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ABSTRACT

When we place microphones close to a sound source near other
sources in audio recording, obtained audio signals include unde-
sired sound from the other sources, which is often called bleed-
ing sound. For many audio applications including onstage sound
reinforcement and sound editing after a live performance, it is
important to reduce the bleeding sound in each recorded signal.
However, since microphones are spatially apart from each other,
typical phase-aware blind source separation (BSS) methods cannot
be used. We propose a phase-insensitive method for blind bleeding-
sound reduction. This method is based on time-channel nonnega-
tive matrix factorization, which is a BSS method using only am-
plitude spectrograms. In the proposed method, a gamma prior
distribution is introduced for the frequency-wise leakage gains of
the bleeding sound component to estimate the mixing matrix. This
estimation can be interpreted as maximum a posteriori probability
estimation. From the experimental results, it is confirmed that the
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proposed method can reduce the music bleeding sound with higher
accuracy than the other methods in both simulated and real sit-
uations. It is also confirmed that the proposed method achieves
robust performance against parameter initializations, which is an
important advantage in practical applications. The reason of this
robustness is experimentally revealed.

Keywords: Blind source separation, bleeding sound, nonnegative matrix fac-
torization, maximum a posteriori estimation

1 Introduction

When we record a live musical performance, many microphones are usually
arranged among the players. Some are located very close to each of the
audio sources, such as musical instruments, vocals, and amplifiers. These
close microphones are placed to capture only specific source sounds. However,
undesirable audio leakage from the non-target audio sources is also captured,
which is often called “cross-talk” or “bleeding sound,” as shown in Figure 1.
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Figure 1: Spatial arrangement of sources and close microphones, where M = N = 4. Target
sound is contaminated with bleeding sound from other non-target sources.

In onstage mixing, sound engineers control the balance of sound levels of
individual sources, and the processed sounds are provided to the audience
through loudspeakers and performers through monitor speakers. Bleeding
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sound makes such sound reinforcement difficult, degrading musical perfor-
mance quality. It is also necessary to avoid sound bleeding for high-quality
audio editing (remixing) of the recorded signals after a live performance. For
these reasons, sound engineers carefully place close microphones so that the as
much bleeding sound is reduced as possible. Putting acoustic barriers between
the sound sources and reducing sound reflection in the recording room are also
effective. However, completely avoiding bleeding sound is almost impossible.

Bleeding-sound reduction is similar to the well-investigated problem called
multichannel audio source separation (MASS) [20, 34, 35, 18], but some con-
ditions are different from those in MASS, which are listed as follows.

(a) The signal-to-noise ratio (SNR) of the observed signal is relatively high
because of a close miking setup, where the “signal” is a target source
for the close microphone and the “noise” is the leakage from the other
sources.

(b) The observed multichannel signals are already “labeled,” namely, the tar-
get source for each microphone is known because each microphone is
located close to each sound source.

(¢) The microphones are spatially apart from each other (e.g., more than 2 m),
resulting in serious spatial aliasing.

(d) The requirement of separation quality is relatively high so as not to de-
grade the artistic value of the music signal.

Conditions (a) and (b) are advantages of bleeding-sound reduction, which
make resolving bleeding sound easier than MASS. However, conditions (c)
and (d) are difficult. In particular, condition (c) is critical because typical
high-quality MASS, including beamformers [20, 34] and independence-based
blind source separation (BSS) [28, 17, 3, 31, 25, 10, 11], uses phase differences
between microphones, which are unreliable in bleeding-sound reduction due
to spatial aliasing. To tackle this problem, phase-insensitive (amplitude- or
power-based) MASS [21, 15, 37, 33, 26] can be applied. Togami et al. [21]
applied nonnegative matrix factorization (NMF) [7, 6] to the time-channel do-
main in each frequency (hereafter, time-channel NMF: TCNMF), where both
the nonnegative mixing matrix and amplitude activation of each source are
estimated in each frequency bin. TCNMF performs well even under condition
(c) or an asynchronous recording condition [15, 37], although its effectiveness
regarding music bleeding-sound reduction has not been investigated. A BSS-
based method that ignores the phase information was proposed [33], which
is called linear demixed domain multichannel NMF (DMNMF). Similar to
TCNMEF, this method also estimates the frequency-wise nonnegative mixing
matrix. Das et al. [26] introduced supervised information to accurately reduce
the bleeding sound, where the frequency-wise nonnegative mixing matrix (i.e.,
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leakage levels of the non-target sources for each close microphone) is mea-
sured before the musical performance or calculated using the solo-played time
segments of each source. However, to reduce the onsite recording cost for
sound reinforcement, such supervision should not be used. Also, a mismatch
between the obtained mixing matrix and actual condition may markedly de-
grade reduction performance.

We aimed to reduce bleeding sound in a fully blind manner, namely, the
spatial locations of sources and microphones are unknown. We also did not
use supervision of sources, such as solo-played music datasets, to avoid the mis-
match between training and test data; thus, supervised deep-neural-network-
based approaches [1, 22, 16, 23, 32, 29] are out of the scope of this paper.
We propose a phase-insensitive method for blind bleeding-sound reduction,
which is a modification of TCNMF': we introduce an a priori generative model
for diagonal and off-diagonal elements of the frequency-wise mixing matrix
to model relative leakage levels of bleeding sounds. This method is based
on NMF with maximum a posteriori (MAP) estimation, which was originally
proposed by Cemgil [5], and we demonstrate that the proposed method is
suitable for reducing music bleeding sound.

The rest of this paper is organized as follows. In Section 2, we describe the
formulation of mixing and demixing systems. Also, phase-aware and unaware
BSS algorithms are explained. In Section 3, we propose a new bleeding-sound
reduction algorithm and derive its parameter update rules. Simulation-based
and realistic experiments for comparing the performance of conventional and
proposed methods are provided in Section 4. Also, an experimental analysis
for initialization robustness of the proposed method is conducted in Section
5. Finally, conclusions are presented in Section 6. Note that this paper is
partially based on an international conference paper [36] we wrote. The major
new contributions of this paper are as follows:

e The influence of hyperparameters on the performance of both conven-
tional and proposed methods is experimentally examined in Sections
4.3.2 and 4.1.2.

e New experimental results using impulse response signals recorded in an
actual music studio with professionally used apparatuses are presented
in Section 4.3, whereas the experiments provided in [36] was simply
based on computer-generated artificial mixtures.

e The robustness against the parameter initialization of the proposed
method is newly investigated and mathematically analyzed in Section
5.



Music Bleeding-sound Reduction 5

2 Conventional Methods

In this section, we introduce the mathematical models used in conventional
methods for MASS. Throughout the paper, scalars are denoted by regular
lowercase letters, vectors by bold lowercase letters, and matrices by bold up-
percase letters.

