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ABSTRACT
In this paper, we propose a multi-level speech emotion recognition
(SER) system that captures both acoustic and linguistic emotional
features using only speech input. In particular, our approach uti-
lizes an acoustic feature extractor (HuBERT) to process the input
waveform, capturing acoustic emotional features while simultane-
ously performing automatic speech recognition (ASR) to implicitly
learn linguistic information. The ASR-decoded transcriptions are
then fed into a linguistic feature extractor (BERT) to explicitly
encode linguistic emotional features. To combine these features,
we introduce a temporal gated fusion method that dynamically
modulates the contribution of each modality, addressing modal-
ity incongruity issues. Furthermore, integrating multi-attribute
learning for emotion-related attributes such as gender and speak-
ing style, further enhances SER performance. To address gradient
conflicts inherent in multi-attribute learning, we propose a two-
stage fine-tuning framework employing adapters. Additionally, to
mitigate the negative impact of ASR errors, we introduce an er-
ror correction module and a contrastive learning method to align
representations learned from ground-truth text and the decoded
transcriptions. Comprehensive experimental results on the IEMO-
CAP and MELD datasets validate that our method enhances SER
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performance without requiring textual input. Compared to the
acoustic model baseline, our approach achieves a 10.85% improve-
ment in unweighted accuracy on the IEMOCAP dataset.

Keywords: Speech emotion recognition, automatic speech recognition, self-
supervised learning, multi-attribute learning, human-computer in-
teraction.

1 Introduction

Human-computer interactions have become pervasive in our daily lives, and
understanding human emotion is crucial for the development of artificial intel-
ligence [11, 3]. Therefore, research on sentiment analysis and emotion recogni-
tion has attracted increasing attention in both industry and academia [23, 61].
Speech emotion recognition (SER) aims to identify emotional attributes in hu-
man speech [13], and a robust SER system can promote the development of
empathetic chatbots [8] and enrich customer services [44]. This research also
has other applications, such as monitoring the mental state during interviews
[14].

As with other classification tasks, previous SER systems primarily rely
on supervised learning models to learn emotion information from spectro-
grams [4, 66]. However, the scarcity of labeled emotional speech data poses
a significant challenge [1]. Collecting and annotating such data is both time-
consuming and costly, leading to insufficient datasets for training robust su-
pervised deep learning models. To address this issue, researchers focus on
self-supervised learning (SSL) approaches. SSL models, such as HuBERT [19],
have been widely adopted in recent years for various speech processing tasks
[65, 34]. These models are pre-trained on vast amounts of unlabeled speech
data through contrastive learning, capturing underlying acoustic features and
linguistic patterns. Then they can be fine-tuned using smaller labeled datasets
for downstream tasks, including SER. This approach mitigates the data spar-
sity problem by transferring the prior knowledge from the pre-training dataset,
allowing the models to achieve better performance even with limited labeled
data on the target task. Therefore, this work incorporate SSL models as fea-
ture extraction modules. However, learning solely based on discrete emotion
labels may not be sufficient to capture the emotion expressions.

Human emotional expressions are closely related to linguistic and acoustic
attribute information [48, 56]. Linguistic content conveys semantic meaning
and can be decoded by ASR systems. Different speakers may display unique
acoustic features when expressing emotions in various elicitation contexts [64,
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37]. However, in many real-world applications, speaker information is unavail-
able. Therefore, we focus on speaker attributes, such as gender and nation-
ality. Previous studies [27] have confirmed that gender differences generate
specific acoustic patterns in emotional speech. Consequently, incorporating
gender identification can enhance the accuracy of emotion recognition systems.
Other attributes, such as speaking style, may also influence SER but remain
underexplored. For instance, spontaneous speech is generally more challeng-
ing for SER systems than acted speech. Accounting for differences in emotion
expression style may help improve feature extraction and model performance.
Considering that pre-trained SSL models excel in ASR and other tasks, we
propose incorporating multi-attribute learning to improve SER.

Multi-attribute learning involves simultaneously learning multiple emotion-
related attributes, which can be achieved through multitask learning (MTL).
However, MTL poses challenges, particularly concerning gradient conflicts
[67]. For instance, ASR typically requires features invariant to speaker char-
acteristics like identity and speaking style, as these are not directly relevant to
transcription tasks. Conversely, these features are crucial for tasks like gender
classification or speaking style recognition, which are often beneficial for SER.
Moreover, the varying complexities of different tasks can result in imbalanced
learning rates, further exacerbating the gradient conflict problem. Addressing
these conflicts is crucial for leveraging the potential of MTL in SER systems.
Although incorporating ASR can potentially improve SER performance by
implicitly learning linguistic information, speech-only models still face two
main limitations. First, most existing SER systems lack a linguistic feature
extraction module (such as BERT), which can explicitly learn emotional cues
from the text input. Secondly, the ASR transcription inevitably includes
errors of differing severity in each utterance, resulting in degraded feature
extraction compared to ground-truth text transcription. While multimodal
emotion recognition (MER) systems that combine speech and ground-truth
transcriptions as input features do not suffer from these issues, the availability
of multimodal data in practical applications is often limited [5, 30]. Addi-
tionally, previous works often overlook the problem of modality incongruity
[33, 46]. For instance, when negative emotions are expressed sarcastically
(e.g.,“That’s great”), analyzing emotion based solely on linguistic information
becomes challenging [63].

