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ABSTRACT
Target speaker extraction (TSE) is essential for various speech
processing applications, particularly with complex acoustic envi-
ronments. However, current TSE systems lack robustness under
real world conditions due to limited training data diversity and
unrealistic noise. To address these challenges, we first constructed
Libri2Vox, a new dataset combining clean target speech from Lib-
riTTS with interference speech from VoxCeleb2 that contains real
acoustic variations, channel effects, and ambient conditions. To
increase speaker variability, we augmented Libri2Vox with syn-
thetic speakers generated by developing two speech anonymization
methods: SynVox2 and SALT (speaker anonymization through
latent space transformation). Further, we propose a three-stage
curriculum learning approach that progressively introduces syn-
thetic speakers after training a seed TSE model on real data with
varying speaker similarity levels. Experiments with four different
neural TSE models show that Libri2Vox’s rich acoustic variations
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and synthetic speaker integration through curriculum learning con-
sistently improve performance across common evaluation metrics.
We also confirmed that the proper ratio of synthetic speakers to
real speakers is important for improving the performance.1

Keywords: Target speaker extraction, curriculum learning, synthetic data,
speech dataset

1 Introduction

Target speaker extraction (TSE) [55] is a key task in speech processing, fo-
cusing on isolating the voice of a desired speaker from complex acoustic envi-
ronments. This capability is valuable in applications such as voice-controlled
systems, teleconferencing, and hearing aids, where extracting clear speech
signals directly impacts system performance and user experience. Despite
notable advances, TSE still faces multiple challenges, particularly related to
limited data diversity and a lack of robustness under real-world conditions
[55].

A significant issue with TSE is the mismatch between training and de-
ployment environments. Current models are typically trained on artificially
mixed speech, which is controlled but fails to capture the complexity of real-
world conditions [48]. The diverse nature of noise, including spatial configura-
tions, reverberations, and dynamic changes, leads to significant performance
degradation during deployment. The limitations of current TSE datasets
(highlighted in Table 1) are evident in both restricted speaker diversity and
the controlled, synthetic nature of mixtures. For instance, datasets such as
WSJ0-2mix-extr [50, 15] and Libri2talker [51] are limited regarding the num-
ber of speakers, 101 and 1172, respectively. These datasets possess limited
variability in terms of acoustic and speaker conditions. These limitations can
lead to models that generalize poorly to unseen speakers and complicated
real-world acoustic environments. Addressing these challenges and improving
the robustness of TSE systems thus requires incorporating more variations in
terms of noise conditions and speakers.

To address these limitations and enhance TSE system generalization, we
propose a novel data integration approach focusing on two critical aspects:
speaker diversity and acoustic variability. We leverage the VoxCeleb2 dataset
[4], which encompasses more than 6,000 speakers recorded in diverse acoustic
environments, providing a rich source of real-world variations. However, di-
rectly using the noisy recordings from VoxCeleb2 as target speech contradicts

1We will make the Libri2Vox dataset and code be public upon the acceptance of the
paper.
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Table 1: Comparison of WSJ0-2mix-extr, Libri2mix, and Libri2talker datasets.

Dataset # Speakers # Utterances Duration(h)

WSJ0-2mix-extr
101 (train) 20,000 (train) 30
101 (val) 5,000 (val) 8
18 (test) 3,000 (test) 5

Libri2mix
921 (train-360) 50,800 (train-360) 212
251 (train-100) 13,900 (train-100) 58

40 (val) 3,000 val 11
40 (test) 3,000 test 11

Libri2talker
1,172 (train/val) 127,056 (train) 460

1,172 (val) 2,344 (val) 8
40 (test) 6,000 (test) 22

the objective with TSE, which is to extract clean speech, thus degrading the ef-
fectiveness of the training data. To resolve this constraint while maintaining
data diversity, we implement a strategic combination: employing the high-
fidelity LibriTTS dataset [53], derived from LibriSpeech [34], as our target
speaker source while using VoxCeleb2 for interference speaker source.

Another solution to address such challenges is the acquisition of synthetic
data, which has demonstrated remarkable efficacy across various alternative
tasks [26, 32], such as computer vision [28, 9] and natural language processing
[10, 12, 46]. It has been a promising solution on data scarcity and model
robustness. Synthetic data have also proven highly effective in various speech-
related tasks. In automatic speech recognition (ASR), for example, the use
of synthetic speech data generated using text-to-speech (TTS) models has
demonstrated considerable improvements [18, 11]. Similarly, research on TTS
systems has shown that training robust models on synthetic data produced
using less stable systems can enhance transfer stability, delivering high-quality
transfers while retaining speaker characteristics [40, 2]. For speaker-related
tasks, synthetic data also enables TTS systems to synthesize speech from new,
unseen speakers by sampling from a learned latent distribution [22, 54]. Build-
ing upon these advances, we extend synthetic data approaches to TSE. Our
goal is to enable TSE models to reliably extract clean speech in diverse, real-
world environments. Incorporating synthetic data helps address challenges
of data scarcity, especially in handling new speakers and complex acoustic
conditions.

Our two previous studies laid the foundation for this study. In our initial
study [24], we implemented a curriculum learning (CL) approach [41] that
progressively trains the model with increasingly complex scenarios, demon-
strating significant performance improvements in challenging speaker extrac-
tion tasks. In our subsequent research [25], we introduced the use of syn-
thetic speakers to the learning scheme. The synthetic speakers were gener-
ated through voice conversion and speaker anonymization [27], which led to
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substantial improvements in TSE performance. Voice conversion transforms a
source speaker into a target speaker, producing speech with a different identity.
Speaker anonymization, similarly, takes speech in but removes the speaker’s
identity, creating a new, anonymized speaker that does not exist in reality.
For this study, we created Libri2Vox, a dataset combining clean target speech
from LibriTTS with interference speech from VoxCeleb2 (a larger dataset with
more speakers than the current TSE dataset), that enables the generation
model to generate a greater number and variety of synthetic speakers.

The main contributions of this study are threefold:

• New dataset called Libri2Vox: Libri2Vox includes a large and di-
verse set of speakers with realistic noisy interference. The target speak-
ers are sourced from the cleaner LibriTTS, while interference speak-
ers are derived from VoxCeleb2. This combination allows for bet-
ter representation of real-world acoustic conditions while maintaining
clean target speech signals. Focusing specifically on 2-speaker scenar-
ios, Libri2Vox bridges the gap between idealized synthetic mixtures and
uncontrolled recordings by incorporating VoxCeleb2’s natural acoustic
variations, channel effects, and ambient conditions. This design choice
provides a controlled yet more realistic environment for developing and
evaluating TSE systems, maintaining the necessary ground truth refer-
ences while introducing more challenging and varied acoustic conditions
than conventional TSE datasets.

• Libri2Vox variants with synthetic speakers: We further enrich the
diversity of Libri2Vox by introducing two specialized synthetic speaker
generation techniques, each designed to improve the robustness of TSE.
Unlike generic data augmentation techniques that simply manipulate
existing data, our approaches generate entirely new synthetic speak-
ers that are acoustically distinct yet complementary to real speakers.
These synthetic speakers strategically fill gaps in the speaker represen-
tation space, introducing variability patterns not present in the original
data. Our previous study demonstrated that increasing the diversity of
interference speakers through synthetic generation can significantly en-
hance TSE performance, particularly when combined with CL [25]. In
this study, we built upon these findings by leveraging the more diverse
VoxCeleb2 dataset, which provides a richer pool of speakers as the foun-
dation for our synthetic speaker generation framework. This approach
represents a methodological innovation in how synthetic data can be
specifically optimized for speaker extraction tasks rather than general
speech applications.

• Investigating effectiveness of synthetic speakers in curriculum
learning: We propose a novel three-stage CL framework that strate-
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gically integrates synthetic data to maximize TSE performance. Our
approach first establishes model robustness on real data with varying
speaker similarity levels before gradually introducing synthetic speakers
in a three-stage learning curriculum. Experiments show this curriculum-
based integration significantly boosts performance while avoiding the
severe degradation observed when training directly on synthetic data
alone.

2 Related Work

This section defines TSE, discusses deep neural network (DNN)-based TSE
models, provides an overview of common datasets while identifying their short-
comings, and presents effective training strategies.

2.1 Definition of Target Speaker Extraction

The basic framework TSE is illustrated in Figure 1. Mathematically, it can
be expressed as:

ŵ(t) = TSE(m, et = E(w(rt)); θ),

where given a enrollment waveform w(rt) containing speech signals of the
target speaker t, this waveform is used to extract a speaker embedding et =
E(w(rt)) via a neural speaker encoder E. TSE aims to output the estimated
clean speech signals ŵ(t) of the target speaker from a given mixture m, where
m = s + s′ contains the target speaker’s clean speech s and interference
speakers’ speech s′. The notation θ represents the model parameters of the
extraction framework.

Extraction network

Mixture

Estimated
target speaker

Speaker encoder

Enrollment
speech 

Speaker
embedding

Figure 1: Basic conceptual framework of TSE.
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2.2 Deep Neural Networks for Target Speaker Extraction

DNNs have enabled significant advances in developing single-channel TSE
systems. Early approaches primarily used a reference signal from the target
speaker to guide the extraction process, differing in network architectures and
the manner in which speaker embeddings were used. The following DNNs are
the most common for TSE.

SpeakerBeam [56] was the first model specifically designed for TSE. Unlike
other speech separation models that attempt to determine the number of
speakers in a mixture, SpeakerBeam focuses exclusively on extracting the
target speaker. By leveraging speaker information through embeddings, it
effectively isolates the desired speaker’s voice, overcoming common issues such
as label permutation and speaker tracing. Notably, SpeakerBeam’s speaker
embedding is extracted using a simple speaker encoder trained jointly with
the TSE network.

VoiceFilter [47] integrates convolutional layers, long-short term memory
(LSTM), and fully connected layers (FCs). Unlike SpeakerBeam, speaker
embeddings used with VoiceFilter are extracted from a pre-trained speaker
encoder [43], providing fixed guidance.

The Conformer [16] architecture combines convolutional layers and self-
attention mechanisms to simultaneously capture local and global dependencies
in speech input. The Conformer-based TSE model [24] processes the time-
frequency domain short-term Fourier transform (STFT) spectrum of the input
mixture. By using a Conformer blocka hybrid of multi-head self-attention and
full convolutionConformer generates the real and imaginary parts of the target
speech signal’s STFT. Conformer blocks also integrate STFT features with
speaker embeddings extracted from reference utterances using a pre-trained
speaker encoder [7]. Unlike SpeakerBeam and VoiceFilter, which enhance only
the magnitude and use the noisy phase for reconstruction, Conformer predicts
the complex spectrum mask [49].

We use all of these models to prove the effectiveness of Libri2Vox and our
training strategy.

2.3 Datasets for Target Speaker Extraction

Table 1 presents three major datasets for TSE: WSJ0-2mix-extr, Libri2mix,
and Libri2talker.

WSJ0-2mix-extr [50] is derived from the WSJ0 [14] corpus, which consists
of clean, read speech from the Wall Street Journal. For each 2-talker mixture
audio in WSJ0-2mix-extr, two randomly selected utterances from different
speakers in WSJ0 are mixed. This dataset is composed of training, devel-
opment, and evaluation sets, with the training set including 20,000 mixtures
generated from 101 speakers (50 male and 51 female), development set con-
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taining 5,000 mixtures, and evaluation set containing 3,000 mixtures involving
18 different speakers not seen during training. The signal-to-noise ratio (SNR)
of these mixtures was chosen between 0 and 5 dB. Most of the 2-talker speech
samples are heavily overlapped, creating a challenging environment for TSE
models.

Libri2mix [5] is derived from LibriSpeech [34]. It creates clean 2-talker
mixtures by randomly selecting and mixing two utterances from its predeces-
sor. It consists of several subsets, including train-360 with 50,800 utterances
(212 hours, 921 speakers) and train-100 with 13,900 utterances (58 hours, 251
speakers), as well as dev and test sets, each containing 3,000 utterances (11
hours, 40 speakers). The dataset follows a minimum duration protocol, trim-
ming the longer utterance in a pair to match the shorter one, resulting in a
100% overlap rate. This setup is designed to provide challenging conditions
for speech separation models.

Libri2talker, an extended version of Libri2mix, reuses 2-talker mixtures by
swapping the roles of the target and interference speakers, effectively doubling
the available data. It includes a training set with 127,056 examples from
1,172 speakers, validation set with 2,344 examples, and evaluation set with
2,260 enrollment utterances from the LibriSpeech test-clean set and 6,000 test
utterances from the Libri2mix test set. Like Libri2mix, