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ABSTRACT

ASVSpoof is a set of challenges intended to advance research
into the spoofing risks to automated speaker verification (ASV)
systems. Giving a false speech signal that mimics the characteristics
of a real speech signal is a common technique for tricking an
ASV system. Spoofing is the practice of impersonating another
speaker. ASVspoof uses three assessment measures, Logical Access
(LA), Physical Access (PA) and DeepFake (DF), to assess the
effectiveness of spoofing defences developed for ASV systems. In
this study, we used the k-Nearest Neighbour (k-NN), Support
Vector Machine (SVM), Random Forest (RF), Gradient Boosting
(GB), AdaBoost, XGBoost, and Multi-Layer Perceptron (MLP)
are Machine Learning (ML) models. DNN-single, DNN-CNN,
DNN-convLSTM, and DNN-BIiLSTM are Deep Learning (DL)
models to assess the ASVspoof on the ASVspoof2021 datasets. DL
entails the process of transforming manually crafted feature vectors
(FVs) into more extensive, dense FVs via matrix multiplication.
A DL model’s architecture may be modified to fit the particular
application, offering flexibility in terms of the number of layers,
hidden layer dimensions, utilized transformation functions, and
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selected loss functions. In this study, we created specialized DL
architectures that were suited to the ASVSpoof dataset, assuring
both computational and temporal effectiveness. With the above
algorithm, the ML models have an accuracy of 90% for k-NN,
96% for SVM, 95% for RF, 95% for GB, 92% for AdaBoost, 96%
for XGBoost, and 95% for MLP. When it is applied to the DL
models, it shows more than 99% accuracy in DNN-Single, DNN-
CNN, DNN-convLSTM, and DNN-BIiLSTM. It demonstrates that
the DL algorithm on ASVspoof 2021 data shows more accuracy.

Keywords: Automatic Speaker Verification, ASVspoof, Logical Access,
Physical Access, DeepFake, Hybrid Features, Countermeasure,
Machine Learning, Deep Learning.

1 Introduction

The automatic speaker verification (ASV) is a biometric technique that aims
to verify the claimed identity of a speaker using their voice characteristics [11].
It includes analysing speech signals using algorithms and statistical models
and then making judgments on the veracity of the speaker. ASV has made
considerable strides over the years, transitioning from conventional methodolo-
gies to cutting-edge strategies that make use of machine learning (ML) and
deep learning (DL) techniques. An ASV-protected resource, service, or device
may be vulnerable to spoofing attacks that grant an attacker unauthorised
access [59]. Spoofing poses a serious and unacceptable threat. The ASVSpoof
initiative has taken the lead in the effort to build spoofing countermeasures,
auxiliary systems that attempt to defend ASV technology by automatically
detecting and deflecting spoofing assaults since the first special session on anti-
spoofing was held in 2013. However, the crucial component in synthetic speech
identification is the artefact left by data forgery, which could not include any
semantic information [81]. It was created in response to the problem of voice
signals that may be faked or otherwise altered to fool ASV systems, allowing
for impersonation or unauthorised access. The performance of ASV systems on
ASVspoof2013 [37] is typically evaluated using metrics such as the equal error
rate (EER) and the minimum normalised detection cost function (minDCF)
[66]. These metrics measure the ability of ASV systems to distinguish between
genuine and spoofed speech, with lower values indicating better performance
[23]. Secondly, the 2019 version investigated replay assaults utilising a far more
controlled assessment setup, including simulated replay attacks and metic-
ulously regulated acoustic settings. Unsupervised generative models, such
as the SVM, are frequently used to represent the probability distribution of
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audio characteristics [10]. Such a link, however, is made without channel-wise
priority by adding features directly to one another in feature groups [52]. The
goal of ASVspoof 2019 [85] was to determine whether recent advancements in
voice conversion (VC) and speech synthesis (SS) technologies pose a greater
threat to ASV reliability. For instance, waveform modelling techniques based
on neural networks may create artificial speech that is perceptually identical
to genuine speech.

Other speech processing techniques, such as VC and SS, are becoming
more widely accessible and of higher quality, and they have begun to pose
a serious challenge to ASV systems [33]. The need for technologies that can
automatically assess the integrity of those materials grows along with the
quality of generative algorithms. A good replay detection system should be
capable of detecting both known and unknown circumstances that are present
in the challenge [34]. It is becoming increasingly challenging to spot spoofed
data since falsified pictures, videos, and audio just keep getting more realistic
thanks to emerging technologies like DeepFakes (DFs). Additionally, due to the
increasing use of recording devices (such as smart speakers and smartphones),
the voice inputs for ASV systems are subject to a variety of channel variations.
The earlier methods used extremely sophisticated classifiers to manually seek
different spectrum properties or learnt features in that way [70]. Each data
set contains spoof speech produced by various SS, VC, and hybrid techniques
[77]. The ASV performance will suffer from this channel mismatch between
the samples. The spoof detection system will also be confused since the
channel distortion may mask the spectrum artefacts produced by the spoof
creation process (such as VC or SS). With several spoofing assaults, current
advancements in speech technology have posed a serious danger to the ASV
system [49].

The ASVspoof2021 challenge [59], a follow-up to the ASVspoof2019 chal-
lenge, aims to create countermeasures to identify spoofed audio involving the
coding and transmission of text-to-speech (TTS) [58], VC [39], and replayed
attacks, with no released training or development data matching the telephony
encoding and transmission artefacts encountered during evaluation. The most
recent competition in this series, ASVSpoof 2021 [54], builds on the success
of its predecessors. It has an extensive assessment framework that enables
researchers to test their algorithms on a sizable dataset that represents spoof-
ing assaults that occur in the real world. Therefore, the need for dependable
speaker verification methods and spoofing countermeasures is critical [15].
The challenge covers a wide spectrum of possible risks to ASV systems by
incorporating several spoofing techniques, including replay attacks, VC, and SS.
ASVspoof 2021 is 4*" in a series of biannual, competitive challenges where the
goal is to develop countermeasures capable of discriminating between bonafide
(BNF) and spoofed (SPF) or DF speech [23]. ASVspoof 2021 comprises three
major tasks.
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LA: LA is used to describe the restricted and approved access to the
ASVspoof dataset and related resources for the purpose of research and com-
petition participation [87]. LA controls are set up to protect the security
and integrity of the data while ensuring that only approved researchers or
participants have access to the dataset and associated materials.

PA: PA is used to describe the restricted access to the hardware and
physical infrastructure used in the competition [1]. Keeping the security
and integrity of the physical resources involved entails making sure that only
authorised individuals may physically access the ASVspoof 2021 systems [8§],
tools, and facilities. The physical area where spoofing assaults are recorded is
then played again using varying-quality replay devices inside the same physical
area.

DF': The DF intends to encourage research and development efforts to fend
off spoofing assaults’ rising level of sophistication [79]. In real-world contexts
where DF technology is common. The assessment of anti-spoofing techniques
against DF samples advances the state-of-the-art (SOTA) in spotting artificial
or manipulated speech, making ASV systems more dependable and secure
[4]. ASV systems are facing serious competition from DF technology, which
is evolving rapidly. Malicious actors can produce SS samples that replicate
the voice and speech features of a target person by using deep neural networks
(DNN), long short term memory (LSTM), generative adversarial networks
(GANSs) and deep generative models [16].