2.1 Formulation of Acoustic Signal

Let M and N be the numbers of microphones (channels) and sources, respec-
tively. The source, observed, and estimated signals are respectively denoted
as

8(t) = [31(1), 32(t), -+, 8u(t), -+ 3N (D)]T € RY, (1)
j(t) = ["Z‘l(t)v'%Q(t)v T ajm(t)a T 7‘%M(t)]T € RM’ (2)
g(t) = [gl(t)v gQ(t)v e 7g7l(t)v e ’gN(t)]T € RN’ (3)

where t =1,2,--- T, n=1,2,--- N, and m = 1,2,--- , M are the indices
of discrete time, source, and microphone, respectively, and -7 denotes a trans-
pose. Under the recording condition described in Section 1, the mixing system
becomes determined (M = N) or overdetermined (M > N). In this study,
we focused only on the determined case, which is the most difficult situation
in bleeding-sound reduction.

In an instantaneous mixture, the observed and estimated signals can re-
spectively be modeled as

(1) = As(1), (4)
y(t) = Wa(1), (5)

where A € RM*N and W € RV*M are the time-invariant mixing and demix-
ing matrices, respectively. The mixture model (4) is illustrated in Figure 2.
Since the observed signal &(t) is “labeled,” as explained in condition (b) in
Section 1, we define that Z,,(t) is the close-microphone signal for the mth
source §,,(t) (n = m), as shown in Figures 1 and 2. Thus, Z,,(t) mainly
contains the sound from the target source §,,(t), although the bleeding sound
from the non-target sources 3, (t) is also included, where m’ # m. For this
reason, the absolute values of diagonal elements in A should be large enough,
and those of off-diagonal elements become small, which results in high-SNR
condition (a) in Section 1.

In actual recording, the mixing system (4) becomes a convolutive mixture
due to time difference of arrival and room reverberation. To simply model
the convolutive mixture, we assume that the impulse responses (reverberation
time) between microphones and sources are shorter than the window length
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Figure 2: Instantaneous mixture model for bleeding-sound reduction, where M = N = 4.
Color brightness in mixing matrix A shows amplitude level of each element (brighter is
larger). Due to close miking setup, diagonal elements in A have larger amplitudes compared
with off-diagonal elements.

used in the short-time Fourier transform (STFT). This assumption enables us
to respectively model the reverberant observed and estimated signals as

z)f) = A5, (6)
vy = W), (7)
where
s = [si1. si5h st sial T e Y, (8)
o = 2+ 2 2T € OV, o
us = Wi yish e sy s ugn] T e V. (10)

Here, i = 1,2,---,I and j = 1,2,--- ,J are the indices of the frequency
bin and time frame, respectively, and A\ € CM*N is the complex-valued
frequency-wise mixing matrix. Also, 55521, xgjczn, and yfﬁl are the complex-
valued time-frequency-wise elements of the source, observed, and estimated
spectrograms S,(f) € CIxJ| X,(ﬁ) € C™J and Yn(c) € C'*7 | respectively.
Note that a superscript -(°) denotes the complex-valued variable throughout
this paper. In (6), the convolutive mixture is converted to the frequency-wise
instantaneous mixture via STFT.

2.2 Phase-aware Method and Spatial Aliasing Problem

Typical beamformers [20, 34] and BSS methods [28, 17, 3, 31, 25, 10, 11] are
used to estimate the complex-valued demixing matrix Wi(c) on the basis of
a principle of microphone arrays, e.g., time difference of arrival, and these
methods rely on the phase differences between microphones. In particular,
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independent vector analysis (IVA) [3, 31, 25] and independent low-rank matrix
analysis (ILRMA) [10, 11] become a common approach of BSS, and many
variants of them have been proposed, e.g., [30, 19, 14]. These methods provide
significant separation performance when we use a typical microphone array.
However, when microphones are spatially apart from each other phase—aware
methods like IVA and ILRMA cannot precisely estimate W ) because of
spatial aliasing. This problem is salient in bleeding-sound reductlon, as we
will confirm in the experimental section.

2.3 DMNMF

To cope with spatial aliasing, the power-based BSS method DMNMF was
proposed [33]. DMNMF can be interpreted as a phase-insensitive version of
ILRMA [18, 10, 11], and the observed signal is modeled as

~ APs Vi, j, (11)

— abs(A(C)) RMXN7 (12)
—abS(-’v ') e RY, (13)
;= abs(s{)) € RY,, (14)

where the dotted exponent -* and absolute operation abs(-) for vectors or ma-
trices return the element-wise uth power and absolute, respectively; thus, x

and s;% are the power spectrogram components of {X(C)}M ;1 and {S(C)}n 15
respectlvely. DMNMEF approximates (6) by the nonnegative frequency-wise
mixing matrix A;? in the power-spectrogram domain to ignore the phase in-
formation. In addition, the power spectrogram of each source is modeled by

a low-rank matrix using NMF. After estimating A;* and s;7 from ;3, we can

recover the estimated signal yl(;) by Wiener filtering.

2./ TCNMF

The amplitude-based BSS method TCNMF was proposed [21] and applied [15,
37] to speech enhancement. Whereas typical NMF is a low-rank decomposi-
tion of time-frequency matrices, TCNMF decomposes frequency-wise time-
channel matrices in the amplitude domain as

X, ~ A;S; Vi, (15)
X; = [z @iz -+ xig) € RY, (16)

which is illustrated in Figure 3, where X is the frequency-wise time-channel
observed signal in the amplitude domain and S; € RN %7 is a time-source
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Figure 3: Decomposition model of TCNMF, where M = N = 4 and I = 6. Note that
abs(XT(,f)) is channel-wise time-frequency matrix, but A; and S; are frequency-wise source-
channel and time-source matrices, respectively.

activation matrix: S; involves time-varying gains of each source as the row
vectors. By estimating A; and S; in the same manner as typical NMF, we
can reconstruct the estimated sources using Wiener filtering.

The variables A; and S; can be estimated by solving the following mini-
mization problem [6]:

Tﬁ?gZIDKL(X”AiSi) S.t. @imn, Sing = 0 Vi,m,n, j, (17)
1
where
DKL(X1,|AlS1,) = Z Iimj 10g 2017]5 — ximj + Z aimnsmj (18)
n Yimnoing n

m,j

is the generalized Kullback—Leibler (KL) divergence that measures the sim-
ilarity between X; and A;S;, A and S are the sets {A;}._, and {S;}/_,,
respectively, and Zipj, Gimn, and s;,; are the elements of X;, A;, and Sj,
respectively. The generative model underlying (17) and (18) is explained in
Section 3.2. However, since A; is an M x N square matrix in the determined
case, the minimization problem (17) has a trivial solution, namely, A; = I
for all 4, where I is an identity matrix. To avoid this trivial solution, an
Lo s-norm-based sparse regularizer was introduced for each time frame [21] as
follows:

3[4171;12 DKL(X1|AzSz) + /JZ Hsi.j‘|0~5 s.t. Aimmn s Sinj Z 0 W,m,n, j, (19)
7

4,9

where 1 is a weight coefficient for regularization. Note that s;; is a time-
frame-wise vector in S;, namely, S; = [s;1 Si2 -+ SiJ].
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Update rules of iy, and s;y; are derived as

Timj S
E : i in,
J 2o Limn! Sin’j J

Aimn < Aimn ’ (20)
2. Sinj
Zm > /tfimj/sv /s Aimn
Sinj £ sinjz . = N MZ"’/] i (21)
The efficient matrix-form implementation of (20) and (21) is as follows:
A;S; T
A+ A; O W, (22)
AT 2
S;« S; o L AS: (23)

1(N><N)S/-_1/2 )
S.‘1/2L

i

AT1(MXT) 4y,

where ® and the quotient symbol for matrices denote element-wise multipli-
cation and division, respectively, and 1() is a matrix of the size indicated by
the superscript, with all elements being equal to one. It is guaranteed that
the iterative calculation of (22) and (23) monotonically decreases the cost
function in (19).

