70%, and from 20% to 65% for C&W. These results highlight the effec-
tiveness of incorporating the P&S simulator, given the complexity of creating
adversarial examples that survive the reprinting process. Our experiments
also suggest that patches with dark backgrounds tend to reintroduce stronger
artifacts upon reprinting, thus requiring an excessive distortion.

In Figure 5, we present adversarial examples after reprinting, generated
using various attacks. The images include the initial P&S image (the attack
target), adversarial examples produced by standard attacks, EOT attacks
with natural transformations, and EOT attacks incorporating P&S simula-

4All refers to patches that were correctly classified as ground truth before the attack.
5These results indirectly support the choice made in Ferreira and Barni [9] to base the

classification only on the highest energy patches.



Print and Scan Simulation for Adversarial Attacks on Printed Images 19

Table 3: Effectiveness of various attacks in both the digital and physical domain. ASRs
are averaged across all patches correctly classified before the attack, on the top 10 highest
energy patches of each image, and after majority voting on the top 10 patches.

Attack Method
ASR

Digital(%) PSNR (dB)
ASR Printed

All Patches(%)
ASR Printed

Top 10 Patches(%) PSNR (dB)
ASR Printed

Majority Voting(%)
IFGSM 100% 36.14 27.20% 15.5% 28.89 10%
IFGSM (EOT) 96.39% 20.08 75.33% 33.5% 17.25 25%
IFGSM (EOT+P&S) 100% 13.12 85.79% 69.0% 11.89 70%
CW 100% 33.86 22.82% 14.0% 25.53 10%
CW (EOT) 96.67% 19.52 64.94% 28.0% 16.96 20%
CW (EOT+P&S) 100% 12.19 79.92% 56.5% 11.18 65%

Figure 5: Examples of attacked images after reprinting and scanning. Each row begins with
(a) the original P&S image, followed by adversarial examples generated using: (b) I-FGSM,
(c) I-FGSM with EOT, (d) I-FGSM with EOT+P&S, (e) C&W, (f) C&W with EOT, and
(g) C&W with EOT+P&S.

tions. Comparing the initial P&S images to the reprinted adversarial exam-
ples generated by standard I-FGSM or C&W attacks we see that reprinting
weakens the perturbation. The examples produced by I-FGSM(EOT+PS)
and CW(EOT+PS) demonstrate the importance of the P&S simulation in
creating robust adversarial examples that withstand reprinting and scanning.

6 Application to License Plate Detection

In this section, we extend our robust attack method to generate physical
domain adversarial examples aimed at fooling a license plate detector. We
begin by describing the LPD model, and provide details on the target detector
as well as the attack pipeline used to craft adversarial examples in both digital
and physical domains. Finally, we evaluate the effectiveness of the attacks.

6.1 Threat Model — Evasion Attack Against Bounding Box Detection

As mentioned in the introduction, we focus on an SSD-based license plate
detectors, capable of localizing the license plate area. We focused on bounding
box detection on the finding in [30] that an AI trained on simple geometric
objects shows in generative AI artifacts which can be measured and analyzed
in more detail based on the well-defined structure. Disturbing the bounding



20 Purnekar et al.

box detection is therefore the basic attack task. The model outputs both class
scores and bounding box coordinates, serving as the adversarial target in both
digital and physical attack settings.

We consider an attack aiming to modify the plate in such a way that
the bounding box of the plate can no longer be detected. The challenge
is to ensure attack effectiveness when the license plate is printed and the
scene is recaptured with a mobile camera. We adopt a white-box threat
model, assuming full access to the detectors parameters and gradients, which
allows us to leverage gradient-based optimization techniques. The objective
is to suppress license plate detection by introducing perturbations only in the
license plate area to reduce the confidence score of the license plate class.

6.2 Target Detector

We adopt the SSD300 [23] architecture for LPD due to its efficiency and real-
time performance. While several physical attacks have been proposed against
object detectors, most of them target specific architectures such as Faster R-
CNN and YOLO [3, 33], whereas physical attacks on SSD [23] models remain
largely underexplored. The model accepts input images of size 300× 300× 3
and performs object localization and classification in a single forward pass. It
was trained from scratch on a custom dataset composed of 24,079 training,
4,013 validation, and 4,014 test images, aggregated from multiple publicly
available sources. The dataset is highly diverse, covering a wide range of li-
cense plate formats, backgrounds, lighting conditions, and geographic regions.

Unlike existing pre-trained LPD models, which are often constrained by
region-specific characteristics or inconsistent annotation standards, training
from scratch allowed full control over the dataset composition, resolution, and
augmentation, which is critical for evaluating robustness in our physical attack
pipeline.