The primary contributions of this endeavor include the following.

o The study investigated the use of hybrid combinations of the speech fea-
tures of the ASVspoof databases using MFCCs, Mel-scaled spectrograms,
chromagrams, spectral contrast, and Tonnetz in classifying people’s
speech recognition through speech utterances.

e Applying ML methods (k-NN, SVM, RF, GB, AdaBoost, XGBoost,
MLP), the hybrid speech characteristics are concatenated and used to
improve the classification accuracy of the ASV system.

e In this study, seven distinct ML algorithms are looked at. The study
also sought to identify the number of MFCCs, chromagrams, Mel-scale
spectrograms, spectral contrast, and Tonnetz, as well as the appropriate
signal frame size and frameshift.

e This particular investigation focuses on voice recognition during spoken
utterances and was carried out using ASVspoof 2021 LA. The issue
is resolved using several ML algorithms that are based on balancing
the data, and the majority of the techniques are enough to handle
classification and regression issues.
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e These ideas are experimental and are contrasted with cutting-edge meth-
ods. For all contexts and languages, the voice recognition results pro-
duced by ML algorithms demonstrate appreciable increases in ASV
system performance compared to SOTA techniques. With over 99%
accuracy, DL algorithms are more precise than ML algorithms.

Shortly, the study may include transformer-based models and reinforce-
ment learning techniques to provide a more comprehensive comparison and
help highlight the strengths and weaknesses of different approaches. Through
the detailed analysis of experimental studies, including performance metrics,
model interpretability, and robustness to hyperparameters, one can offer deeper
insights into certain models that perform better than others under specific con-
ditions. Transformers are tailored for image patches and rely on self-attention
mechanisms to capture global relationships in an image’s spatial structure.
However, speech features are better represented using domain-specific models
like CNNs, which excel at recognising local and hierarchical patterns. In this
study, the traditional models performed well. The transformers and reinforce-
ment learning models are computationally expensive and require more training
data and longer training times due to their attention mechanisms and large
number of parameters. Given the ASVspoof dataset, relatively minor scale,
resource-intensive models would likely not justify the marginal improvement
over the existing models. This would be especially true since our models DNN
Single, DNN-CNN, DNN-BiLSTM, and DNN-ConvLL.STM are already reaching
high-performance levels.

The organisation of the paper is as follows: Section 2 provides a literature
overview of ASVspoof. Section 3 introduces the database description. The
feature extraction has been discussed in Section 4. Section 5 will explain the
methodology of the speech recognition process, which includes the algorithm
of ML and DL. In Section 6, the results and analysis have been discussed using
the confusion matrix and graphs. Section 7 gives a brief summary of the paper,
which is presented in the conclusion section, and future directions.

2 Literature Review

Today, a wide range of applications for speaker recognition (SR) employ
voice-based technologies. In the future, there will be extensive research done
on the topic of parodying and against mocking the ASV framework. The
present development in the ASV system generates interest in securing these
voice biometric-based systems for real-world uses [27]. The literature on
spoofing detection, innovative acoustic feature representations, DL, end-to-end
systems, etc., is included. Additionally, it summarises earlier research on
spoofing assaults that put pressure on SS, VC, and replay, as well as current
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initiatives to provide defences against spoof speech detection and speech sound
disorder jobs. Currently, the majority of voice spoofing detection techniques
use specialised algorithms that are solely concerned with LA or PA assaults.
However, there is no previous knowledge of the kinds of spoofing assaults that
really occur. As a result, academics begin to create generalised techniques
to identify assaults, independent of the tactic employed to launch them [68].
Spectral-log filter-bank and relative phase shift characteristics were utilised
as input to a model integrating a deep neural network (DNN) with an SVM
classifier in several notable prior techniques against LAs [5]. Early studies on
creating spoofing countermeasures were all performed using datasets that were
specifically gathered and often produced using a small number of well-built
spoofing attack methods [20]. Early research required practices since there
were no widely used benchmark datasets. However, this brings up three issues
[12]; first, repeatable research and meaningful comparisons of findings from
many research teams can only be supported by the usage of shared datasets.
Second, a spoofing assault can never be understood in advance in practice.
Hence, a priori knowledge of a spoofing attack does not represent this reality
[44].

Third, the most generalization-oriented defences may not be those developed
utilising just a few spoofing assaults or spoofing algorithms [62]. By Wu et al.
[87], the ASVspoof challenge series is introduced along with a description of
the ASVspoof datasets, assessment procedures, and performance indicators
[59]. The many spoofing attacks and the creation of defenses against them
are covered. Liu et al. [53] provide an in-depth analysis of spoofing attacks
and defenses in relation to ASV. Techniques covered include VC, SS, replay
assaults, and VC with ML. In Tak et al. [78], the ASVspoof 2019 competition,
with an emphasis on SPF and DF speech recognition, is presented. The
creation of anti-spoofing systems, assessment methodologies, and dataset-
gathering techniques is all covered, and it also discusses the effectiveness of
various techniques and offers suggestions for new lines of investigation. By
Gomez-Alanis et al. [24], the use of DL approaches in ASVspoof, especially for
spoofing and anti-spoofing tasks, is examined. Convolutional neural networks
(CNNs) [76] and recurrent neural networks (RNNs) [25], among other DL
models, are discussed along with how well they function to identify spoof
speech. The limitations and difficulties of DL-based anti-spoofing techniques
are also examined in the research. Jung et al. [36] summarise the most current
developments in spoofing and anti-spoofing strategies of an outline of the
ASVspoof 2021 challenge. Feature representations, modelling tactics, and
fusion techniques are only a few of the cutting-edge methods covered. The
obstacles and upcoming developments in the sector are also highlighted in the
study.

The main objective is to promote ASV, also known as speaker authentica-
tion or voice biometrics, by creating and assessing anti-spoofing technology.
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e Spoofing Attacks: The primary goal of ASVspoof 2021 is to defend
ASV systems against spoofing attacks. Attacks that use spoofing entail
pretending to be a real speaker or tricking the system using fake or
repeated speech recordings. The contestants create techniques to identify
and categorise these spoofing assaults.

e Dataset: These datasets include real speech recordings from several
speakers as well as spoofing attempts in a variety of formats, including
TTS, VC, and replayed speech.

o FEvolution Metrics: Multiple measures are used to assess the effectiveness
of anti-spoofing systems. The min-DCF is the main metric employed in
ASVspoof 2021 [24]. The false alarm rate (FAR) and the missed detection
rate (MDR) are two factors this metric considers when assessing the
system’s performance.

o Anti-Spoofing Techniques: For the creation of successful anti-spoofing
systems, participants in ASVspoof 2021 use a variety of methods. These
approaches may include feature extraction (FE) algorithms, ML models
(such as DNNs) [90], and fusion strategies for integrating several classifiers.
To increase the resilience of their systems, participants frequently make
use of developments in voice and audio processing, pattern recognition
(PR), and ML.