3 Proposed Method

3.1 Motivation

In bleeding-sound reduction, phase information cannot be used because of
the close miking setup and serious spatial aliasing. As a phase-insensitive
method, DMNMF is a reasonable approach. However, full-blind parameter
optimization of DMNMF is difficult and unstable. In fact, a priori infor-
mation of steering vectors (column vectors of AEC)) or a phase-aware BSS
method is used for pre-estimation for DMNMF to stabilize and improve BSS
performance [33]. TCNMF can estimate the source signals without phase in-
formation, even in asynchronous recording [15]. However, its performance for
music BSS or bleeding-sound reduction has not been investigated. In particu-
lar, the sparse regularizer ;  [|8ij]lo.5 in (19) may degrade the sound quality
of estimated signals in music mixture. This is because the regularizer is based
on a W-disjoint-orthogonality assumption in the time-frequency domain [27],
which is suitable only for speech mixtures. Since music mixtures frequently
include both spectral and temporal overlaps of sources, the sparse regularizer
for S; may be inappropriate.
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To address this issue, we propose the introduction of a novel regulariza-
tion term specifically tailored for bleeding-sound reduction. Considering the
characteristics (a) and (b) described in Section 1, both the diagonal and off-
diagonal elements of the nonnegative mixing matrix A; should be subject to
regularization instead of S;. Such regularization also eliminates the risk of
obtaining trivial solution of A; in TCNMF. The proposed method can be in-
terpreted as a MAP estimation, where the bleeding-sound levels are assumed
to be generated by the gamma distribution prior.

3.2 Generative Model of KL-divergence-based NMF

Cemgil [5] revealed the generative model of NMF with KL divergence (KL-
NMF): the minimization problem in KLNMF is equivalent to the maximum
likelihood (ML) estimation with the Poisson generative model. For (17), the
following generative model is assumed:

Zimng ™ P(Zimnj; aimnsinj)a (24)

1
A= e M\ 25
P(z; M) F(z+1)e , (25)

where Zimn; € N is a random variable that satisfies Zim; = b+ > Zimnj,
P(z; A) is the Poisson distribution with the random variable z € N and pa-
rameter A > 0, I'(z + 1) = z! is the gamma function, and b is a random
variable that obeys uniform distribution in the range [0,1). Also, Zimn; is
assumed to be mutually independent w.r.t. ¢, m, n, and j. The Poisson ran-
dom variables have the superposition property, namely, when z,, ~ P(z,; An)
and x = ) z,, the marginal probability is given by p(z) = P(z;>", An)-
Therefore, the marginal log-likelihood of X; is given by

log p(Xi; Ai, Si)
= IOg H Z p(xinm; sznj)p(zzmn]7 a'imnsinj)

M,j Zimnj
=log[[P (ximﬁ > aimnsinj>
m,j n
= Z lximj logZaimnsmj - ZaimnSinj —logI'(zim; +1)| . (26)
m,j n n

The maximization of (26) w.r.t. ajmn and S;,; for all ¢ (ML estimation) is
equivalent to the minimization of (18).
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3.3 A Priori Generative Model for Bleeding-sound Levels

With the proposed method, to avoid the trivial solution of A;, we introduce
the following a priori generative model into the diagonal and off-diagonal
elements of A;:

o 0(aimn — 1) (m=n)
Himn {g(aimn; k,0) (m#mn)’ @7
Gla; h,0) = = (kl)ok - (28)

where §(a) is the Dirac’s delta distribution and G(a; k, 6) is the gamma distri-
bution with the random variable a > 0 and shape and scale parameters k > 0
and 6 > 0. Note that the gamma distribution is a conjugate prior of the
Poisson generative model (24). In addition, a;m, is assumed to be mutually
independent w.r.t. i, m, and n; thus, the prior distribution of A; becomes

p(Azakao): H p(azmn) H p(aimn;kao)

m,n=m m,n#m
m,n=m m,n#m

The prior (29) enables us to control the probability of off-diagonal elements
of A; (relative leakage levels of bleeding sound) by k and 6, while restricting
all the diagonal elements to be unity. As shown in Figure 4, we can avoid
Qimn = 0 for all m # n, which is the trivial solution of A;, by setting the
shape parameter to k > 1. Hereafter, we consider k£ > 1 only.

For the activation matrix S;, we do not assume explicit structure, but only
the nonnegativity prior is used as follows:

1
Sing ~ lim =Z[0 < 84, <
J 8 B [ J 6]

— 00

where 3 is the normalized coefficient and Z[-] denotes a binary-valued function
that has value one when its argument is true and zero otherwise. Similar to
A;, Sinj is mutually independent w.r.t. 7, n, and j, and the prior distribution
of S; becomes

p(S;) = Hp(smj)

o< [TZI0 < sinjl. (31)

n,J
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Figure 4: Shape of (a) probabilistic density function of gamma distribution and (b) its
corresponding regularization function.

8.4 Cost Function for MAP Estimation

On the basis of the above-mentioned prior distributions, we estimate variables
A; and S; in the MAP sense. The posterior distribution can be obtained as

H p(A;, Si; X;) Hp(Xi; A, S;) p(Ai; k,0)p(S;) . (32)

¢ Likelihood Priors

By taking a negative logarithm of (32), we can decompose the right side of
(32) as

J == [logp(Xi; Ai, S;) + log p(Ay; k. 0) + log p(S:)] - (33)

i
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From (26), (29), and (31), the cost function J is obtained as

j = Z —Limj IOg Z AimnSing + Z AimnSing + IOgF(xsz + ]-)

i,m,J n
1
+ Z [@imn =1] + Z [—(k —1)log aimn + eaimn]
i,m,n=m i,m,n#Em
+ Z H[O < Smj], (34)
i,n,J
where I[-] = —log Z|-] denotes an indicator function that has value zero when

its argument is true and oo otherwise. The MAP estimation of A; and S; is
a minimization problem of (34), and this minimization w.r.t. A; and S; is
equivalent to the following problem:

manDKL X |A S Z R azmn7 ,9)
i,m,n#m
S.t. Qimn, Sing > 0 Vi,m,n,j and ajmn =1 Vm =n, (35)
where
1
R(aimn; k, 9) = |:—(k - 1) 10g Aimn + eaimn:| (36)

is the regularizer that corresponds to the gamma distribution prior (28) for
the off-diagonal elements of A;.