The model was trained using a batch size of 16, learning rate of 1× 10−3,
momentum of 0.9, and weight decay of 5×10−4. The learning rate was decayed
at 80,000 and 100,000 iterations by a factor of 0.1 using a StepLR scheduler.
Early stopping with a patience of 15 epochs was applied. Standard data aug-
mentations (random cropping, flipping, color jittering) and gradient clipping
(threshold 5.0) were used to improve training stability and generalization.

The LPD model is optimized using the SSD MultiBox loss:

L(x, c, l, g) =
1

N
(Lconf + αLloc) , (11)

where Lconf is the confidence loss and Lloc is the localization loss. The confi-
dence loss is computed as:

Lconf = −
∑
i∈Pos

log(ĉpi )−
∑

i∈Neg

log(ĉ0i ), (12)
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and the localization loss is given by:

Lloc =
∑
i∈Pos

∑
m∈{cx,cy,w,h}

smoothL1(l
m
i − ĝmi ), (13)

where ĉpi and ĉ0i are the predicted softmax scores for the positive (license plate)
and negative (background) classes respectively, and lmi , ĝmi are the predicted
and ground-truth bounding box parameters for matched prior i.

The trained model achieves a mean Average Precision (mAP) of 0.98 on the
test set with an accuracy of 100%, establishing a strong baseline for subsequent
adversarial evaluation. Figure 6 shows examples of precise bounding box
detections produced by the model under clean (non-adversarial) conditions.

Figure 6: License plate detection results using the LPD model. The red bounding boxes
indicate the localized license plate regions. The first and third images (from the left) show
the input images, while the second and fourth images display the corresponding detection
outputs.

6.3 Attack Pipeline

The attack pipeline is illustrated in Figure 7. A clean test image of a car
containing a license plate is first captured by an image sensor and then passed
to the SSD300 LPD model. The model resizes the image to 300× 300 pixels
and performs a forward pass to predict potential bounding boxes. The highest-
confidence detection corresponding to the license plate class is selected, and a
binary mask is generated to confine the perturbation only to this region. This
mask is kept constant throughout the attack to maintain spatial consistency
and visual realism. The image is then attacked iteratively using the sign
of the gradients, with the perturbations restricted to the masked area. To
facilitate physical-world applicability, the final adversarial image is resized
back to its original resolution. The image with the adversarial license plate is
then printed. The printed image is recaptured with a smartphone.

To facilitate physical-world applicability, the final adversarial image is re-
sized back to its original resolution. The image with the adversarial license
plate is then printed. To simulate real-world conditions, the printed image
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Figure 7: Attack pipeline for generating robust adversarial examples in license plate detec-
tion (LPD). The process includes input preprocessing, mask-based perturbation, iterative
optimization, and resizing for physical-world applicability.

is recaptured using a smartphone.6 The printer used is a Kyocera Ecosys
P5021cdn. The capture device is an iPhone 16 Pro Max with autofocus en-
abled and HDR/auto-enhancement disabled. The printed plate is laid flat on
a table and photographed handheld with the camera axis approximately per-
pendicular to the plate, under standard indoor lighting. The resulting image
is then bicubically resized to 640Œ640 px.

In this setting, we limit our evaluation to the I-FGSM attack, since we
found I-FGSM to be sufficiently effective for license plate detection, offering
a good balance between performance and computational efficiency. We used
a CycleGAN-based P&S simulator to build the physical domain attack, as
preliminary tests showed that it produces more stable and visually consistent
transformations on license plate images, making it a practical choice for this
experiment.

6.3.1 Digital Domain Attack

In the digital adversarial attack scenario (without EOT), we perform a non-
targeted I-FGSM attack on the SSD300 license plate detector to induce mis-
classification. In our experiments, the attack is executed over 30 iterations
with a step size of α = 0.0314 and a maximum perturbation limit of ϵ = 0.0627.
Since the goal of the attack is to induce the detector to classify the license plate
region as background, the attack optimization focuses solely on the reduction
of the classification confidence loss, and does not consider the localization
loss. The hyperparameters were chosen to ensure the perturbation effectively
covers the license plate bounding box masked region.

6Our scheme is a simplification of the real-word scenario. In a setup closer to real-word,
only the adversarial license plate should be printed and mounted on cars, then the scene is
reacquired.
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6.3.2 Physical Domain Attack

We extended the I-FGSM attack using the EOT framework to generate ro-
bust physical adversarial examples, addressing the gap between digital and
physical domains. Our experiments explored two EOT variants: one using
natural transformations and another incorporating a CycleGAN-based P&S
simulator.

For each attack iteration, 15 transformed versions of the adversarial image
were sampled, using a combination of geometric and photometric augmenta-
tions. These included affine transformations (rotation up to 10◦, 10% transla-
tion, scale range 0.61.5, shear=5), perspective distortions (distortion scale up
to 0.1), color jitter (brightness=0.3, contrast=0.5, saturation=0.3, hue=0.1),
random grayscale conversion (30% probability), Gaussian blur (kernel size=3,
σ in [0.3, 2.0]), and motion blur (kernel size=5, σ in [1.5, 4.0]). The complete
list of transformation parameters is provided in Table 4.

Table 4: Set of transformations used in the EOT attack with and without the P&S simulator
for LPD. Each transformation is applied per iteration during optimization.

Transformation Type Parameter(s) Value Range Probability
Affine Transform Degrees, Translate, Scale, Shear 10◦, 10%, [0.6, 1.5], 5 Randomly Sampled
Perspective Distortion Distortion Scale [0.0, 0.1] 80%
Color Jitter Brightness, Contrast, Saturation, Hue 0.3, 0.5, 0.3, 0.1 100%
Random Grayscale Grayscale Application Probability – 30%
Gaussian Blur Kernel Size, Sigma 3, [0.3, 2.0] 100%
Motion Blur Kernel Size, Sigma 5, [1.5, 4.0] Randomly Sampled
CycleGAN P&S Simulator GAN Model Trained on P&S Pairs 100%

In both variants, perturbations were spatially restricted using a fixed bi-
nary mask that covered the license plate region, based on the initial detection
output. The standard EOT attack was run for 40 iterations using a step size
of α = 0.0314 and a maximum perturbation magnitude ϵ = 0.0627. The
EOT+P&S version, which requires stronger and more resilient perturbations,
was executed for 60 iterations with a step size of α = 0.0941 and perturba-
tion budget ϵ = 0.1882. In both settings, only the classification (confidence)
loss was optimized, while localization loss was excluded. The integration
of the P&S simulator significantly improved physical transferability, as later
confirmed through robustness evaluations involving motion blur, grayscale
conversion, and partial occlusion.

6.4 Experimental Results

We evaluated the robustness of the SSD300-based LPD against adversarial ex-
amples in both digital and physical domains. The attacks were performed us-
ing the I-FGSM, considering three configurations: baseline I-FGSM, I-FGSM
with EOT, and I-FGSM with EOT augmented by a CycleGAN P&S simula-
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tor. Each method was tested on a set of 20 license plate images from the test
dataset with an image resolution of 640× 640× 3.

In this case, the ASR corresponds to the percentage of images where the
license plate was either not detected or incorrectly classified as background.
To assess the perceptual quality and intensity of the perturbations confined
only to the license plate area, we measured the PSNR for successfully attacked
images.

6.4.1 Digital Domain

In the digital domain, the application of the I-FGSM adversarial attack re-
sulted in successful evasion of the LPD across all 20 test images, achieving
an ASR of 100% and a PSNR of 24.46 dB, as reported in Table 5. Visual ex-
amples shown in Figure 8 demonstrate that the perturbations applied to the
license plate region are nearly imperceptible to the human eye. While this at-
tack proves effective in the digital setting, it fails to maintain its effectiveness
in the physical domain, as demonstrated in the following section.

Table 5: Effectiveness of the I-FGSM attack in the digital domain, reported as average ASR
and PSNR over 20 test images. PSNR is computed within the license plate region using a
masking approach.

Attack Method ASR (%) PSNR (dB)
I-FGSM 100% 24.46

6.4.2 Physical Domain

According to our pipeline, the conversion of a digital adversarial examples
generated by EOT-based adversarial attack to the physical domain involves
printing the adversarial image and capturing the printed output using a smart-
phone. During recapture we ensured that the captured image maintains a
square aspect ratio, and it is resized to original image resolution of 640×640×3
for compatibility with the detection pipeline.

We evaluated the robustness of adversarial examples generated using EOT,
both with and without the P&S simulator. As shown in Table 6, adversarial
examples crafted using EOT alone achieved a digital-domain ASR of 95% (19
out of 20 instances were successfully fooled by the attack.) with a PSNR of
23.71 dB, but their effectiveness significantly dropped in the physical domain,
reaching a printed-domain ASR of only 57.89%. The ASR in the physical do-
main is computed exclusively on the images that were successfully attacked in
the digital domain (19 in our case). In contrast, augmenting the transforma-
tion pool with a CycleGAN-based P&S simulator during the attack generation
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Figure 8: Each row illustrates, from left to right: the original (clean) license plate image, the
corresponding detected license plate region, and the adversarial example generated using
the I-FGSM attack, restricted to the license plate area.

Table 6: Attack effectiveness in both digital and physical domains. ASRs in the digital
domain are averaged over 20 test images, while physical domain ASRs are averaged only on
the set of images successfully attacked in the digital domain. PSNR is calculated exclusively
within the license plate region, where perturbations are applied using a masking strategy.

Attack Method
ASR (%)

Digital Domain PSNR (dB)
ASR (%)

Printed Domain
I-FGSM (EOT) 95% 23.71 57.89%
I-FGSM (EOT + P&S) 95% 22.24 73.68%

led to a substantial improvement in physical robustness. The EOT+P&S vari-
ant achieved the same 95% ASR in the digital domain with a slightly lower
PSNR of 22.24 dB, but yielded a much higher ASR of 73.68% after reprinting
and recapture.

This improvement highlights the importance of modeling domain-specific
degradations introduced by the P&S process. The visual difference between
the two attacks can be observed in Figure 9. The images generated with
the P&S-aware attack inhibit license plate detection more effectively after
undergoing physical transformations.

To summarize, the printerattribution scenario proves to be more challeng-
ing than the LPD task, which currently represents a more conventional ad-
versarial attack setting. The increased difficulty is due to the reintroduction
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Figure 9: Each row displays, from left to right: the original (clean) license plate image,
the detected license plate region, I-FGSM with EOT (before printing and recapturing),
I-FGSM with EOT (after printing and recapturing), I-FGSM with EOT + P&S (before
printing and recapturing), and I-FGSM with EOT + P&S (after printing and recapturing).
In the first two rows, the fourth and sixth columns demonstrate successful attacks, where
the adversarial examples remain effective after the physical transformation, leading to mis-
classification by the LPD model. In contrast, the third row shows a failed attack, where
the perturbations do not survive the print-and-recapture process in either case. The fourth
row highlights the importance of incorporating the P&S simulator within EOT, resulting
in a successful misclassification by the LPD model when using I-FGSM with EOT + P&S.

of the printerspecific footprint after the attack during the printing process,
which reduces the effectiveness of the adversarial perturbation. LPD depends
on bold, highcontrast shapes, character strokes, and plate borders that remain
intact during printing and scanning, whereas printer attribution models rely
on fine halftone and sensornoise cues that the P&S process tends to elimi-
nate. The LPD task thus involves a standard attack on a computer vision
model without such constraints. This difference is reflected in our results,
where attacks without P&Sbased EOT achieve higher success rates in the
LPD setting.

7 Concluding Remarks

In this paper, we addressed the problem of generating robust physical do-
main adversarial examples that survive printing and scanning. The proposed
attack is effective to attack source printer attribution systems. The specific
challenge with this scenario is that the features associated to the forensic task,
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suppressed by the attack, are reintroduced in the reprinting stage. To cope
with this, we introduced an attack that integrates P&S simulations within
the EOT framework. By employing Pix2Pix GAN and CycleGAN models, we
developed two simulators that accurately replicate the P&S transformations.
The integration of these simulators into the EOT framework significantly in-
creased the ASR, demonstrating the method’s effectiveness in producing ad-
versarial examples that survive reprinting. We further validated the versatility
of our method by applying it to attack systems performing object detection,
and in particular license plate detection. The experimental results show that
incorporating P&S simulation in EOT improves the performance of the at-
tack even in this case. The two application scenarios considered in this work
are Printer Source Attribution (PSA) and License Plate Detection (LPD), as
summarized in Table 7, which outlines the key settings and characteristics
specific to each task. Our work underscores the importance of physical do-
main adversarial attacks in AI security research and provides a foundation for
future efforts to counteract such threats.

Table 7: Summary of experimental settings for Printer Source Attribution (PSA) and Li-
cense Plate Detection (LPD) tasks

Aspect Printer Source Attribution
(PSA)

License Plate Detection (LPD)

Target AI System Source printer attribution classifier SSD300-based license plate detector
Attack Objective Induce misclassification of the

printer source (Kyocera P5021
CDN)

Cause incorrect localization or sup-
pression of license plate bounding
boxes

Security Impact Undermines the reliability of foren-
sic printer authentication

Undermines the reliability of auto-
matic license plate detection sys-
tems

Dataset Used VIPPrint dataset Aggregated dataset compiled from
public LPD benchmarks

Generative AI Module Differentiable P&S simulator
trained using Pix2Pix and Cycle-
GAN

Differentiable P&S simulator
trained using CycleGAN

EOT Strategy I-FGSM and C&W attacks com-
bined with P&S simulation and
physical transformations

I-FGSM attack combined with P&S
simulation and physical transforma-
tions

Future work will focus on developing appropriate defenses, such as adver-
sarial training techniques that incorporate examples of images subjected to
the proposed physical domain attack. We also plan to expand our simula-
tors to address various image processing tasks under diverse environmental
conditions. Additionally, we aim to develop advanced P&S simulators using
diffusion models for enhanced realism and accuracy. Eventually, we will ex-
plore other more real-world setups for license plate detection in the physical
domain, with deployment-oriented evaluations obtained by crafting realistic
license plates capable to evade detection. While our LPD experiments vali-
date the attack under controlled indoor settings, extending to unconstrained
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outdoor scenarios with variable illumination, viewing angles, weather effects,
and mounting the license plate on actual vehicles remains important future
work.
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