LA: When discussing ASV, the term “logical access” (LA) refers to restricted
and authorised access to the ASV system’s software, databases, configuration
settings, and other digital resources. In order to guarantee that only autho-
rised parties or persons may interact with the ASV system and its related
components, maintaining user accounts, permissions, and authentication pro-
cedures is necessary. LA restrictions are put in place to safeguard the ASV
system’s availability, confidentiality, and integrity as well as the sensitive data
it processes. By ensuring that only authorised users may use the ASV system
for authentication and verification purposes, these controls help prevent unau-
thorised access, data breaches, and other misuse of the system. A telephone
banking service is an example of how an attacker may connect, bypass the
microphone, and deliver converted or synthesised speech signals straight to
the ASV system. In the communication channel post-sensor, this is referred to
as audio insertion [83]. The LA of ASVspoof 2021 is focused on the creation of
spoofing countermeasures that are resilient to transmission channel and codec
variations [83]. The transmission of real and fake speech data generated by
TTS, VC, or hybrid algorithms (VC systems fed with synthetic speech) over a
public switched telephone network (PSTN) or a voice over Internet protocol
(VoIP) network makes use of a particular codec and methods for automatically
identifying speakers before being subjected to spoofing countermeasures. The
major metric will be the t-DCF [19, 53].
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PA: The term “physical access” (PA) refers to restricted and authorised
access to the physical facilities, hardware, and infrastructure connected to
the ASV system. It involves putting in place security measures to protect
physical resources from unauthorised access, manipulation, theft, or damage.
The security, integrity, and availability of the ASV system and its related
components must be maintained through the use of PA restrictions. The
danger of physical security breaches is decreased by these measures, which
guarantee that only authorised individuals have PA to the tools, buildings,
and data storage sites [59]. PA controls entail restricting access to specific
locations that house the servers, storage, and hardware components of the
ASV system. Access is prohibited to unauthorised persons, but authorised
professionals, such as administrators, technicians, or security staff, are given
access. To prevent unauthorised entrance and monitor activity within the
building, these facilities are outfitted with security equipment, including alarm
systems, access control systems, and surveillance cameras. PA restrictions
frequently involve monitoring and surveillance equipment to track activity
and identify any unauthorised entry attempts. Surveillance cameras, intrusion
detection systems, and alarm systems are used to improve the overall physical
security of the ASV system.

DF: The words “deep learning” and “fake” are combined to form the name
“Deepfake” (DF). It sprang to popularity in the realm of visual media, when
Artificial Intelligence (AI) algorithms were employed to produce doctored
movies or photographs that show people talking or acting in ways they never
actually did. The idea has been expanded to the audio realm, though, and
now includes the production of artificial or altered speech using DL techniques.
According to the codec and its setup, this procedure creates distortions. We
plan to promote solutions for the identification of DFs in compressed audio
used in television and media posted on news websites and social media plat-
forms, among other generic end-user applications [53]. DF technology uses
AT algorithms to produce incredibly realistic and convincing audio content
that may be used to trick ASV systems or pass for real people [64]. Malicious
actors can try to get around ASV systems, get unauthorised access, or pass
themselves off as someone else by producing synthetic voice samples that sound
like the target speaker. The inclusion of DF speech samples in ASV datasets or
testing of ASV systems against DF attacks aims to advance the field’s compre-
hension of DF technology, its implications for ASV, and the creation of efficient
countermeasures to improve the security and dependability of ASV systems. In
order to advance the understanding of DF' technology, its implications for ASV,
and the development of effective countermeasures to enhance the security and
dependability of ASV systems in ASV datasets or test ASV systems against
DF attacks [64].
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Figure 1: Block diagram of ASVspoof Dataset of the robust Spoof and Bonafide detection.

3 Database Description

The ASVspoof 2019 challenge,’ which comes with a fresh dataset, makes a
number of improvements over earlier iterations. It is the first to take into
account SS, VC, and replay as separate spoofing attack types. The ASVspoof
2019 collection of real and fake speech signals includes SS and converted voice
signals produced using the most recent, cutting-edge technology. The finest of
these algorithms can provide voice spoofing that is perceptually identical to
real speech when used in carefully controlled environments. Thus, the goal
of ASVspoof 2019 is to establish if improvements in SS and VC technologies
constitute a bigger danger to the dependability of ASV systems or whether,
alternatively, they can be reliably recognised with current countermeasures.
The database can be observed from Figure 1.

ASVSpoof2021 database consists of three new evolution partitions for
LA, PA, and DF tasks.? Compared to earlier iterations, ASVspoof 2021 is
purposefully more challenging. The DF task is new to ASVspoof and expands
the initiative’s objectives to include the detection of spoof speech in situations
outside of ASV. The DF task simulates a situation in which an attacker has
access to the speech data of a target victim, such as information shared on
social media. A renowned person, a social media influencer, or a simple
individual might all be the victim. This article offers a description of the
challenge findings, the four baselines for the challenge, the three objectives, the
new databases for each of them, the assessment metrics, and the evaluation
platform. Even though the complexity has increased due to the inclusion of
channel and compression variations, the results for the LA and DF tasks are
comparable to those from past ASVspoof editions. Using public data and
speech DF technology, the attacker is anticipated to produce spoof speech that
mimics the victim’s voice. The recordings will then be posted on social media,
in call centres, or in any other application that supports this sort of behaviour.

ASVspoof, created as part of the 2015 Interspeech anti-spoofing challenge,
contains only synthetically generated spoofing attacks [42]. These attacks are

Thttps://www.asvspoof.org/index2019.html.
2https://www.asvspoof.org/index2021.html.
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Figure 2: Block diagram for Hybrid combination of the feature extraction process.

assumed to be fed into a verification system directly bypassing its microphone
and are also coined as LA attacks [86]. It is important to note that all
data utilized for training and evaluation were simulated using acoustic replay
simulation in accordance with the evaluation strategy [46]. The RedDots
database [48] serves as the primary source of real recordings for the ASVspoof
2017 challenge, and the RedDots Replayed database [41] serves as the primary
source of spoof replay recordings. Part 01 of the original corpus, consisting
of 10 typical short sentences, was replayed across various recording settings
and recording equipment to form the RedDots Replayed corpus [22]. The
performance of replay attack detection is found to be significantly enhanced
by feature normalization. As a result, we employ spectrum analysis based on
DFT in our study [3]. The challenge consists of two conditions: a common
condition in which only ASVspoof 2017 data may be used to train detection
systems, and a flexible condition in which any external data may be utilized.
ASVspoof 2019 contains evaluation measures such as the t — DCF and EER.
These parameters are employed to rate how effectively ASV systems find
spoofing attempts. Additionally, benchmarks and contests were a part of the
ASVspoof 2019 Challenge to promote the advancement of powerful spoofing
detection methods [82]. As LA and PA attacks, respectively, the ASVSpoof
2019 database includes both synthetic and replay speech assaults. These two
tracks have three subsets, namely the train, development, and evaluation sets
[17].

4 Feature Extraction

The speakers’ vocal tracts’ structural variations constitute a biometric identifi-
cation trait and an intrinsic property. By taking feature vectors (FVs) from
the training utterances and using them to create reference models, the training
process allows the system to become familiar with the speech characteristics of
the registered speakers. Similarly, F'Vs are extracted from the test utterance
during testing, and the degree of similarity between them and the reference
is assessed using a matching algorithm. The ASVspoof pipeline starts with
preprocessing the audio data. To do this, we first use a pre-emphasis filter
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Figure 3: Illustrating the difference between BNF and SPF speech utterances. The extracted
speech features are summarized by using the MFCCs, Mel-spectrograms, Chromagrams,
Spectral contrast, and Tonnetz features.

to remove any low-frequency noise from the audio stream before dividing the
signal into frames of the same size. The typical frame interval is between 20
and 30 milliseconds, with a 50% gap between each frame. Then, MFCCs are
extracted based on the finding that human speech is represented as a time-
varying linear filter. A bank of triangle filters with logarithmically separated
frequency bands is then applied to extract the MFCC characteristics after
computing the short-time Fourier transform (STEFT) of the spoken stream.
The output of the filter bank is then transformed using the discrete cosine
transform (DCT), and a subset of the resultant coefficients is retained as
features, shown in Figure 2.