3.5 Derivation of Optimization Algorithm

The minimization problem (35) can be solved using a majorization-minimi-
zation (MM) algorithm [6, 38], which is often used in the context of NMF
optimization. The majorization function of the fidelity term Dkr,(X;|A;S;)
can be designed using Jensen’s inequality as follows:

Dxk1,(X;|A;S;)

= E 1 E E
= —Timy 108 QimnSing T Aimn Sing
n n

i,m,J
Aimn Sing
= § —Timyj IOgE &mn] +§ Qimn Sing
. . imnj
,m, ]
azmnsznj
< § xtmy§ fzmnj +§ Qimn Sing
; . imnj
t,m, 3

= D+(Ai, SZ', :), (37)
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where = denotes equality up to a constant, &imny > 0 is an auxiliary variable
that satisfies ), &imnj = 1, and Z is a set of &pyj for all i, m, j, and n. The
equality in (37) holds if and only if

a; Sinj . .
gzmny = VZ,’I’TL,],TL. (38)
’ Zn’ Aimn’ Sin'j

From (37), the MM problem is obtained as

,}\I,lé{}i : D+ (Aiy Si7 E) + ' Z R(aimn; kv 9)
% i,m,n#m
s.t. Aimny Sing 2 0 v7:7"717’”7.].7 gzmnj >0 Vi7ma nmja Z&zmn] =1 Viam7j7

n

and imn = 1 Ym = n. (39)

By setting the derivative of the majorization function (39) w.r.t. @jmy, and
Sin; to zero and substituting (38) for &;mn;, we can derive the update rules.
Since the regularizer does not affect s;;,;, the update rule of s;,; is the same
as that of simple KLNMF [6] and expressed as

E : — Fimj .
mn
my Aimn! Sin!j
E :’rn Aimn

For the off-diagonal elements a;p,, (m # n), we have the following equations
from the derivative of the majorization function:

Z <_33imj i@m + Smj) —(k=1)

- mmn
J

(40)

Sing < Sing

1
- =0. 41
+5=0 (41)

Gimn

Therefore, we have

(k - 1) + Zj ximjgimnj
g+ 2 sing

The update rule of the off-diagonal elements a;,, is derived by substituting
(38) as

(42)

Aimn =

(k o 1) + Gimn Zj Zn’ (iirr;f/sin’j Sinj
T .
§ 20 8inj

The nonnegativity of a;m, and s;,; can hold by setting their initial values

to nonnegative values. Since the value of the diagonal elements of A; is

restricted, we initialize the diagonal elements a;;,, (m = n) with unity and
fix them during the iterative optimization of the other variables.

Qimn < (43)
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The efficient matrix-form implementation of (40) and (43) is as follows:

(k-1)+ Ao (X5 8?)

A; « T st Vi, (44)

dia'g(Ai) A [1’17"' »1]T Viv (45)
AT

S, S; ® ﬁ Vi, (46)

where diag(:) returns a vector that consists of the diagonal elements of the
input square matrix. Note that (44) will change the value of the diagonal
elements of A;, but they are immediately replaced with unity by (45). It is
guaranteed that the iterative calculation of (44)—(46) monotonically decreases
the cost function (34).

3.6 Balancing Between Fidelity Term and Regularizer

With the proposed method, the diagonal elements of A; are restricted to
be unity so that the off-diagonal elements correspond to the relative leakage
levels of bleeding sound. The KL divergence (18) also has a scale-dependent
property, namely,

Dk (aX;|aA;S;) = aDkr(X;|A;S;), (47)

where o > 0 is an arbitrary coefficient. These facts mean that an observed
gain of X, i.e., the signal amplitude in each microphone, affects the balance
of the fidelity term ), Dkr,(X;|A;S;) and regularizer ) R(aimn; k,0)
in (35).

To solve this problem, we also parameterize the observed gain. The follow-
ing normalization is carried out for the observed signal &(t) before we apply
the proposed method:

i,m,n#m

Z(t) « —&(t) Vt, (48)
v = max({abs(2(t))}/_,) (49)

(0%
v

where max(-) returns the maximum scalar value of the input set. After the
normalization (48), a dynamic range of {Z(¢)}£_; becomes +«. Similar to x in
(19), we can control the balance between the fidelity term and regularizer by «.
If we set a to a small value, the regularizer strongly affects the optimization.
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3.7 Reconstruction of Estimated Signals

Similar to conventional TCNMF, the complex-valued estimated signal Yn(c)

can be recovered by applying Wiener filtering to the complex-valued observed
(c)

signal z;;,, as follows:

© _ (Gimmims)"_(c) (50)

I (@imnSing)? T
Since @imm = 1, (50) can be implemented as

2
© _ | _Si ©)
yijn - |:A'»25'~2:| $ijm’ (51)
t ~1 dm,j

where [-],,, ; denotes an (m,j) element of the input matrix. After Wiener

filtering, the estimated signal Yn(c) is converted to the time-domain signal
Jn(t) via the inverse STFT. Then, the signal gain is recovered by

g(t) « gg(t) Vi, (52)

4 Experimental Results and Discussion

To assess the efficacy of the proposed method, we conducted three experiments
to evaluate blind bleeding-sound reduction: (i) a simulation-based experiment
using randomly produced various mixing matrices A;, (ii) simulation-based
experiment using various sound sources produced by a musical instrument
digital interface (MIDI), and (iii) realistic experiment employing impulse re-
sponses obtained from an actual music studio with professionally used appa-
ratuses and a dataset comprising professionally produced music recordings.
In both experiments, we compared five methods, i.e., IVA [25], ILRMA [11],
DMNMF [33], the conventional TCNMF [21], and the proposed method. Here-
after, we respectively denote the conventional and proposed TCNMF methods
by Lg.s TCNMF and GammaTCNMF throughout the paper. IVA and ILRMA
estimate the complex-valued demixing matrix Wi(c), thus are phase-aware BSS
methods. The other methods are the phase-insensitive methods that only use
amplitude or power spectrograms, so it is likely to work even when spatial
aliasing problems occur.

4.1  Simulation-based Experiment Using Various Random Miring
Matrices

4.1.1  Conditions

The observed music mixture signal was simulated using songKitamura [9, 8],
which is an MIDI-based artificial music dataset. We chose four musical in-
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struments, clarinet (Cl.), oboe (Ob.), piano (Pf.), and trombone (Tb.), as

dry sources ST(LC) and prepared a four-channel observed signal :BEJC) so that
M = N = 4. To simulate bleeding sound, we mixed these instrumental sounds
sz(gf) using the frequency-wise nonnegative random mixing matrix A; € R;V[OXN
as follows:

a:gjc) = Zlvs%), (53)
where the diagonal and off-diagonal elements of A; were set to unity and
uniformly distributed random values in the range (0,0.2) for all i, respec-
tively. In this experiment, 10 observed mixtures were prepared using different
pseudo-random seeds, i.e., ten different mixing matrices A;. For all signals, we
performed STFT using a 4096-point-long Hamming window with half-overlap
shifting, where a sampling frequency of the signals was 44.1 kHz. The numbers
of frequency bins and time frames were I = 2049 and J = 109, respectively.