In this paper, we propose a multi-level SER approach that addresses these
issues found in previous studies. Our approach processes speech input to
extract emotional features at multiple levels: the acoustic level and the lin-
guistic level. Initially, we use an acoustic feature extractor to derive acoustic
emotional features directly from the speech signal, capturing prosodic and
paralinguistic cues. Concurrently, we perform ASR to obtain transcriptions
of the speech. The generated transcriptions are then fed into a linguistic
feature extractor to obtain linguistic emotional features, capturing semantic
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cues. By combining these acoustic and linguistic features, our system effec-
tively captures emotional cues at multiple levels. Moreover, to mitigate the
gradient conflict problem inherent in multitask learning, we introduce a two-
stage fine-tuning approach. Building upon the initial training of ASR and
SER tasks, we advance to the second stage by freezing feature extractors and
incorporating adapter structures as auxiliary learnable parameters. These
adapters are trained for additional attribute information recognition, such as
gender and emotion expression style (acted vs. spontaneous), alongside SER.
This proposed fine-tuning method not only resolves the gradient conflict by
sequentially adapting the model for different tasks but also prevents informa-
tion loss that can occur when updating all model parameters in the second
stage. For the modality incongruity during feature fusion, we propose an
attention-based gated fusion method that learns complementary information
from multimodal features. This module is adopted to dynamically modulate
the contribution of each feature representation. Moreover, recognition errors
in the generated transcriptions can cause deviations in semantic feature ex-
traction; therefore, we conduct error correction and incorporate a contrastive
learning method, which encourages feature learning from transcriptions to
align with those learned from ground-truth text to mitigate the impact of
these errors on SER.

The main contributions of this work are as follows:

1. Propose a Multi-level SER System: We propose a multi-level sys-
tem that enhances SER by effectively capturing both acoustic and lin-
guistic emotional features using only speech input.

2. Introduce a Multi-attribute Learning with Two-Stage Fine-
Tuning Framework: To allow for effective multitask learning, we intro-
duce a two-stage fine-tuning framework using adapters in the multi-level
SER system. This approach avoids gradient conflicts by training SER,
ASR, and other related objectives in separate stages.

3. Develop an Attention-based Gated Fusion Model: To handle
modality incongruity, we propose an attention-based gated fusion model
that dynamically modulates the contribution of multimodal features.

4. Enhance Linguistic Features: To mitigate the negative impact of
ASR errors on SER, we employ post-processing techniques (error cor-
rection) and introduce a contrastive learning method to enhance the
linguistic emotional features.

Building upon our previous work [16] that focused on improving SER using
a linguistic feature extractor, this paper further explores the effectiveness of
multi-attribute learning in multi-level SER. We provide an in-depth exami-
nation of the feature fusion method through visualization and enhance the
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system by mitigating the impact of ASR errors on emotional feature extrac-
tion. While we have demonstrated that adapter tuning can address gradient
conflicts in multi-attribute learning for HuBERT [15], this work extends the in-
vestigation by applying adapter tuning in multi-level SER, incorporating both
HuBERT and BERT models. Compared with previous speech-based emo-
tion recognition systems, our approach effectively incorporates multi-attribute
emotion-related information and leverages both acoustic and semantic features
jointly. Experimental results demonstrate that the proposed multi-level sys-
tem significantly outperforms previous SER methods and achieves comparable
performance with multi-modal systems that use the ground-truth text.

2 Related Work

2.1 Self-supervised Learning for Affective Computing

Traditional SER approaches, which rely on handcrafted features and deep
learning models, face significant challenges such as dependence on expert
knowledge and the scarcity of labeled emotional speech data. The advent
of SSL offers a promising solution to the data scarcity problem in SER. Re-
searchers have widely applied SSL models to various downstream tasks [53,
55], such as ASR [52], speaker verification [59], and speech enhancement [51].
As for SER, significant improvements have been achieved by fine-tuning these
models on limited labeled data. For instance, Pepino et al. [40] leveraged
SSL embeddings from Wav2vec 2.0 to outperform traditional CNN and RNN
models on the IEMOCAP and RAVDESS datasets. Building upon this foun-
dation, researchers have explored cross-lingual applications of SSL models in
SER. Pastor et al. [38] utilized HuBERT for cross-lingual emotion recognition,
demonstrating the model’s ability to capture language-independent emotional
features and generalize across different languages. Similarly, in text-based
sentiment analysis, models like BERT [20] have demonstrated superior per-
formance in capturing semantic information [10], which can be applied to
downstream tasks such as emotion recognition [43]. By integrating SSL mod-
els into SER, the field can overcome limitations posed by data scarcity and
domain mismatch. SSL enables models to learn from vast amounts of unla-
beled data, capturing intricate patterns in speech that are crucial for emotion
recognition. This leads to more robust and accurate SER systems, advancing
the capabilities of affective computing.

2.2 Multitask Learning

Although SSL models have significantly enhanced feature extraction capabil-
ities in affective computing, leveraging emotion related attribute information
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can further improve model performance. This leads us to the exploration of
MTL, which is a widely used approach that enhances deep learning model by
leveraging the attribute information [9, 57, 70]. By concurrently optimizing
multiple related tasks, MTL enables the model to learn a shared representa-
tion across tasks while preserving task-discriminative information [68, 49].

In the past decade, this approach has proven effective in SER [7, 50, 24], as
it allows the model to benefit from the information provided by the attribute
tasks. Given the strong correlation between linguistic content and emotional
expression, Cai et al. [7] proposed an MTL approach that combines ASR
and SER using the wav2vec 2.0 model. By jointly training ASR and SER,
the model leverages linguistic information to enhance emotional feature ex-
traction. Their approach achieved state-of-the-art results on the IEMOCAP
dataset using 10 fold cross validation. Ablation studies confirm that incor-
porating ASR through appropriate weight parameters can generate optimal
performance. Furthermore, speaker attributes have been extensively studied
in previous works. On the one hand, different speakers have different ways
of expressing emotions, leading to differences in both acoustic and linguistic
content for the same emotion. Therefore, speaker-dependent SER systems
perform much better than speaker-independent ones [17]. On the other hand,
incorporating gender identification can enhance the feature extraction process
in speaker-independent SER [37]. More recently, Sharma et al. [50] proposed
a multi-lingual MTL approach for SER using pre-trained SSL feature extrac-
tor. The study further highlights the effectiveness of MTL by integrating
other auxiliary tasks including language classification and regression tasks re-
lated to pitch and energy. These additional sources of information have been
shown to be effective on 25 datasets across 13 locales and 7 emotion categories.
Their work underscored the advantages of MTL in enhancing generalization
and performance in SER.