MFCCs Mel-frequency for FE and voice recognition. This is accomplished
by first applying an STFT to the signal, which yields an audio spectrum.
The spectrum is then converted into the Mel-scale using a bank of Mel scale
filters [50]. The MFCCs are then produced by taking the spectrum’s logarithm
and applying a DCT. Each lengthy speech frame is subjected to the DCT,
and the DCT coefficients are then organized into subbands. Each subband
then undergoes a linear prediction analysis in the frequency domain [84].
The provided spoken utterance is first broken up into tiny speech frames
with a frame size of 20 msec and a frameshift of 10 msec in order to extract
MFCCs. Based on the application of the DCT to the log power spectrum on a
nonlinear Mel scale of frequency, MFCC coefficients indicate the short-term
power spectrum of the speech signal [61]. The windowing technique is used to
lessen the gap between speech frames at their beginning and conclusion. The
time domain signal is then converted to the frequency domain by applying the
STFT to each frame. The Mel-scale filter banks are used in Eq. 2 to compute
all of the frequencies derived from the FFT.

S-1 j2ks
y(k) =Y yls)e 5. (1)

s=0

The energy at each Mel-frequency value is then computed as a logarithm, and
all of the log-Mel-spectrums are then converted back to time using the DCT.
The Fourier-based features also offer excellent temporal frequency analysis



12 Bhukya et al.

potential if we concurrently increase the number of frames and the number of
bins per frame [51]. The resultant spectrums’ derived amplitudes are referred
to as MFCCs.

FMel = 2595[09(1 + %) (2)
Where f represents the frequency. Since there are 320 samples in each speech
frame, 512 frequency bins were selected as the number of DFT coefficients. We
obtained the compressed, orthogonalized energy vectors of the Mel-filter bank
as a feature vector by selecting the first 13 coefficients from DCT, removing
the 0*" coefficient, and then applying their DCT.

= an(m — 1)
p(n) = Z FMel(m)cos(T2); n=0,1,...,P—1, (3)

m=0

where, p(n) are the cepstral coefficients and P represents the number of
coefficients. i.e., py(7)

Z:n:—r mpt(z)
Yme—em?

Z:nzfr mpt(z)
Yome—rm?

The 1%¢ order derivative Ap;(i) and the 2"¢ order derivative A2p; (i) features
are generated after extracting 13 dimensions from the p;(i) coefficients and
they are then stacked along with 0" an average energy for each speech frame
coefficient to create a [0, p; (i), Ap:(i) & A%ps(i)], a 40-dimensional feature
vector obtained. The feature data shows higher timing variation features.

Mel-spectrogram When the frequencies are converted into the Mel scale,
the spectrogram is called a Mel-spectrogram. The given speech utterance is
divided into frames with a frame size of 20 msec and an overlap of 10 msec
to extract the Mel-spectrogram’s features. Each speech frame was then given
a window, and each one had an FFT applied to it. The frequency spectrum
is divided into equal space frequencies to create the Mel scale for the speech
utterance and to obtain the Mel-spectrogram; the data was then passed through
filter banks. Indicate the input signal using fe 6%, window functionality is
generated ge 87 and the Mel filters, typically given by triangular functions
by Ae 0BV v el, 1 =1,2,...,K, where K is the selected number of Filters.
Hence, the Mel-spectrogram is given by

Apy(i) = (4)

Apy(i) = (5)

MS,(f)(b,v) = |F(f.T0)]7. Ay (k). (6)
k

Chromagram A chromagram displays the changing pitch of voice input
over time. Any spectrogram or STFT can be utilized as input in place of FFT.
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Harmony and pitch classes are represented differently using chromagram char-
acteristics [7]. The binning approach used to extract 12 distinct pitch classes
from the supplied voice utterance in order to retain chroma characteristics
and a unique steganalysis model based on spatial and temporal feature fusion
(STFF) for each speech frame [21]. It is applied to encrypt harmony while
reducing loudness, octave height, or timbre fluctuations. When constructing a
speaker’s voice print for the purpose of classifying speech emotions, a popular
hand-designed approach mostly relies on folding several octaves of a spectral
representation into a 12-semitone chromagram. A total of 12 semitone chroma-
grams were taken into account. To capture different facts of the audio, several
statistical or perceptual characteristics can be calculated using the chroma
representation. Mean, variance, energy, and harmonic-related characteristics
like pitch histograms or harmonic pitch class profiles are often used features.

M
HPCP, = > CQT[b+ 12m], (7)

m=1

where, 1 < b < 12 and M number of octaves involved.

Spectral Contrast In audio signal processing, the perceptual difference
between various frequency bands in a sound source is captured using the
spectral contrast FE approach. When performing tasks like voice recognition,
music genre categorization, and sound event detection, it offers details about
the relative energy disparities across various frequency ranges. These charac-
teristics are determined by computing the root mean square difference between
the speech frames’ spectral evidence and spectral peak. Neighborhood criteria
and octave scale filters are used to quantify spectral contrast in subbands. In
general, narrow-band signals with high contrast values are clearer than noise
with low contrast values. The mean, standard deviation, and spectral peak of
all frames are employed as the spectral contrast characteristics to describe the
full piece of music [67]. The strength of the spectral peaks Py and spectral
valleys Vj, are estimated as

| eN
P, = ZOQ(W ; Th.i), (8)
1 eN
Vi = log(a—N ; Tp N—it1)- (9)
And the difference is
SCr = P, — V. (10)

Tonnetz The Tonnetz is a pitch based on melodic contribution; tight
symphonic connections are displayed as tiny separations. This is the six-
dimensional pitch space that depicts the resonant pitch interactions in falling
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and increasing voice signals, too. Each speech frame’s pitch characteristics
in a spoken utterance play a crucial role in identifying the speech’s emotions.
Tonnetz characteristics may be used as data for a number of ML techniques.
Tasks like music analysis, composition, or recommendation are made possible
by these models’ ability to be trained to spot patterns or extract useful
information from Tonnetz representations. By combining some of the chroma
feature classes, which totalled 12 classes, Tonnetz, which is also known as
tonal centroid features, divides pitch into 6 separate classes. As a result, it is
computed using a 6-dimensional basis and chroma characteristics that were
projected onto a chromagram. The mathematical expression for Tonnetz is
given below

(%)
(%)
S = E"%lg , o<I<IL (12)
(%)
S

The amplitude of the signal varies over time in BNF speech, but it is less
variable in SPF speech. In comparison to SPF MFCCs, BNF MFCCs show
fewer fading graphs, and the SPF speech’s Mel-spectrogram is more dispersed.
When compared to BNF, SPF speech has a higher chromagram scatter value
with respect to time. In contrast to genuine speech, spoofed speech has a
dense value of spectral contrast. According to Tonnetz, genuine speech has far
lower wavelength visibility than faked speech. The speech features are focused
on Mel-spectrograms, Tonnetz, Chromagrams, and MFCCs and are pictorially
represented in Figure 3. Provides insights into the values of each feature in
the given speech utterance.