For DMNMF, Ly 5-TCNMF, and Gamma-TCNMF, the initial value of A;
was set as follows: the diagonal and off-diagonal elements were set to unity and
the uniformly distributed random value in the range (0, 0.1), respectively. The
other parameters were initialized by the uniformly distributed random value
in the range (0,1). The initial value of VVZ-(C) for IVA and ILRMA was set to
an inverse matrix of the initial mixing matrix used in DMNMF, L 5-TCNMF,
and Gamma-TCNMF. We also used the numerically stable update rule of the
demixing matrix in both IVA and ILRMA, which is called iterative source
steering [30], and the estimated source was recovered using (7). We then
applied the projection-back technique [24] to the estimated signal to recover
the frequency-wise signal scales. For ILRMA and DMNMF, the number of
basis vectors in the NMF source model, L, was set to 10, 30, and 80.

As an evaluation criterion, we used the source-to-distortion ratio (SDR),
source-to-interference ratio (SIR), and sources-to-artifact ratio (SAR), which
can be calculated using the bss_ eval_sources function implemented in
BSS_EVAL_Toolbox [13]. SIR and SAR are used to quantify the amount of
interference rejection and the absence of artificial distortion of the estimated
signal, respectively. SDR is used to quantify the overall separation perfor-
mance, as SDR is in good agreement with both SIR and SAR for BSS. As
described in condition (a) in Section 1, the SDR of the observed signals (input
SDR) is relatively high. We calculated the improvements from the input SDR
for each source to evaluate the performance of each method.

4.1.2  Influence of Hyperparameters

Ly 5-TCNMF has a hyperparameter p which controls the intensity of the
regularization in (19). Figure 5 shows SDR improvements obtained by Lg 5-
TCNMF with various weight coefficients p, where each score is the average
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Figure 5: SDR improvements for simulated data using various random mixing matrices
obtained by Lo 5-TCNMF with various weight coefficients p, where each plot is average
over 10 different observed mixtures and four instrumental sources.

over ten random mixing matrices and four instrumental sources. We changed
1 200 times on logarithmic scale in the range [0.01, 10]; thus, we can confirm
that the conventional TCNMF can achieve more than 3 dB SDR improvement
when we select the appropriate hyperparameters. Ly 5-TCNMF performs best
for u = 0.56 under these conditions.

Gamma-TCNMF has three hyperparameters, k, 6, and «. For the shape
and scale parameters, k and 6, the shape of the probabilistic density function
G(aimn; k, 0) or the regularizer R(aimn; k, 0), which are respectively illustrated
in Figure 4 (a) or (b), may be useful for the hyperparameter tuning. Since
the off-diagonal elements of A; represent the relative leakage levels of bleeding
sound, they should be in the appropriate range, e.g., [0.05,0.6]. On the basis
of this range, we can tune k and 6. However, « directly affects the perfor-
mance of Gamma-TCNMF because this parameter controls the intensity of
the regularization as well as p in (19) of Ly 5-TCNMF.

Figure 6 shows average SDR improvements of Gamma-TCNMF with vari-
ous hyperparameter settings. We chose three values for each shape and scale
parameter, namely, £ = 1.10, 1.25, and 1.60 and 6§ = 0.3, 0.6, and 1.3, resulting
in nine patterns, as shown in Figure 6. We can confirm that Gamma-TCNMF
can achieve more than 5 dB SDR improvement when we select the appropriate
hyperparameters. Gamma-TCNMF performs best for £ = 1.25, § = 0.6, and
« = 0.006 under these conditions. Although the optimal k and 6 depend on
the weight parameter «, the achievable best performance is almost the same
for different parameter settings.
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Figure 6: SDR improvements for simulated data using various random mixing matrices
obtained by Gamma-TCNMF with various «, k, and 6, where each plot is average over 10
different observed mixtures and four instrumental sources.

4.1.8  Performance Comparison

Figure 7 shows the comparison of SDR improvements among the five methods,
where the hyperparameters of Lg5- and Gamma-TCNMFs were set to their
optimal values. The violin plots in Figure 7 shows the distributions of the
results for 10 different random mixing matrices. The white circle indicates a
median value, the gray vertical line shows the range of 25-75 percentiles, and
the violin curve is an estimated distribution. In addition, Table 1 summarizes
the average evaluation scores for the input, output, and improvements. The
input SDR and SIR refer to the scores of the observed signals recorded by
close microphones for each source, while the output SDR, SIR, and SAR
represent the scores of the estimated signals. The improvement is calculated
as the difference between the output and input scores. Since SAR measures
the absence of artifacts introduced by BSS, the input SAR is infinity. From
these results, we can confirm that the phase-aware BSS methods, IVA and
ILRMA, cannot reduce the bleeding sound. This is because the observed
mixture signal in this experiment was produced using the nonnegative random
mixing matrix A; as (53), and the phase information is useless for estimating

the demixing matrix. As a result, the demixing matrix m(c) estimated by
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Figure 7: Violin plots of SDR improvements for simulated data using various random mixing
matrices. In each method, white circle indicates median value, gray vertical line shows range
of 25-75 percentiles, and violin curve is estimated distribution.

IVA or ILRMA contains many errors, which simultaneously degrade SIR and
introduce harmful distortions into the estimated signal ygc»). The SNR of the
observed signal is relatively high in the context of bleeding-sound reduction,
resulting in higher input SDR/SIR as shown in Table 1. In such situations,
even slight errors in the estimated signals can lead to significant SIR and SAR
degradations, resulting in the poor SDR, improvements observed for IVA and
ILRMA in Figure 7. DMNMF has the potential to reduce bleeding sound,
but its SDR improvements did not substantially exceed 0 dB. This result
indicates the difficulty of parameter optimization in DMNMF. For both Lg 5-
and Gamma-TCNMFs, we can confirm that the average SDR improvements
exceed 0 dB. In particular, Gamma-TCNMF outperformed Lg 5-TCNMF by
more than 2 dB. This improvement is significant to achieve high-quality post-
processing or sound reinforcement of a musical performance.

4.2  Simulation-based Experiment Using Various Source Signals

In this subsection, we evaluated the performance using various MIDI-based
source signals, where the mixing matrix A; was fixed to a single matrix gen-
erated in the same manner as described in Section 4.1.1. Furthermore, to
ensure equitable comparison of the performance, the optimal hyperparame-
ters for Lgs- and Gamma-TCNMFs were experimentally determined using
a development dataset. Subsequently, the performance of each method was
assessed using a separate test dataset.
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Table 1: Average SDR, SIR, and SAR values for simulated data using various random
mixing matrices.

Input Output SDR Input Output SIR Output

Method SDR SDR imp. SIR SIR imp. SAR

@B | (@B | (@B | (@B | [aB] | (@B | [dB]

IVA -4.18 -18.45 -2.80 -17.24 8.90
ILRMA (L=10) 1.35 -12.92 4.45 -10.00 14.45
ILRMA (L=30) 3.09 -11.18 6.41 -8.03 14.42
ILRMA (L=80) 2.15 -12.12 5.52 -8.92 13.93
DMNMEF (L=10) 14.97 10.92 -3.35 14.44 22.08 7.63 11.46
DMNMEF (L=30) : 13.44 -0.83 : 24.46 10.01 13.90
DMNMEF (L=80) 14.30 0.03 25.18 10.74 14.72
Ly.5-TCNMF 17.65 3.38 19.86 5.42 22.30
Gamma-TCNMF 20.20 5.93 23.27 8.82 23.34

(proposed)

4.2.1 Conditions

To confirm the efficacy for various source signals, we used the dataset called
Slakh2100-reduz [12], which contains 1710 songs featuring at least four sources:
Pf., bass (Ba.), guitar (Gt.), and drums (Dr.). We extracted the segments last-
ing 30 to 60 seconds from all songs for these four sources. From these segments,
we randomly selected 30 songs in which each source is active for at least 80%
of the duration. Among them, 10 songs were used as development data, and
the remaining 20 were used as test data. Other experimental conditions were
the same as those described in Section 4.1.1. The numbers of frequency bins
and time frames were I = 2049 and J = 647, respectively.

4.2.2  Ezxperimental Analysis of Optimal Hyperparameters Using Development
Dataset

To determine the optimal hyperparameter settings for Lps- and Gamma-
TCNMFs, we used a development dataset comprising 10 songs. Figures 8
and 9 represent SDR improvements for various hyperparameter settings in
Lg 5- and Gamma-TCNMFs, under the same conditions as those described in
Section 4.1.1. Similar to the trends observed in Figures 5 and 6, both meth-
ods exhibit significant SDR improvements when their hyperparameters are
optimally tuned. The optimal settings identified in Figures 8 and 9 (u = 0.78
for Lo 5s-TCNMF and k£ = 1.1, § = 1.3, and a = 0.0002 for Gamma-TCNMF)
were used in subsequent experiments using test data.

4.2.8 Performance Comparison Using Test Dataset

Figure 10 shows the comparison of SDR improvements among the five meth-
ods, where each violin plot includes the results of 20 songs. Also, Table 2
summarizes the average evaluation scores. In this experiment, both Ly 5 and
GammaTCNMFs achieve comparable SDR improvements. However, the re-
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Figure 8: SDR improvements for simulated data (development data) using various source
signals obtained by Lo 5-TCNMF with various weight coefficients p, where each plot is
average over 10 different source signals and four instrumental sources.
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Figure 9: SDR improvements for simulated data (development data) using various source
signals obtained by Gamma-TCNMF with various «, k, and 6, where each plot is average
over 10 different source signals and four instrumental sources.

sults in Table 2 show that GammaTCNMF outperforms Ly s TCNMF by ap-
proximately 0.58 dB on average, demonstrating its superiority for the various
source signals.
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Figure 10: Violin plots of SDR improvements for simulated data using various source signals.
In each method, white circle indicates median value, gray vertical line shows range of 25-75
percentiles, and violin curve is estimated distribution.

Table 2: Average SDR, SIR, and SAR values for simulated data using various source signals
(test data).

Input Output SDR Input Output SIR Output

Method SDR SDR imp. SIR SIR imp. SAR

[dB] [dB] [dB] [dB] [dB] [dB] [dB]

IVA 5.20 -14.46 9.10 -6.06 4.16
ILRMA (L=10) 10.07 -4.65 23.01 7.85 11.65
ILRMA (L=30) 11.16 -3.56 24.64 9.48 12.51
ILRMA (L=80) 11.89 -2.84 25.17 10.01 13.17
DMNMF (L=10) 14.72 8.72 -6.00 15.16 24.93 9.77 8.89
DMNMF (L=30) : 9.22 -5.50 : 25.14 9.97 9.42
DMNMEF (L=80) 9.84 -4.88 25.56 10.40 10.03
Lo.5-TCNMF 19.02 4.30 22.39 7.23 21.97
Gamma-TCNMF 19.60 4.88 24.30 9.14 21.58

(proposed)

4.3 Realistic Experiment Using Impulse Responses

In this subsection, to imitate actual bleeding sounds within the observed sig-
nals, impulse responses were measured at an authentic music studio envi-
ronment. In addition, a dataset comprising professionally produced music
recordings was used as dry source signals.

4.8.1 Conditions

As the dry source signals, we used 20 songs randomly selected from DSD100
[4], divided equally into 10 development songs and 10 test songs. This dataset
consists of full lengths music tracks along with their isolated Dr., Ba., vo-
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cals and others signals. The dry sources of each source were extracted from
segments lasting 60 to 90 seconds from each track.

To replicate realistic bleeding sounds observed in professional musical per-
formances or music recordings, impulse responses were measured at an actual
music studio with professionally used apparatuses. The setup for this measure-
ment is depicted in Figure 11. Within this recording environment, the audio
captured by the first microphone (Microphone 1 in Figure 11) was input to
a mixing console and subsequently emitted through a monitor loudspeaker
positioned at the corner of the room. Such conditions simulate the common
setup found in professional music studios. As a result, the first source (Source
1 in Figure 11) is recorded with a larger volume as bleeding sound into the
other microphones compared to the other sources. The reverberation time of
these impulse responses was around Tgo = 330 ms.

3.4m
] 1
g1
~i £
oi  Source 3 =3
! (drums) T Source 1
v Auratone 5¢ ! (vocals)
1.0m v Auratone 5¢
j€ - >
5 Qé _______ 1om |
Microphone 3 : Microphone 1 O
SHURE SM57 SHURE SM58
c Source 4
™ (other) ;
@ Auratone 5¢ Source 2
(bass)
4.__9_'_7__'2___, Microphone 2 Auratone 5¢
Microphone 4
SHURE SM57
£ Monitor
=] loudspeaker : c
T IGENELEC 1031A o
Digital mixingconsole | & ...~ %
Yamaha 01V96i

AD/DA converter
Steinberg UR824

Figure 11: Recording environment of impulse response signals, which consists of an actual
music studio with professionally used apparatuses. Only first source (Source 1) is amplified
and emitted by monitor loudspeaker.
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To set the initial values of each method, we used the same manner as those
in Section 4.1.1. We used 10 pseudo-random seeds for these initializations,
resulting in 10 results for each of 10 songs. The other experimental conditions
were the same as those in Section 4.1.1. The numbers of frequency bins and
time frames were I = 2049 and J = 647, respectively.

4.8.2  Ezperimental Analysis of Optimal Hyperparameters Using Development
Dataset

To determine the optimal hyperparameter settings for Lgs- and Gamma-
TCNMFs, we used a development dataset comprising 10 songs. Figures 12
and 13 show the average SDR improvements achieved by Lg 5- and Gamma-
TCNMEFs, respectively, across different hyperparameter settings. Under these
experimental conditions, Ly 5-TCNMF yielded unsatisfactory results, whereas
Gamma-TCNMF exhibited a notable improvement of over 1.5 dB with appro-
priate hyperparameter selections. The best hyperparameters obtained from
this experiment were p = 0.0749 for Lo 5-TCNMF, and k£ = 1.02, § = 2.15,
and a = 0.0008 for Gamma-TCNMF.

1
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Figure 12: SDR improvements for realistic data (development data) obtained by Lg.5-
TCNMF with various weight coefficients p, where each plot is average over 10 songs, 10
random seeds, and four instrumental sources.



26 Mizobuchi et al.

-k =1.02,0 = 1.00 —o—k=1.05,0=1.00 —o-k=110,0 =100
5ok =1.02,0 =215 —o—k=1050=215 —6-k=110,0=2.15
-3k =1.02,0 = 4.64 ——k=1.05,0 = 4.64 —& -k =110,0 =464
2 2 2
Kemes
15 I 154 0 15 -
—_ AN ) X P : X
S 1 RN 14/ A 14 X &
= /m / \\ ; / /fX /
. X / X
T 05 ¢ x\\| os 1 PO\ osq{ A
ey SN A A
g s\l | ! A e A
20 A AR
s / 3 / ! ] B
g -05 1 ’ 205 - j -05 ! '
e AR WIN N
K . i -1 ’ adi )]
H I
a ! l, ! I
2 / I : !
54 15 - ! A5 4 /
' [ | |
2 ! . 2 2 ¢

0.0001 0.001 0.01 0.0001 0.001  0.01 0.0001 0.001  0.01

Weight parameter o

Figure 13: SDR improvements for realistic data (development data) obtained by Gamma-
TCNMF with various «, k, and 0, where each plot is average over 10 songs, 10 random
seeds, and four instrumental sources.

4.8.8 Performance Comparison Using Test Dataset

Figure 14 shows the results of SDR improvements comparing the performance
of five methods on the test 10 songs. Also, Figure 15 shows only the results
of Lgs- and Gamma-TCNMFs in Figure 14. The colored dots represent the
average of SDR improvement of four sources, and there are 100 plots in each
method, including 10 songs with 10 random initialization patterns. Further-
more, Table 3 summarizes the average evaluation scores. We can confirm that
the phase-aware BSS methods, IVA and ILRMA, cannot reduce the bleeding
sound in the observed signal. This is because spatial aliasing problems oc-
curred due to the distance between the microphones, as depicted in Figure
11. DMNMF also fails to achieve bleeding-sound reduction. Compared to the
results in Section 4.1.3, the performance of both Lg 5- and Gamma-TCNMFs
has deteriorated. However, Gamma-TCNMEF still achieves SDR improvement
scores exceeding 0 dB, demonstrating the effectiveness even in realistic envi-
ronments.

In addition, to rigorously compare Lg 5- and Gamma-TCNMFs, 100 ran-
dom initialization patterns were applied to each of the 10 songs in the test
dataset. The average and standard deviation (SD) values obtained by this
experiment are summarized in Table 4. This result also shows the efficacy
of Gamma-TCNMF. Furthermore, we can confirm that the SD of Gamma-
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Figure 14: Violin plots of SDR improvements for realistic data (test data). In each method,
white circle indicates median value, gray vertical line shows range of 25—75 percentiles, and
violin curve is estimated distribution.
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Figure 15: Violin plots of SDR improvements for realistic data (test data) obtained by Lo.5-
and Gamma-TCNMFs.

TCNMF is significantly small in all the songs. While typical NMF-based algo-
rithms often face challenges due to the significant influence of initial parameter
values, Gamma-TCNMF exhibits robustness against parameter initialization,
yielding superior results, as demonstrated in Table 4. This robustness is a
desirable property, particularly in practical applications.



28 Mizobuchi et al.

Table 3: Average SDR, SIR, and SAR values for realistic data (test data).

Input Output SDR Input Output SIR Output

Method SDR SDR imp. SIR SIR imp. SAR
[dB] [dB] [dB] [dB] [dB] [dB] [dB]

IVA -41.38 -68.20 -7.02 -37.36 -28.99
ILRMA (L=10) 6.67 -20.15 22.41 -7.92 7.97
ILRMA (L=30) 7.37 -19.46 23.64 -6.70 8.43
ILRMA (L=80) 7.47 -19.35 23.83 -6.51 8.44
DMNMF (L=10) 7.91 -18.92 o . 30.70 0.36 7.98
DMNMF (L=30) | 2082 867 | <1815 | S0 1 3106 0.72 8.74
DMNMEF (L=80) 9.18 -17.64 31.21 0.87 9.23
Lo s~TCNMF 24.93 -1.90 33.11 2.77 26.56
Gamma-TCNMF 28.59 1.76 35.75 5.41 30.16
(proposed)

Table 4: Average and SD values [dB] of SDR improvements for realistic data (test data)
over 100 parameter initializations for each song.

Method | Conventional TCNMF Proposed TCNMF
Music no. Average SD Average SD
4 —0.15 0.23 1.23 5.33%x10° "
5 —0.95 0.51 2.33 1.83x10°°
19 —1.93 1.16 1.61 1.42x1074
20 —0.18 0.61 2.25 7.66x10°°
34 -3.19 0.78 0.52 6.82x10°°
70 —0.32 0.49 2.34 3.57x107°
71 —0.19 0.81 2.98 8.71x10~"
el —5.02 1.36 1.97 1.09x1073
79 —2.52 0.84 1.69 1.22x10°°
99 —4.15 0.56 0.72 2.94%x1072

5 Initialization Robustness Analysis

In Section 4, we demonstrated that Gamma-TCNMF has robustness against
initialization of the optimization parameters. In this section, we further inves-
tigate the factors behind this robustness through theoretical and experimental
analysis.

5.1 Theoretical Analysis of Convexity of Cost Function

The cost function of TCNMF is based on KL divergence (18). It is well
known that KLNMF becomes a convex optimization problem when either two
variables;, A; and S;, is fixed [2]. TCNMF typically does not become convex
optimization due to the simultaneous optimization of both variables, A; and
S;. Moreover, Lo 5-TCNMF (19) includes a non-convex regularization term
represented by the Ly s norm, making it non-convex even if one variable is
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fixed. On the other hand, the gamma-distribution-based regularization term
(36) employed in Gamma-TCNMEF is convex with respect to parameter a > 0:

d*R(a)  d? a
@ = g (b= Dloga+ 5]
=(k—1)a"?
>0 (Vk>1). (54)

Since the sum of convex functions retains convexity, Gamma-TCNMF be-
comes convex optimization when one of the two variables is fixed. Although
Gamma-TCNMF simultaneously estimates A; and S;, the diagonal elements
of A; are constrained to unity by the Dirac’s delta distribution prior. This con-
straint may transforms the problem (35) into convex optimization, namely, if
KLNMF with fixed diagonal elements of A; is a convex optimization problem,
Gamma-TCNMF that consists of KL divergence and the convex regulariza-
tion term also becomes convex. On the basis of this hypothesis, we conduct a
theoretical analysis to ascertain the convexity of the cost function employed
in Gamma-TCNMEF.

To check the convexity of KL divergence with fixed diagonal elements,
we calculate the Hessian matrix. We consider the simplest case of KLNMF

(I=J=1and M =2) as
Bj ~ [alz ﬂ Ej ! (55)

where x1 and x5 are nonnegative data and a1, as, $1, and so are nonnegative
optimization parameters. KL divergence between left- and right-hand sides
becomes

J = —x1log(s1 + a1s2) — xalog(assy + s2) + (1 + az)s1 + (1 + aq)s2. (56)

The second derivatives of J are as follows:

2 2
aaa? - (s1 —T—lcffsQ)Q’ (57)
2
831;97@ - (58)
2
83129751 - (51 f_ljf82)2’ (59)
2 —
e e SR @
?F _ wast o

da3 (azs1 + s9)2’
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0? —29(89 + 2ass
J _ 2(s2 + 221) 41 (62)
Oaz0s1 (0,281 + 82)
9?2 Taa
T e (63)
0as0s9 (a281 + 82)2
82j _ 1 + .’I/'Qag (64)
Ds? (s1+a1s2)?  (agsi + s2)?’
0?T T1a Lo
_ 101 _+ 202 - (65)
881652 (81 + a152) (a251 + 52)
02T x1a? T
= 1 : . (66)
0s3 (s1+ais2) (azs1 + $2)
The Hessian matrix H can be obtained as
92T %7 9T 9%
da? Oay0as Oa10s1 Oaq10s2
82:7 82.27 raQ:y S
H = |%0%= by Oula Ougse ) (67)
da10s, Oas0s, 052 951059
v 3?*J 3T 3T
day10s2 Das0s2 051082 85%
Let z be an arbitrary vector as z = [z1, 22, 23, 24]T € R*. To check the
positive-semidefiniteness of H, we obtain zT Hz as follows:
02T 02T 02T T 2T
T 2 2 2 2
z Hz = 27 + 25 + z5 + zi+2 Z1%
a2 9a2 7 9527 T 95274 dards, " °
82‘722—1—82‘722—1—827"722—1—827]22
6@1852 1=4 8&2681 273 8@2882 24 881652 34
=pi(z1 +@1)> +p2(22 + @2)* + (p3 — pa) (23 + g3)°
+ (p5 — p6) (24 + q1)* + (p7 — p3), (68)
where, p1,p2, -+ ,ps and ¢1,qo, - - - , gs are positive and real constants, respec-

tively. From (68), 2T Hz can take either positive and negative values depend-
ing on the third, fourth, and fifth terms in (68). This fact shows that the
Hessian matrix H is not always a positive semidefinite matrix. Thus, KL-
NMF and Gamma-TCNMF are not always a convex optimization problem
even if the diagonal elements of A; are fixed to unity for all i.

5.2 Experimental Analysis of Initialization Robustness and Value Range
of Diagonal Elements

As described in Section 5.1, Gamma-TCNMF is not a convex optimization
problem similar to simple KLNMF with simultaneous optimization of A; and
S;. Nevertheless, the experimental results in Table 4 show obvious robustness
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against the parameter initialization. A key disparity between simple KLNMF
and the proposed approach lies in the imposition of constraints ensuring the
unity of diagonal elements within A;. On the basis of these facts, in this
subsection, we conduct and experimental analysis to elucidate the relationship
between initialization robustness and the constraint imposed on the diagonal
elements in A;.

In this experiment, the range of the diagonal elements in A; is paramet-
rically adjusted by introducing the gamma distribution prior with a shape
parameter kg > 1 and scale parameter ; = 1/(kq — 1). The probability
density function of this prior distribution is depicted in Figure 16, where the
mode, denoted as (kq — 1)84, is fixed at unity. The variance of the gamma
distribution can be controlled by the shape parameter k. When kg — oo, this
method coincides with Gamma-TCNMF, i.e., the diagonal elements of A; are
constrained to unity. Conversely, as the shape parameter approaches unity,
the gamma distribution converges towards a uniform distribution, thereby
manifesting a noninformative prior for the diagonal elements of A;. The up-
date rule of A; with the above-mentioned prior can be derived as

(ka—1D)+aimn 3= ﬁsm (Vm = n)
i 4 (ka=1)+3; sin; o o
imn (kDb aimn Xy e e Sims v )
m n
%“FZ]‘ Sing ( 7&
14 -
k=10
i k=30 ||
k=100
:é‘ ) k = 300
" — k= |
: k = 1000
[3)
T gl 7
P
5 o i |
©
Qo
O 4r |
o
2+ T x _ |
0 / '
0 05 1 15 2

Random variable

Figure 16: Gamma distribution prior for diagonal elements of gain matrix A; whose mode
is fixed at unity.
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The shape parameter k; was varied across 11 discrete values spanning
from 1.004 to 108. For the observed signals, we used song no. 70 selected from
the test dataset in Section 4.3.3. The other experimental conditions were the
same as those in Section 4.3.1. Also, the other hyperparameters k, 6, and «
were determined as the same values in Section 4.3.3, which are the optimal
values obtained by the development dataset.

Figure 17 presents the violin plot of the SDR improvement correspond-
ing to each value of k4, while Table 5 provides the average and SD values.
From these results, it is clearly confirmed that the distribution of results
converges towards optimal performance with increasing values of k4. Thus,
we deduce that the robustness against parameter initializations observed in
Gamma-TCNMFS stems from the constraint imposed on diagonal elements,
facilitated by the Dirac’s delta function (28), despite the non-convex property
of the optimization problem. This observation may imply the uniqueness of
the solution, warranting further investigation in future studies.

3 T T T T T T T T T T T
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Shape parameter for diagonal elements k4

Figure 17: Violin plots of SDR improvements for song no. 70 with various kg and 100
initialization patterns.
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Table 5: Average and SD values [dB] of SDR improvements for song no. 70 with various kq
over 100 initialization patterns.

kq | Average [dB] SD [dB]
1.004 0.61 1.025
1.012 2.01 8.241 x 101
1.020 2.30 6.964 x 1071
1.028 2.48 4.912 x 1071
1.036 2.57 4.590 x 1071
1.045 2.66 3.061 x 1071
1.053 2.73 9.995 x 10~3
1.061 2.76 8.157 x 1073
1.070 2.78 4.741 x 1073
1.078 2.80 3.478 x 1073
1.087 2.82 3.012 x 10~3
1.096 2.83 3.160 x 10~3
1.104 2.84 3.760 x 1073
102 2.83 1.547 x 107°
10% 2.83 1.517 x 107°
106 2.83 1.516 x 10~
00 2.83 1.516 x 10~

6 Conclusion

We aimed to reduce the bleeding sound in the observed signal obtained with
close microphones. We proposed a new TCNMF method that regularizes the
relative leakage levels of bleeding sounds and is based on MAP estimation
with the gamma distribution prior. Experiments using simulated and real-
istic mixture signals demonstrated that the proposed method could achieve
the highest bleeding-sound-reduction performance. In addition, we confirmed
that the proposed method is robust to the parameter initializations, which
is a desirable property in practical applications. We also revealed that this
robustness stems from the constraint imposed on diagonal elements of the
mixing matrix.

Since the proposed method has three hyperparameters, an efficient
parameter-tuning method is necessary and is for future work. Further the-
oretical investigation is also required regarding the uniqueness of the solution
in the proposed method.
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