Previous studies on MTL have demonstrated that using auxiliary tasks can
improve SER performance. However, these approaches often encounter the
problem of gradient conflicts between tasks, leading to suboptimal learning.
Unlike existing methods that jointly optimize all tasks simultaneously, our
work addresses this problem by splitting the training objective into two stages,
enabling more effective fine-tuning of multi-attribute information learning.

2.3 Multimodal Emotion Recognition

In human emotional expression, speech conveys nuances through prosody,
tone, and rhythm [58, 21, 61], while text captures semantic content and con-
text crucial for analyzing sentiment [22, 32]. MER leverages the simultaneous
expression of emotions across multiple channels, each contributing distinct
yet complementary information [69]. Consequently, extensive research has fo-
cused on combining these modalities to learn more discriminative features for
emotion recognition.
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One of the pioneering studies on MER by Ngiam et al. [35] proposed
training a bimodal deep belief network fine-tuned to minimize reconstruction
errors in both speech and video modalities. Their approach outperformed
single-modality models, demonstrating the effectiveness of multimodal sys-
tems. With the advancements in deep learning, Poria et al. [41] intro-
duced a model integrating speech and text data for sentiment analysis in
user-generated videos. They employed CNN and RNN networks to extract
speech and textual features, achieving promising results in MER. Building on
these foundational studies, Tsai et al. [60] proposed a multimodal Transformer
employing cross-modal attention to process features from different modalities.
This approach enables the model to capture interactions between modalities
without requiring aligned input. The method was validated on the MOSI
and MOSEI datasets, demonstrating superior performance through the use of
attention mechanisms.

However, despite these advancements, the issue of modality incongruity,
where different modalities provide conflicting or misaligned information, re-
mains unresolved [36, 28]. This incongruity limits models’ ability to effec-
tively integrate multimodal information, resulting in diminished performance
in MER systems. Moreover, practical applications often face single-modality
constraints where only speech is available. Unlike existing approaches that
either ignore modality conflicts or require multiple input modalities, our work
addresses these problems by extracting both acoustic and linguistic informa-
tion from speech alone, while developing effective fusion strategies to mitigate
potential feature conflicts.

3 Proposed Method

In this section, we introduce our proposed SER system. Our approach lever-
ages multi-level feature learning to capture both acoustic and linguistic emo-
tional cues from speech without requiring textual input. Figure 1 illustrates
our proposed approach, which learns emotional information across multiple
hierarchical levels. Initially, an acoustic feature extractor based on HuBERT
processes the input waveform to capture acoustic emotional features while per-
forming an ASR task, thereby implicitly learning linguistic information. The
transcriptions decoded from the ASR output are then input into a linguistic
feature extractor (BERT) to explicitly encode linguistic emotional features.
By effectively combining acoustic and linguistic emotional features using our
proposed attention-based feature fusion method, our approach offers a compre-
hensive solution for SER without textual input. The subsequent subsections
provide a detailed exploration of each component of our framework.
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Figure 1: Architecture of the proposed multi-level feature extraction system for SER. The
system consists of two primary stages: First, the input waveform A is processed by an acous-
tic feature extractor (HuBERT) to obtain acoustic features Fa. These features are used
for the ASR task to generate the predicted transcription TASR. Simultaneously, a linguis-
tic feature extractor (BERT) processes the ground-truth transcription T (or TASR during
inference) to obtain linguistic features Ft. In this stage, the BERT model is not only fine-
tuned for emotion recognition but also pre-trained for ASR error correction. Both Fa and
Ft are time-pooled and combined using the proposed attention-based gated fusion method
to produce the final fused features F for SER. Furthermore, a contrastive loss Lc is used to
align representations learned from output texts from AEC (FAEC

t ) and ground-truth texts
(FGT

t ). In the second stage, we apply adapter tuning to the feature extractors (HuBERT
and BERT); these adapters are double-layer linear layers inserted into each Transformer
layer of HuBERT and BERT to learn attribute information (gender, emotion expression
style) and avoid gradient conflict.

3.1 Multi-attribute Learning with Multi-stage Fine-tuning

To enhance the proposed SER approach, we incorporate emotion related at-
tribute information learning including gender and emotion expression style.
However, multi-attribute learning faces problem due to diverse learning objec-
tives and varying gradient magnitudes across tasks, potentially compromising
SER performance during optimization. To address this problem, we propose
a two-stage fine-tuning approach that balances the learning of linguistic and
paralinguistic features in our multi-level SER.

3.1.1 Joint Acoustic-linguistic Representation Learning

In the first stage, we fine-tune the HuBERT model to perform both SER
and ASR simultaneously. Given an input waveform A, we extract the latent
acoustic feature representation Fa ∈ RTa×D from the final Transformer layer
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of the HuBERT model, where Ta denotes the temporal length of the acoustic
input and D represents the hidden dimension of the Transformer layer. For
the ASR task, we process Fa through a fully connected (FC) layer to pro-
duce Fasr, and apply the Connectionist Temporal Classification (CTC) loss
function. The loss is defined as:

LASR = CTC(softmax(Fasr),T), (1)

where T is the ground-truth transcription. For the emotion recognition task,
we consider the input text T (or the ASR decoded transcription TASR during
inference). A BERT model is fine-tuned to extract the latent linguistic repre-
sentation Ft ∈ RTt×D from its last Transformer layer, where Tt denotes the
sequence length of the textual input. We then apply time pooling to both Fa

and Ft to obtain fixed-length representations Fa,Ft ∈ RD for each modality,
which are subsequently fused to create a multimodal feature representation
F ∈ RD. Finally, we conduct SER using the cross-entropy (CE) loss function:

F = FC(Fa ⊕ Ft), (2)

Le = CE(softmax(F),ye), (3)

where ye is the ground-truth emotion label. The total loss function for the
first stage is then formulated as a weighted sum of the ASR loss and the
emotion recognition loss:

L1st = λASRLASR + λeLe, (4)

where λASR and λe are hyperparameters that control the relative importance
of each loss term.

3.1.2 Adapter-based Refinement

Adapters have recently emerged as a novel approach in transfer learning [31],
initially developed for natural language processing tasks and now applied
to speech processing. Adapters have enabled a significant advancement in
the fine-tuning of large pre-trained models, offering a method for parameter-
efficient fine-tuning. In the second stage of fine-tuning, we introduce adapter
tuning to mitigate gradient conflicts between tasks and prevent potential infor-
mation loss from full parameter updates. Adapters introduce a small number
of task-specific parameters that allow the model to specialize for different tasks
while sharing most of the pre-trained parameters across tasks. This parameter-
efficient approach directly addresses gradient conflicts by task-specific adap-
tations, thereby maintaining the integrity of shared representations while en-
abling effective multitask learning. Then we process the fused feature F using
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task-specific FC layers. The output features for each task denoted as Fe, Fg,
and Fs, are used for emotion, gender, and style recognition, respectively. The
individual loss functions for these tasks are formulated as:

Ltask = CE
(
softmax(Ftask),y

task
)
, task ∈ {e, g, s} (5)

where task represent the emotion (e), gender (g), and style (s) recognition
tasks, respectively. ye, yg, and ys are the ground-truth labels for these tasks.

3.2 Temporal Gated Fusion Method

To address modality incongruity when integrating acoustic and linguistic fea-
tures, previous works [29] have introduced the gated fusion method to learn
the importance of the input features. Specifically, given the speech features
Fa and text features Ft (FGT

t during training, FASR
t during inference), each

modality is independently pooled using mean pooling:

F̄a = MeanPool(Fa), F̄t = MeanPool(Ft). (6)

These pooled features are concatenated and passed through a sigmoid-
activated gating mechanism to obtain the gated features:

F̃a = σ
(
F̄a ⊕ F̄t

)
⊙ F̄a, F̃t = σ

(
F̄t ⊕ F̄a

)
⊙ F̄t, (7)

where σ(·) denotes the sigmoid function, ⊕ represents concatenation, and
⊙ denotes element-wise multiplication. However, this approach suffers from
significant information loss due to the early mean pooling operation, which
discards temporal dynamics.

To overcome these limitations, we propose an attention based temporal
gated fusion (TGF) method that preserves temporal information and enables
effective cross-modal interactions. Specifically, given the speech features Fa

and text features Ft, we first apply self-attention mechanisms Aself(·) to learn
emotion-salient information within each modality. Subsequently, we employ
cross-attention mechanisms Across(·, ·) to capture the mutual information be-
tween speech and text as follows:

Fc
a←t = Across (Aself(Fa),Aself(Ft)) , (8)

Fc
t←a = Across (Aself(Ft),Aself(Fa)) . (9)

Here, the output of cross-attention Fc
a←t captures the intrinsic properties

of speech along with complementary textual cues, while Fc
t←a captures the

intrinsic properties of text combined with complementary auditory cues. The
self-attention mechanisms preserve discriminative acoustic features F s

a and
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linguistic features F s
t . Next, we incorporate the fine-grained gated fusion

mechanism to dynamically weigh the contributions of F s and F c:

ga = σ (Fc
a←t ⊕ Fs

a) , gt = σ (Fc
t←a ⊕ Fs

t ) , (10)

Then the gated features are computed as:

F̃a←t = (ga ⊙ Fc
a←t)⊕ Fs

a (11)

F̃t←a = (gt ⊙ Fc
t←a)⊕ Fs

t , (12)

By applying gated fusion directly to the cross-attended features, our approach
effectively preserves the temporal dimension throughout the integration pro-
cess. We then apply mean pooling to obtain fixed-length representations:

F̄a←t = MeanPool(F̃a←t), F̄t←a = MeanPool(F̃t←a). (13)

The proposed TGF ensures that the pooled features F̄a←t and F̄t←a retain
rich temporal and multimodal information and better learn emotional cues
without significant loss of critical details. The final fused feature F is obtained
by concatenating these representations:

F = FC(F̄a←t ⊕ F̄t←a), (14)

Finally, we fed F through a fully connected layer followed by a softmax for
SER.

3.3 Bridging ASR Errors in Multi-level SER

We address a critical challenge in our multi-level approach: the potential
degradation of linguistic features due to errors introduced by ASR. The tex-
tual representation FASR

t , derived from ASR transcriptions, may contain er-
rors that lead to suboptimal performance in emotional feature extraction. To
mitigate this issue, we introduce an error correction module that utilizes the
same BERT model used for emotion recognition. Specifically, we input the
ASR transcription TASR into BERT for automatic error correction (AEC),
feed the output features into 8 Transformer layers, and use beam search to
decode the corrected transcription. The corrected text is then input back
into the same BERT model for emotional feature extraction. Additionally,
we propose a contrastive learning approach to mitigate the impact of ASR
errors. During training, we extract FASR

t from the decoded transcription (or
the transcription after AEC) and conduct contrastive learning for FASR

t and
FGT

t . We apply contrastive learning during both fine-tuning stages to encour-
age the model to generate similar representations from both the ground-truth
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text and the ASR transcriptions, even in the presence of transcription errors.
The contrastive loss Lc is defined as:

Lc = − log
exp

(
cos

(
FGT

t ,FASR
t

)
/τ

)∑N
i=1 exp

(
cos

(
FGT

t ,F
ASR(i)
t

)
/τ

) , (15)

where cos(·, ·) denotes cosine similarity, τ is a temperature parameter, N is
the number of samples, and F

ASR(i)
t represents the ASR transcription repre-

sentation from the i-th sample in the batch. In the first fine-tuning stage, we
incorporate AEC pre-training and CL to enhance the robustness of FASR(i)

t

for SER. The overall objective function for the first stage is redefined as:

L1st = λeLe+ λASRLASR + λAECLAEC + λcLc, (16)

In the second stage, we freeze the AEC module and fine-tune the adapters
in BERT for SER, gender, style recognition, together with Lc. The overall
objective function for the second stage is defined as:

L2nd = λeLe+ λgLg + λsLs+ λcLc, (17)

where λe, λg, λs, and λc are hyperparameters that balance the contribu-
tions of each loss term.

4 Experimental Setup

4.1 Evaluation Datasets

The Interactive Emotional Dyadic Motion Capture (IEMOCAP) database [6]
is a benchmark dataset extensively used in emotion recognition research. It
comprises approximately 12 hours of multimodal data collected from 10 pro-
fessional actors (5 males and 5 females). Data collection involved five dyadic
sessions, each including one male and one female actor performing scripted
dialogues and engaging in improvisational scenarios designed to elicit specific
emotional expressions. The audio was captured using two microphones at a
48 kHz sampling rate and subsequently downsampled to 16 kHz to align with
common audio processing standards. Each speech utterance in the dataset was
segmented and annotated by at least three human evaluators who assigned
categorical emotion labels based on perceived emotional content. Following es-
tablished practices in emotion recognition research [45, 25, 54], we merged the
“happy” and “excited” categories into a single “happy” category. This con-
solidation resulted in four primary emotion labels used in our experiments:
happy, sad, angry, and neutral. For the IEMOCAP dataset, we employed
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the most commonly used metrics in SER: Unweighted accuracy (UA) and
Weighted accuracy (WA).

The Multimodal EmotionLines Dataset (MELD) [42] is another bench-
mark dataset extensively used in MER research. It comprises approximately
13,000 utterances from over 1,400 dialogues, extracted from the popular televi-
sion series Friends. The dataset includes high-quality audio recordings. Data
collection involved extracting multi-party conversations from the TV series,
ensuring a diverse range of natural and spontaneous emotional expressions.
The audio data is synchronized with the textual transcriptions to provide
a comprehensive multimodal representation of each utterance. For consis-
tency with common audio processing standards and our approach with the
IEMOCAP dataset, we downsampled the audio to 16 kHz in our study. Each
utterance in the dataset was annotated by multiple human evaluators who as-
signed categorical emotion labels based on perceived emotional content. The
annotation process resulted in seven primary emotion categories: anger, dis-
gust, sadness, joy, surprise, fear, and neutral. Due to “disgust” and “fear”
each constituting less than 3% of the data, the model achieved 0% accuracy
on these classes, leading to a low UA. Therefore, we present the WA and
Weighted F1, aligning with previous works [18, 50] that use these metrics.

4.2 Model Configuration

We implemented our proposed models using the PyTorch framework [39] and
the Huggingface Transformers library [62]. For the acoustic feature extractor,
we utilized the HuBERT-large model, which was pre-trained on the 60,000-
hour Libri-Light dataset. This model consists of seven CNN layers that trans-
form raw waveforms into latent representations, followed by 24 Transformer
layers that capture underlying representation from speech. The semantic fea-
ture extractor employed is BERT-base [12], pre-trained on BooksCorpus and
English Wikipedia text passages, comprising 12 Transformer layers to extract
semantic embeddings from textual inputs. The hidden layer dimensions D for
HuBERT-large and BERT-base are 1,024 and 768, respectively. For the ASR
error correction (AEC) module, we used a BERT-base model augmented with
8 additional Transformer layers. Initially, we fine-tuned the AEC module on
ASR transcriptions extracted from both the Common Voice and IEMOCAP
dataset [2] using the HuBERT model, which was previously fine-tuned on the
IEMOCAP dataset. The fine-tuning was performed using the ground-truth
text from Common Voice to correct the ASR transcriptions. When integrat-
ing the AEC into our multi-level SER framework, we froze the entire AEC
module to serve as a post-processing step for the ASR transcriptions during
inference.

In accordance with established studies [47, 26], we conducted five-fold
speaker-independent cross-validation on the IEMOCAP dataset. All datasets
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were downsampled to 16 kHz to unify the sampling rate during data pre-
processing. To accommodate varying input lengths for both HuBERT and
BERT, we applied sentence padding within each mini-batch. During training,
we fine-tuned the pre-trained model for 100 epochs. For the two-stage fine-
tuning experiments, the model was trained for 50 epochs in the second stage.
We froze the CNN layers in HuBERT while fine-tuning the Transformer lay-
ers of both HuBERT and BERT simultaneously. The learning rate was set
to 1 × 10−5, and the mini-batch size was 2 with a gradient accumulation of
8, resulting in a batch size of 16. For the multi-attribute learning setup, we
set all auxiliary task weights (λASR, λAEC , and λc in stage 1; λg, λs, and
λc in stage 2) to 0.1, while maintaining λe = 1 for the primary SER task.
This weight configuration was determined empirically by comparing weights
of 1, 0.1, and 0.01, where 0.1 achieved the best performance for SER. This
setting ensures auxiliary tasks contribute to training without overshadowing
the primary objective, consistent with prior findings [7].

To evaluate our models, we employed specific metrics for ASR and SER.
For ASR, we used the Word Error Rate (WER). For SER, we adopt weighted
accuracy (WA), unweighted accuracy (UA), and F1-score. The WA is calcu-
lated as:

WA =
Total Correct Predictions

Total Samples
× 100%. (18)

The UA is given by:

UA =
1

C

C∑
c=1

Correct Predictions in Class c

Total Samples in Class c
× 100%, (19)

where C is the number of emotion classes. The F1 score is the harmonic mean
of precision and recall, weighted by the number of samples in each class:

F1 =

C∑
c=1

wc × f1c, (20)

where wc is the proportion of samples in class c, and f1c is the F1 score for
class c.

5 Results and Analysis

In this section, we present a comprehensive series of experiments designed to
evaluate the contributions of each component within our SER system. We
first established baselines by evaluating multi-attribute learning performance
using speech input alone, text input alone, and a combination of both speech
and text inputs. Next, we conducted an overall ablation study to assess the
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effectiveness of each component of our approach. In the third experiment, we
compared our two-stage fine-tuning method with conventional MTL, where
ASR, SER, gender, and style tasks are trained simultaneously. The fourth
experiment involved comparing our TGF method with traditional fusion tech-
niques such as simple concatenation. Finally, we analyzed the impact of AEC
and contrastive learning (CL) on SER, as both methods aim to mitigate tran-
scription errors introduced by the ASR module. The following subsections
provide detailed descriptions of each experiment and discuss the results ob-
tained.

5.1 Multi-attribute Learning for Emotion Recognition

We first analyze the impact of different auxiliary tasks on emotion recognition
using various input modalities using the IEMOCAP dataset. Table 1 presents
the results of speech input only (SER), which utilizes HuBERT exclusively
for feature extraction. To provide a more comprehensive comparison, Table 2
shows the results using ground-truth text input for text emotion recognition
(TER), while Table 3 details the performance of models that integrate both
speech and ground-truth text inputs for MER.

Table 1: Multi-attribute learning results of speech input on the IEMOCAP dataset.

Exp
Task SER ASR Gender Style

SER ASR Gender Style UA WA WER UA UA
1 3 70.32 70.84 - - -
2 3 3 75.28 75.13 13.57 - -
3 3 3 3 71.43 71.18 - 85.22 80.63
4 3 3 3 3 77.02 76.79 13.75 99.14 87.45

Table 2: Multi-attribute learning results of text input on the IEMOCAP dataset.

Exp
Task TER Gender Style

TER Gender Style UA WA UA UA
5 3 67.13 66.85 - -
6 3 3 66.82 65.74 68.41 -
7 3 3 68.79 68.27 - 91.94
8 3 3 3 68.35 67.31 67.96 90.80

From Table 1, we observe that including the ASR task significantly en-
hances SER performance: comparing the SER results of Exp.-1 and Exp.-2,
the UA improved 4.96%, indicating that learning linguistic information for
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Table 3: Multi-attribute learning results of multimodal input on the IEMOCAP dataset.

Exp
Task MER ASR Gender Style

MER ASR Gender Style UA WA WER UA UA
9 3 72.15 73.07 - - -
10 3 3 77.64 77.36 13.64 - -
11 3 3 3 73.44 72.58 - 85.81 82.53
12 3 3 3 3 79.18 78.86 14.12 97.52 89.29

HuBERT is crucial for improving SER. Interestingly, even for tasks unre-
lated to linguistic content, such as gender recognition, incorporating the ASR
task yields notable gains. We reason that fine-tuning the HuBERT for simple
tasks (four-way classification for SER, binary classification for gender and style
recognition) makes the model prone to overfitting; incorporating ASR helps
mitigate this issue. Comparing Exp.-4 with Exp.-2, we confirm that learning
gender and style information further improves SER performance, which aligns
with previous studies [7, 50]. Moreover, in Table 2, comparing Exp.-5 and
Exp.-7 shows that including style recognition helps in extracting emotional
information from text input, increasing the UA for 1.66%; on the other hand,
gender recognition does not benefit emotion recognition from text. In Ta-
ble 3, comparing Exp.-9 and Exp.-10 reveals that even with BERT extracting
emotional information from text, incorporating ASR tasks for HuBERT signif-
icantly enhances SER performance, increasing the UA by 5.49%. This result
underscores the importance of using ASR to prevent overfitting in fine-tuning
acoustic SSL models. Exp.-10 and Exp.-12 demonstrate that for multimodal
inputs, integrating gender and style recognition tasks also benefits emotion
recognition, yielding an additional improvement in UA by around 1.54%.

5.2 Evaluation of Multi-level SER

To enhance SER without relying on ground-truth text, we conducted multi-
level SER by leveraging BERT to explicitly extract emotional information
from ASR-decoded transcriptions. An ablation study for each component of
the proposed system using the IEMOCAP dataset is provided in Table 4.

A comparison between Exp.-13 and Exp.-2 reveals that incorporating
emotional information extracted from transcriptions effectively complements
acoustic features, significantly enhancing SER. Specifically, the UA improves
1.97%, underscoring the effectiveness of multi-level SER. Furthermore, when
comparing Exp.-13 with Exp.-10, which use ground-truth text, the UA re-
mains comparable (77.25% vs. 77.64%). This finding suggests that with a
high-quality ASR system (WER of around 13%), the ASR transcriptions can
serve as a reliable substitute for ground-truth text in emotion recognition.
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Table 4: Evaluation of the proposed multi-level SER on the IEMOCAP dataset.

Exp TGF Two-stage AEC CL SER ASR
UA WA WER

13 77.25 76.86 13.61
14 3 79.62 79.50 13.90
15 3 79.15 78.39 14.53
16 3 3 76.41 76.83 12.96
17 3 3 81.17 80.16 14.58
18 3 3 3 3 80.21 79.35 13.27

Starting from Exp.-14, we enhance the multi-level SER using several com-
ponents. In Exp.-14, we integrate acoustic and linguistic features using the
proposed TGF, which addresses modality incongruity by learning the impor-
tance of acoustic and linguistic features in SER, leading to a significant im-
provement in UA to 79.62%. In Exp.-15, we employ the two-stage fine-tuning
process. In the second stage, we fine-tune adapters for multi-attribute learn-
ing, integrating style and gender recognition tasks. This proposed two-stage
fine-tuning approach achieves a UA of 79.15%, which is comparable to the
MER results in Table 3. Exp.-16 examines the impact of applying AEC be-
fore inputting text into BERT and utilizing CL between the features learned
from the real text and ASR decoded transcription. Even though we observe
4.78% relative improvement on the WER, both AEC and CL does not yield
a noticeable improvement in SER. According to the previous conclusion, the
ASR transcription is sufficiently accurate for learning emotional information,
rendering AEC and CL less impactful. In Exp.-17, combining TGF and two-
stage fine-tuning results in the highest UA of 81.17%, demonstrating the ef-
fectiveness of our proposed SER approach. Compared with the single-modal
baseline using only SER task (Exp.-1), we achieved an absolute improvement
of 10.85% and 9.32% on UA and WA, respectively. Finally, Exp.-18 includes
AEC and CL methods but does not lead to further performance gains, with
UA slightly decreasing to 80.89%. To investigate the impact of AEC and CL,
we introduce another dataset MELD, which have much lower performance of
ASR due to the recording condition. More detailed evaluation and analysis
for each module are provided in the following sections.

5.3 Impact of Two-stage Fine-tuning

We compared two fine-tuning strategies for SER using the IEMOCAP dataset:
(1) fine-tuning all parameters of the Transformers in HuBERT and BERT,
and (2) adapter tuning, where the feature extractors are frozen and only
the adapter modules are trained. As shown in Table 4, the effectiveness
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of two-stage fine-tuning in addressing gradient conflicts can be evaluated by
comparing with Exp.-4 in Table 1.

As shown in Table 5, in Exp.-19 and Exp.-20, we assessed the performance
of adapter tuning. The results indicated that training only the adapters led
to inferior SER performance compared to fine-tuning all parameters. This
suggests that fine-tuning the Transformers is crucial for capturing discrimina-
tive emotion information. Building on these findings, we first fine-tuned the
entire HuBERT and BERT models, then explored different fine-tuning strate-
gies in the second stage. In Exp.-21 and Exp.-22, we continued to fine-tune
all Transformer parameters in the second stage, which did not enhance SER
performance. Moreover, Exp.-22 exhibited a decline in performance compared
to the initial fine-tuning step, further implying that fine-tuning HuBERT on
simpler tasks without ASR can lead to overfitting. In Exp.-23, we adopted
adapter tuning in the second stage. This approach enabled the model to
effectively learn gender and style information, resulting in the best SER per-
formance among all experiments. Compared to Exp.-24, where all parameters
were fine-tuned in both stages, using adapter tuning in the second stage al-
lowed the model to learn emotion-related information and avoid information
loss.

Table 5: Comparison of fine-tuning Transformers and adapter tuning in two-stage fine-
tuning using IEMOCAP dataset.

Exp
Fine-tuning strategies Task SER ASR

Stage 1 Stage 2 SER ASR Gender Style UA WA WER
19 Adapter - 3 3 72.15 71.89 25.84

20 Adapter - 3 3 3 69.74 70.23 -

21 All params All params 3 3 77.16 77.28 13.58

22 All params All params 3 3 3 73.71 72.19 -

23 All params Adapter 3 3 77.32 77.15 13.52

24 All params Adapter 3 3 3 79.15 78.39 -

5.4 Impact of Feature Fusion Methods

In this section, we conduct multi-level SER and explore the impact of fusion
approaches for acoustic and linguistic features including simple concatenation,
cross-attention, and the proposed TGF.

As shown in Table 6, we apply self-attention followed by concatenation
in Exp.-25 as baseline approach. In Exp.-26, incorporating cross-attention
leads to a significant improvement, increasing the UA for 0.75%, highlighting
the benefits of attention for information interactions. In Exp.-27, introducing
conventional gated fusion results in a limited increase over baseline of 78.22%
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Table 6: Comparison of feature fusion methods on the IEMOCAP dataset.

Exp Cross-att Gated TGF UA WA
25 - - - 78.10 77.58
26 3 - - 78.85 78.54
27 - 3 - 78.22 78.37
28 3 - 3 79.62 79.50
29 3 3 3 79.35 78.71

on UA. Notably, Exp.-28, which combines attention with the proposed TGF,
achieves the best performance, reaching a UA of 79.62%. This indicates that
capturing temporal dynamics during information interaction can benefit SER.
Finally, we incorporate additional conventional gated fusion upon the pro-
posed TGF does not yield additional benefits.

Visualization methods are used to further analyze the recognition results
and the impact of the proposed TGF in balancing acoustic and linguistic fea-
tures. In Figure 2, we provide the confusion matrix of a) emotion recognition
result using acoustic feature, b) emotion recognition result using linguistic
feature, c) multi-level SER result using concatenated acoustic and linguistic
features, and d) multi-level SER result, using the proposed TGF method.
Comparing a) and b) in Figure 2, acoustic features contain more discrimina-
tive features for SER than linguistic feature and generate better performance
on all four emotions. Furthermore, concatenating those features leads to more
accurate SER in c). As depicted in d), we find that the proposed TGF im-
proved most on happy and angry. Comparing c) and d), we find a significant
improvement in the misclassification of happy (78 samples) and angry (35
samples) to neutral. This result validates that TGF benefits the information
interaction in feature fusion and results in better classification results in those
emotions.

The kernel density estimation distribution of gate values of TGF for each
emotion is also provided in Figure 3. Specifically, the blue and green lines
denote the gate values of Fs

a and Fs
t , which contain acoustic and linguistic

information, respectively. Since the gate value of Fc
a←t and Fc

t←a, which
combine that information, are totally the reverse, we do not show their distri-
bution. In Figure 3, we first find that for happy and angry, the gate value for
F s
a (blue line) gathered around 0.8. This suggests that acoustic features are

more important for distinguishing between happy and angry. This is because
differences in arousal information are more easily discerned from speech. This
conclusion is consistent with the previous analyses. As for neutral and sad,
the gate value shows more balancing distribution.
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(a) Acoustic feature (b) Linguistic feature

(c) Multi-level SER (d) Proposed

Figure 2: Confusion matrix of IEMOCAP dataset. (a) Confusion matrix of emotion recog-
nition result using the acoustic feature. We conduct SER and ASR using HuBERT. (b)
Confusion matrix of emotion recognition result using linguistic feature. We conduct emo-
tion recognition using BERT, with ASR decoded transcriptions. (c) Confusion matrix of
multi-level SER result, which concatenates acoustic and linguistic features. (d) Confusion
matrix of Multi-level SER result, which combines the features using the proposed TGF
method.

5.5 Impact of Bridging ASR Errors

While the proposed AEC and CL modules for mitigating transcription errors
did not show significant improvement on the IEMOCAP dataset, we present
experimental results on the MELD dataset to evaluate these methods on noisy
emotional speech. As shown in Table 7, baseline model (Exp.-30) incorporat-
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(a) Gate value of neutral (b) Gate value of happy

(c) Gate value of angry (d) Gate value of sad

Figure 3: The kernel density estimation distribution of gate value of each emotion. In
this figure, blue line plots the gate balancing Fa and Fa←t, and green line plots the gate
balancing Ft and Ft←a.

ing MTL for SER and ASR results in 48.25% WA. Compared with Exp.-29,
introducing BERT to extract linguistic feature from transcription does not
improve SER. As the result of TER (Exp.-32) and MER (Exp.-33) is much
higher than multi-level SER (Exp.-31), we provide an ablation study for AEC
and CL using multi-level SER.

In Table 8, the AEC module achieved 8.52% relative improvement on the
WER. Moreover, both AEC and CL results in more than 1.38% improvement
over the baseline. Combining those methods by implementing CL to the
feature learned from corrected transcription (Exp.-37), we achieved the best
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Table 7: Experimental result on the MELD dataset using speech (SER), ground-truth text
(TER), and MER with both speech and ground-truth text.

Exp Input Approach WA F1
30 Speech SER 48.25 47.29
31 Speech Multi-level SER 48.75 48.22
32 Text TER 53.44 52.22
33 Speech & Text MER 56.09 53.93

Table 8: Ablation study on the MELD dataset for AEC and CL.

Exp AEC CL
SER ASR

WA F1 WER
34 - - 48.75 48.22 32.45
35 3 - 50.13 48.75 29.68
36 - 3 51.78 50.04 32.94
37 3 3 53.35 51.02 30.16

performance on this dataset, attaining a WA of 53.35% and an F1 of 51.02%.
This result indicates that our proposed method of bridging ASR errors is
effective for SER in scenarios where ASR transcription quality is low.

6 Conclusion

We propose a SER system that directly captures acoustic and linguistic fea-
tures from speech without relying on ground-truth text. Our approach in-
tegrates HuBERT and BERT models: HuBERT extracts acoustic emotional
cues and performs ASR, implicitly learning linguistic information; the de-
coded transcriptions are then input into BERT to explicitly encode linguistic
emotional features.

To leverage emotional information in speech, we incorporate multi-
attribute learning of gender and emotional expression style through a two-
stage fine-tuning process. Initially, HuBERT is fine-tuned jointly for SER
and ASR tasks. Subsequently, adapter tuning is applied to both HuBERT
and BERT to learn gender and style information, effectively avoiding gradi-
ent conflicts and minimizing potential information loss. We introduce a TGF
method to combine acoustic and linguistic features, addressing modality incon-
gruity and preserving temporal dynamics through self-attention within each
modality and cross-attention between modalities, followed by a fine-grained
gating mechanism. To mitigate the impact of ASR errors on linguistic emo-
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tional feature extraction, we propose two strategies: 1) an error correction
module employing BERT to refine decoded transcriptions before input into
the linguistic feature extractor; and 2) a contrastive learning approach that
enhances robustness against transcription errors by reducing the distance be-
tween features learned from ASR transcriptions and those from ground-truth
text.

While incorporating the AEC module did not improve SER on the IEMO-
CAP dataset, significant improvements were observed on the noisy MELD
dataset, indicating that addressing ASR errors is particularly beneficial for
SER performance in noisy speech lacking textual input. To address the sys-
tem complexity concerns, we leverage the same BERT model for both semantic
feature extraction and AEC encoding to reduce number of parameters, and
employ parameter-efficient adapters rather than full fine-tuning. Using sep-
arate models for AEC and semantic feature extraction may yield better per-
formance but would increase model complexity. Furthermore, the modular
design allows selective component usage based on application requirementsfor
instance, the AEC module can be omitted in clean environments to reduce
computational cost.
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