5 Methodology

A given spoken utterance can be used to best categorise the speech. The
offered spoken utterances are both authentic and fake, categorised using the
k-NN, SVM, RF, Gradient Boosting (GB), AdaBoost, Extreme Gradient Boost
(XGBoost), and Multi-Layer Perceptron (MLP) classification models. In this
paper, our aim is to detect DF audio using the ML algorithms mentioned above.
Decisions made by ML models are based on associations found in training
data. Models can pick up unrelated inputs, artefacts, or confounders during
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training. Such artifacts often help to achieve good results by overestimating
real performance in a test set, unless they are explicitly taken into account
during training and inference [14]. The quality and variety of training data,
feature engineering, algorithm optimization, and the prevalence of certain
types of spoof attacks in the dataset are all aspects that affect how successful
these algorithms are. The objective is to classify fake and real speech through
ML and DL methodology.

k-NN: The £-NN method determines the K =3 closest data points to a test
point, which then assigns the majority of test points to a class. In order to
calculate how similar two data points are to one another, Fuclidean distance
is used, which is defined as:

2

d(w, x5) (Z wp(ap(z) (%(%’)))2) . (13)

p=1

Where a vector x = (a1, as,as,...,ay), n is the dimensionality of the vector
input, namely the number of sample’s attribute, a,, is the sample’s pth attribute,
wp is the weight of the p'" attribute, p is from 1 to n, the smaller d(z;, x;) the
two samples are more similar.

The test sample’s class label is chosen by its k closest neighbors with a
majority vote.

x(d;) = argmazy, Z y(zj,cx) (14)
zekNN

where d; denotes a test sample, z; denotes one of its £ closest neighbors in
the training set, and y(z;, c;) denotes whether z; belongs to class,,.

SVM: To distinguish real speech from speech that has been replayed, a
binary SVM is trained using vector characteristics [2]. In higher-dimensional
space, SVM divides data into two groups as efficiently as possible using
the hyperplane. The margin is the difference between the hyperplane and
the closest data from each class [74]. The equation of a hyperplane in a
d-dimensional space is defined by

h(z) = sign(wlz + b). (15)
Where w signifies the weight vector (orthogonal to the hyperplane), and b

denotes a bias term.
The distance between a point x and the hyperplane can be computed as:

= —— (16)

where ||w]|| denotes the Euclidean norm of the weight vector w.
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To ascertain the hyperplane with the maximum margin, it is necessary to
solve the optimization problem:

mwn T 2 )

with constraints, y;(wlz; +b) > 1V i = (1,2,3,...,n) After solving the
above equation, the maximum margin problem is reduced to Margin = HI%H
The tunable hyperparameters considered for classification tasks are C = 0.1,
gamma=0.001, and ‘kernel’=poly.

Random Forest (RF) is an ensemble learning method that enhances pre-
diction accuracy and reduces variance by aggregating the outputs of multiple
decision trees (DTs) trained on random subsets of data and features. To
minimize overfitting, each tree is constructed using bootstrap sampling and
random feature selection. The final prediction is obtained via majority voting
across all trees. In this study, the model employs 201 estimators with entropy
as the splitting criterion.

RF: It is a potent method for solving problems that enhances prediction
accuracy and reduces variance by aggregating the outputs of multiple decision
trees (DTs) trained on random subsets of data and features. To optimize
overfitting, each tree is trained on different subsets of data and with random
feature selection. The final prediction is obtained using a majority vote system
across all DTs, and the model employs 201 estimators with entropy as the
splitting criterion.

Assume that k is the node, X is the significance of the characteristics, and
Y} is the total samples for all nodes. The significance of an equation can be
expressed as [26]:

X; =Y k:jViGy. (18)

Where nodes k divide on feature j. By normalizing first the X; for each tree
in the RF and then adding those normalized values for each tree, the final
significance of the feature X; for each feature is determined.

GB: Build predictive models by combining weak learners, such as DTs,
into gradient-boosted trees (GBTs) whenever a DT acts as a poor learner. The
progressive optimization technique Gradient descent (GD) determines the
minimum of a function. The purpose of GD is to identify the set of input
variables that minimize a cost function, sometimes referred to as an objective
function or loss function [65].

GD optimizes model parameters by following the direction of the steepest
descent, determined by the gradient of the cost function. The step size of
each update is controlled by the learning rate (set to 0.1), where inappropriate
values can lead to slows convergence or overshooting. With weak and strong
models, the widely used GB can solve the issues by reducing the loss function,
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often referred to as the sum of the residuals from the weak models. The mean
squared error (MSE), is the most often used loss function. MSE is defined as:

M(r, f(s) = (r = f(s))%, (19)

where r is the value of the target, and f(s) is the predicted value of the target
variable by the model.

The most commonly used loss function is the log loss function, which is
defined as:

LKL
M(r, f(s)) = szrij * log(sij). (20)

1=1 j=1
The GB approach adds weak models to the ensemble iteratively, with each
weak model being trained to reduce the residual of the preceding models. The
number of estimators is 100, and the maximum depth used for this model is 3.
AdaBoost: In most cases, the DT is used as the basic model; however,
additional models include SVM and logistic regression [56]. Each time a
boosting iteration is performed, the training data points are modified by

applying weights {w,ws,ws...,wx}. In the first, scaled weights are used,
wy = % The weights of the data points are changed for each subsequent

iteration depending on whether the data is correctly labeled or not. Models
are produced one after the other, and the success of the earlier models has an
impact on the development of the later ones. The ultimate forecast is then
created by weighing the majority’s votes on all of their guesses together. For
the base learner, it is set as m := m + 1 and then computes the base learner
with a weighted data set [55].
Now, the new weight is observed as:

w™ Nl s ), (21)
Deduce the error rate and update the iteration’s particular coefficient o, —
hi[ghvc]zlues due to a low error rate. Modify the individual weights and

m—1

w; — highervalues whenever an observation is mislabeled. Hence, the

new observation is X, cq:

Mstop

fAdaBoost(Inew) - Slgn( Z O‘mil[m]znew)~ (22)

m=1

Here, mstop, after iterating the steps of Eq. 21 and the above statement. The
number of estimators is 50, and the learning rate of 1.0 is used for this model.

XGBoost: XGBoost outperforms the GB framework by generating trees
concurrently rather than sequentially. Its main goal is to prevent overfitting
and facilitate accurate predictions by minimizing the sum of a loss function
and a regularization term. To create a robust and effective model, XGBoost
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combines DTs with GB methods. The number of estimators is 100, the learning
rate is 1.0, the alpha is 10, and the maximum depth is 4, which are used
for this model. By optimizing systems and enhancing algorithms, XGBoost
outperforms the GB framework by generating trees concurrently rather than
sequentially. Its main goal is to prevent overfitting and facilitate accurate
predictions by minimizing the sum of a loss function and a regularization
term. To create a robust and effective model, XGBoost combines DTs with
GB methods.

MLP: The input layer’s neurons represent the number of input features,
and the output layer’s neurons correspond to the number of classes. Optimizing
the network architecture, including layers, neurons, and connections, is key to
achieving effective classification. In this random state, it is taken as 1, and the
maximum iteration is 300. In summary, the trade-offs between these models,
considering factors like computational complexity, space complexity, number
of estimators, maximum depth, random state, gamma, and kernel, etc., can
be observed from Table 1.

Motivation to use DL Algorithm: When used to thoroughly investigate
and methodically study sets of characteristics obtained using well-established
signal processing techniques and algorithms, ML models have demonstrated
exceptional performance [28, 57]. CNNs, RNNs, and transformer-based models
are examples of these developments that offer increased capabilities for spotting
DF audio [60]. However, in the present research environment, FE methods
based on DL are mostly responsible for the most cutting-edge developments in
a variety of prediction and learning applications, including audio, video, and
text data.

DL involves the technique of matrix manually multiplying created dense
FVs into larger FVs [82, 83]. The output of the DL model is a dense FV that
is produced by the last hidden layer and is standardized [35]. Certain DL
algorithms specifically construct their last layer for classification or regression
tasks by integrating the proper transformation function [8, 47, 73]. A DL
model’s architecture may be altered to fit the needs of the particular application,
offering flexibility in terms of the number of layers, dimensions of hidden layers,
utilized transformation functions, and selected loss function [6, 43]. To ensure
computational and temporal efficiency, we created custom DL architectures
for our research that were suited to our dataset.

DNN-Single: DNN Single architecture [40] is used to investigate and
comprehend the performance of extracted FVs. The first hidden layer of
architecture encounters the FV of dimension 193, which converts it into a vector
of dimension 512 using weighted matrix multiplication and the standard ReLU
transformation function. With the same transformation function, additional
hidden layers with output dimensions of 256 and 128 are also used. The
dropout transformation is applied between each hidden layer. Dropout is a
common technique for dealing with extreme variance that leads to overfitting
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Figure 4: Block architecture of DNN-single Deep Learning Model.

DNN CNN Model
conv3

conv1 conv 2
512x1x1

Input
193x1x1

—
/
1
/

6ax8x1

32x3x3 6ax3x3 64x3x3 Flatten Layer

l:lconvolutional - Dropout . Dense/ fully connected - Reshape |:| Average Pooling - Batch Normaliation - Activation

Figure 5: Block architecture of DNN CNN Deep Learning Model.

of DL models. To put it into action, it simply removes a fractional ratio
of weight from the hidden layer, preventing over-training in all layers. As
a result, Dropout with a ratio of 0.4 is used in between. Using a hidden
layer, the 128-dimensional vector is transformed into a 64-length vector. As
it is a multi-class classification, the final 64-dimension dense vector is used
for two-class classification using the softmax classification technique noticed
from Figure 4. The cross-entropy loss function is used in the training. In loss
minimization, the Adam optimization technique is used to reduce the loss [71].
In the CNN training procedure, we were interested in the frequency area that
is more useful for differentiating authentic and repeat speech [45].

The model is designed for classification tasks with two output classes.,
where the input layer accepts a feature vector s € R'93, representing the
dataset’s attributes. The dense layer (dL) 15 maps the input to a 512-
dimensional feature space using the transformation £1 = p1s + ay, where
w1 € R12X193 and a; € R5'2 are training parameters initialized with the

. e s NG NG
Glorot uniform initializer as 6 ~ U [— NireE=To—e \/nm—s-nom}' The output

&1 = ReLU(£1), where ReLU(£) = max(0, £), passes through a dropout
layer with a rate of 0.4, which deactivates 40% of the neurons during training
by applying £ilmp0“t = £1 ®my, where m; ~ Bernouli(p = 0.6). The dL 2"¢
reduces the feature space to 256 dimensions using £9 = s £ fmp out + ap, where
po € RF6X912 and ay € R0, followed by & = ReLU(£3). A 2"¢ dropout
layer with a rate of 0.2 applies regularization. The dL 3" compresses the
feature space further to 128 dimensions with £3 = 3 £;"“"” °ut 4 o3, where
pz € R2*X256 and a3 € N128, followed by &3 = ReLU(£3). Correspondingly,
the 4*" dL reduces the dimensions to 64 using £4 = ,u4£§mp °ut | oy, where
g € REP128 and ay € R with activation &4 = ReLU(£4). The final output
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layer computes £5 = us£4 + a5, where s € $2%64 and a5 € R2. The softmax

AF as § = softmax(£5), where softmax(£;) = M, converts the
21 exp(£;)

output into a probability distribution over the two classes.

DNN-CNN: The DNN-CNN [89] model was developed to investigate
and grasp the functionality of CNN-based architectures [9] in this particular
field utilizing our generated features. We developed a DNN for replay noise
classification and spoofing detection since replay noise is important [72]. The
extraction of features is made possible by these convolutional procedures, which
are then subjected to various pooling approaches and batch normalization
(BN) algorithms to improve efficiency and prevent overfitting during training.
Also connected to transformation functions are these extracted characteristics
[93]. The initial and end hidden layer settings, dropouts, and transformations
used in our combined DNN-CNN architecture are identical to those used in
our DNN single model [75]. A three-dimensional matrix with the dimensions
(64,8,1) is created using feature vectors of dimension 512 to mimic image
data. The first step is an average pooling with the same strides, followed by a
convolutional hidden layer with 32 kernels of size 3 x 3 applied with a 2 x 2
stride. Then, two separate CNN layers with a 64 kernel size are applied. The
output is transformed mathematically using a ReLu-based algorithm [18, 92]
and BN after each CNN layer can be observed from the Figure 5. The result
is then reduced to a two-dimensional vector, which serves as the input for the
remaining layers, which are the same as those used in the DNN Single model.

The DNN-CNN, designed for binary classification, begins with an input
layer accepting a feature vector s € 193 and provides input attributes. The
1%t dL computes £1 = g5 + aq, where p; € R°12X193 and a; € R°'? are
trainable parameters initialized with the Gorot uniform initializer. The output
& = ReLU(£;), where ReLU(£) = max(0, £), is regularized by a dropout
layer with a rate of 0.4, which deactivates 40% of neurons during training:
£§lmp°“t = £1 ® my, where my; ~ Bernouli(p = 0.6). The resulting 512-
dimensional output is reshaped into a 3D tensor of shape (64,8, 1) as input
to the CNN. The CNN begins with a convolutional layer that applies 32
filters, each of size 3 x 3, with a stride of 2 x 2, computing feature maps
£y = pg * £ilmp0ut + ag, where x denotes the convolution operation, us €
R3x3x1IX32 and ap € N32. The output is passed through ReLU activation and
an average pooling layer with a pool size of 2 x 2 and stride 2 x 2, reducing
the spatial dimensions by half. BN stabilizes the activations, producing
¢ = ReLU(BN(£2)). A 2" CL uses 64 filters of size 3 x 3 with ‘same’
padding, preserving spatial dimensions, and reckons £3 = uz x £2 + as,
followed by BN and ReLU activation: £&5 = ReLU(BN(£3)). This is repeated
for another CL with 64 filters, resulting in refined feature maps &;. The
output is then flattened into a vector &5 € R™, where n is the total number
of features. The flattened vector passes through a dL with 256 neurons,
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Figure 7: Block architecture of DNN-ConvLSTM Deep Learning Model.

computed as £4 = g L5 + oy, where jg € R2°6X" and ay € R?56, followed by
£6 = ReLU(£4). A dropout layer with a rate of 0.5 regularizes the output.
The subsequent DN layers refine the feature space with 256,128, and 64
neurons sequentially, each applying £; = p;§;—1 + «; and & = ReLU(£;. The
final AL outputs as £final = Hfinaillast T Cfinal, Where fifina € R2%64 and
Qfinal € R2, followed by a softmax activation: § = softmaz(£ final), Where
exp(£;
extraction with CNN layers for spatial feature learning, effectively capturing
spatial patterns for accurate classification.

DNN-BiLSTM Model: The DNN-BiLSTM model is designed to leverage
the power of BiLSTM [13] layers in combination with dLs for sequence modeling
tasks [32]. This architecture is particularly suitable for capturing temporal
dependencies and patterns within sequential data. The model begins with an
input layer, which takes in sequences of length 193. This input is then passed
to a dL with 512 units and a ReLU activation function (AF), initialized with
the Glorot uniform initializer [38].

A dropout [63] layer with a rate of 0.4 is applied to prevent overfitting.
The resulting output is reshaped into a three-dimensional tensor of dimensions
(64, 8), mimicking the structure of a 2D image. BN [69] is then applied to
normalize the tensor, followed by two BiLSTM layers with 64 units each. The
BiLSTM layers process the input sequences in both forward and backward
directions, allowing the model to capture dependencies from both past and
future contexts. The first LSTM layer returns sequences, while the second
LSTM layer returns only the final hidden state. The output from the BiLSTM

softmax softmax(£;) = . The model combines dLs for feature
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layers is passed through a dL with 256 units and a ReLU AF. A dropout layer
with a rate of 0.2 is applied to further regularize the model. The subsequent
hidden layers consist of two dLs with 128 and 64 units, respectively, using
ReLU activation. Finally, the output layer with 2 units and a softmax [31] AF
is added to classify the input sequences into two classes. The DNN-BiL.STM
model shares the same set of performance indicators, including accuracy,
precision, recall, and AUC-ROC score, as the DNN Single model. It utilizes
the cross-entropy loss function [80] and the Adam optimizer for training, and
softmax-based classification for multi-class classification tasks can be seen from
the Figure 6.

The model combines dLs with BiLSTMs to process sequential patterns
and extracts robust feature vectors s € R1?3 as input data with 512 neurons
maps with high dimensional representation computed as £1 = p1s+ ay, where
py € R212X193 and o € NP2 are trainable parameters initialized using Glorot
uniform initialization. ReLU activation §&; = ReLU(£1), where ReLU(£) =
max(0, £), is applied to introduce non-linearilty. To reduce overfitting, a
dropout layer with a rate of 0.4 is applied, producing £/"P*" = ¢, & m — 1,
where (m — 1) ~ Bernouli(p = 0.6). The output is reshaped into a 3D tensor
of shape (64, 8), preparing it for sequential processing by LSTM layers. A BN
layer is applied to the reshaped tensor, stabilizing activations and accelerating
convergence. Then fed into the 1%¢ BiLSTM layer, which consists of 64
units in each direction. For each time step ¢, the forward LSTM determines
— — )
hi = LSTM (hi_1, s¢), while backward LSTM assess jz_t = LSTM(;TH, St).
The outputs are concatenated to form (h; = [E,E]) captures temporal

dependencies in both directions. The 2"% BiLSTM layer with 64 units further
processes these outputs, resulting in a refined temporal characterization. The
sequence output is concatenated into a single vector h(LST M), extracted from
the final timestep outputs of the forward and backward passes, establishing a
comprehensive characterization of the sequence.

The output obtained from the BiLSTM is passes through a dL with 256
neurons, determined as £ = pu2lrsrar + a2, where s € R26X™ with m
being the dimensionality of 1,97 and as € R2%6. ReLU activation is applied
by a dropout layer with a rate of 0.2 for regularization. The processed
characterization is further refined through 2D dLs with 128 and 64 neurons,
respectively, each applying ReLU activation: £; = u;&,—1 + oy, where u; and
«; are the parameters of each layer. The final dL consists of 2 neurons and
evaluates £final = ,ufinalglast + A final, where Kfinal € 2264 and Qfinal € R2.
A softmax activation produces probabilities for the two target classes. The
combined dLs for feature extraction with BiILSTMs for temporal dependency
modeling make it highly suitable for tasks involving structured or sequential
data for classification performance.
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Figure 8: The confusion matrix shows the proportion of SPF and BNF predictions made
using one of the spatiotemporal machine learning techniques using (a) KNN (b) SVM (c)
RF (d) GB (e) AdaBoost (f) XGBoost (g) MLP.
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Figure 9: The graphical representation displays the accuracy, loss, and ROC-AUC score
with a confusion matrix applied to the DL-based DNN Single model to the dataset.

DNN-ConvLSTM Model: Still, after achieving great results when using
sequential deep learning architectures to this dataset, such as LSTM [29] or
RNN (Recurrent Neural Network) along with astounding results from CNN
based model, we experimented with a unique DNN-ConvLSTM integrated
architecture [91] that combines sequential modeling with convolutional architec-
ture. An LSTM-like algorithm called ConvLSTM uses convolution operations
for both input-to-state and state-to-state transitions. In spatio-temporal pre-
diction challenges, it has demonstrated state-of-the-art performance. The
DNN-ConvLSTM model’s architecture follows a framework similar to our
conventional DNN-Single design but with ConvLLSTM layers added. Follow-
ing the first hidden layer, the 512-dimensional features are reshaped into a
three-dimensional feature matrix with dimensions (64, 8, 1), which is then
used as the input states for a 1D ConvLSTM layer. This BN layer is coupled
to the ConvLSTM layer, which has 40 kernel filters with 3-length each. This
ConvLSTM layer is coupled to a BN layer and has 40 kernel filters, each having
a length of 3, which can be noticed from Figure 7.

The model is an ensemble architecture combining a DNN and ConvLSTM
layers to tackle fully connected and spatiotemporal feature extraction. The
input layer accepts a feature vector s € 193, giving the input data. The dL 1%
transforms into a 512-dimensional space by determining £1 = s + oy, where
py € NO12X193 and oy € N2, initialized using the Glorot uniform transform
method. The output & = ReLU(£;), where ReLU(£) = max(0, £), passes
through a dropout layer with a rate of 0.4, deactivating 40% of neurons to
reduce overfitting. The resulting output is reshaped into a 3D tensor of shape
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Figure 10: With a confusion matrix applied to the DL-based DNN-BiLSTM method to the
dataset, the graphical representation shows the accuracy, loss, and ROC-AUC score.

(64, 8,1), preparing it for spatiotemporal processing in the ConvLSTM branch.
The 1% ConvLSTMI1D layer, which applies 40 filters with a kernel size of
3 and ‘same’ padding, preserving temporal dependencies. The ConvLSTM
processes the sequence step by step, producing a 3D output tensor with the
same shape. BN follows stabilizing activations and accelerating convergence.
The 2% ConvLSTMI1D layer with 40 filters and ‘same’ padding refines the
temporal-spatial feature maps, with BN applied again to ensure stable training.
The final output of the ConvLSTM layers is flattened into a 1 — D vector,
Eflattened € N, where n is the total number of features extracted by the
ConvLSTM layers.

The flattened vector is processed by a dL with 256 neurons, evaluated as
L9 = polfiattencd + a2, where po € R296%™ and ay € R?°%, ReLU activation is
applied, and a dropout layer with a rate of 0.5 is added for regularization. In
parallel, the DNN processes the input through additional dLs, transforming
the feature space sequentially to 256,128, and 64 dimensions. Each dL applies
£i=pi&i—1, and & = ReLU(£;_1), where pu; and «; are trainable parameters.
Finally, the output of the dLs and ConvLSTM branch are combined, and the
final dL. determining £fmal = ,Ufmalfcombined + Afinal, where M final € R2x64

and A fing € R2. A softmax activation softmaz(£;) = cap(£y)

= m, generates

probabilities for the two target classes.

6 Experimental Results and Analysis

In £-NN model, & = 3, the algorithm will categorize new instances according to
the class labels of the 3 nearest neighbors. From Table 2, the accuracy of k-NN
is astounding at 90%, and its precision is 0.85 for SPF and 0.97 for BNF. Recall
and F1 score are further parameters for assessing the performance of the k-NN
model. The model successfully identified 90% of the actual positive instances,
as evidenced by the 97% recall. The 91% F1l-score, which balances accuracy
and recall, demonstrated great overall performance. The macro average and
weighted average metrics demonstrated consistent performance across all
classes. The confusion matrix from Figure 8 shows less misclassification for
both voice types and strong overall performance.
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Figure 11: The ROC-AUC score, accuracy, loss, and different confusion matrix from the
DL-based DNN-CNN model applied to the dataset are shown graphically.
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Figure 12: Using another confusion matrix used to apply the DL-based DNN-ConvLSTM
method to the dataset, the graphical representation shows the accuracy, loss, and ROC-AUC
score.

The SVM algorithm is evaluated and can be noticed from Table 2; the
results show that it has an accuracy of 96% with a precision of 0.96 and 0.97
for SPF and BNF, respectively. The recall and F1 scores show outstanding
results, with more than 96% in both cases. The macro and weighted average
metrics determine more than 96% across all the classes. Additionally, the
confusion matrix notices the description from Figure 8, illustrating the rarity
of misclassification across both voice types, with notably standing out with
the best outcome.

The dataset has employed the RF algorithm, as seen by the Table 2 results.
RF has a 95% accuracy rate, which is remarkable. For SPF and BNF, the
accuracy is 0.97 and 0.95, respectively. The F1 score is 96% for both cases,
and the model correctly displays the recall with 0.95 for SPF and 0.97 for BNF.
For RF, the overall macro and weighted average metrics are 0.96. Additionally,
the confusion matrix from Figure 8 indicates that both voice types and overall
performance have fewer misclassification.

The GB algorithm has been used in the dataset, and the results show that
from Table 2. The accuracy is outstanding at 95%. The precision is 0.96 and
0.95 for SPF and BNF, respectively. The model successfully illustrates the
recall with 0.95 for SPF and 0.97 for BNF and the F1 score is 95% for both
cases. The macro and weighted average metrics for GB are 0.95 across all
the cases. Additionally, the confusion matrix in Figure 8, shows that there
is less misclassification for both voice types and overall performance is good.
AdaBoost Algorithm, one of the ML algorithms, is applied to the dataset,
and the results are shown in Table 2, where it is shown that Adaboost has
a good accuracy rate at 93%. For each scenario, the precision is 0.93. The
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Table 4: Performance of the ASVspoof 2021 Data Set with the Deep Learning Algorithms
DNN Single, DNN - CNN, DNN - BiLSTM, and DNN - ConvLSTM.

Metrics DNN Single DNN-CNN DNN-BIiLSTM DNN-ConvLSTM
Precision 0.996 0.997 0.992 0.995
Recall 1.00 0.999 0.999 1.00
Test Loss 0.00585 0.01162 0.02351 0.02131
Accuracy % 99.798 99.825 99.569 99.778
(EER %) (0.54) (0.40) (0.71) (1.69)
AUC 99.9288 99.8787 99.749 99.8785

recall and F1 scores are 0.93 for both cases. In all, AdaBoosting has a macro
and weighted average metric of 0.93. The confusion matrix from Figure 8§,
shows a reduced rate of misclassification for both speech types and excellent
performance.

The XGboost algorithm is applied to the dataset, and the results show
that from Table 2. The accuracy of XGBoost is an astounding 96%. The
precision is 0.96 and 0.97 for SPF and BNF, respectively. The recall is 0.97
for SPF and 0.96 for BNF. The F1 score is 0.96 for both cases. The macro
and weighted average for both cases is 0.96. The confusion matrix from Figure
8 shows that there is less misclassification for both voice types, and overall,
the outcomes exhibit strong performance. The MLP algorithm is applied to
the dataset, and the results are shown in Table 2. It has an accuracy of 96%
and the precision is 0.97 and 0.95 for SPF and BNF, respectively. The recall
values for SPF are 0.95 and 0.97 for BNF, while the F1 score is achieved with
96% for both cases. The macro and weighted average for both cases is 0.96.
The confusion matrix from Figure 8, shows there is less misclassification in
both the voice types, and the overall outcome shows strong performance.

When the dataset is applied for DL, a DNN Single algorithm is used, and
the results are shown in Table 4. The precision is 99% while the accuracy of
DNN Single is 99%. The AUC score is 0.999. The test loss is just about 0.005.
In the confusion matrix for DNN-Single, as shown in Figure 9 among all the
matrices, the results stand out particularly well. The DNN-CNN algorithm is
subsequently applied to the dataset, and the results are shown in Table 4 with
accuracy and precision of more than 99%. The test loss is only 0.011, and
the AUC score value is 0.998. Strong performance is shown by the Confusion
matrix from Figure 11, for DNN-CNN among all the measures.

The DNN-BILSTM algorithm is applied to the dataset and it displays the
result in Table 4, where the accuracy is 99.8% and precision is 99.1%. The
AUC score value is at 0.997, and the test loss is just 0.025. The confusion
matrix in Figure 10, for DNN-BIiLSTM among all the metrics, the results
show good performance. The data set is subjected to the DNN-convLSTM
algorithm, and the results show a remarkable precision of 99.7% and precision
of 99.5%. The loss is just 0.021. The AUC score value is 0.998. The confusion
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matrix from Figure 12, for DNN-convLSTM, shows an astounding performance.
The above study is compared with the existing state-of-the-art methods as
shown in Table 3. These approaches are investigated in a detailed analysis that
will help provide a comprehensive comparison and a deeper understanding of
how the methods perform relative to each other. The proposed methods using
the hybrid combination of features improved the overall performance of the
system. The executable DeepFake code.?

DNN Single, DNN-CNN, DNN-BiLSTM, and DNN-ConvLSTM are well-
optimized for speech utterances and perform exceptionally well. Introducing
Transformer and reinforcement learning models, while powerful in image and
multimodal domains, would likely result in unnecessary complexity, increased
computational cost, and minimal performance gain for this specific task. The
above models leverage the key strengths of speech processing (spectrogram
features, sequential dependencies), making these newer models redundant in
this context.

7 Conclusion and Future Directions

In this study, we examined both ML and DL. In ML, SVM, RF, GB, Adaboost,
XGboost, MLP, and k-NNs are used to identify the SPF and BNF by taking
into account the provided spoken utterances. By merging all ML algorithms,
we found that SVM and XGBoost showed astounding performance with 96%
accuracy by applying the ASVspoof 2021 dataset. In the case of DL, DNN-
single, DNN-CNN, DNN-BiLSTM, and DNN-convLSTM, the accuracy rate
in all the algorithms is more than 99%. Hence, by combining both DL shows
more precision and accuracy rate for detecting spoofs in speech recognition.
This resulted in better performance compared to other algorithms.

In our future work, more attention should be paid to the new database
source of ASVspoof Multilingual Librispeech (MLS). The MLS dataset is di-
vided into distinct subsets to aid in the development of CM, ASV, and SASV
systems as well as text-to-speech (TTS) and VC models. We explicitly demon-
strated that conventional CNN-based and RNN-based models outperform
transformers in low-data settings an observation consistent with outcomes
from the ASVSpoof challenges there remains scope for further exploration. No-
tably, recent top-performing systems, such as those in the ASVSpoof challenge,
have favoured CNN-based methods due to their computational efficiency and
stability in spoof detection. However, given the rapid evaluation of transformer
architectures and their success in other domains, future work could involve
a comprehensive analysis incorporating advanced transformer variants. This
would help assess their viability for spoof detection tasks under various data

Shttps://github.com/Adityahulk/DeepFake.
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availability scenarios and contribute to a more holistic understanding of model
performance trade-offs.

The Python-based executable code can be accessed through the DeepFake
link.
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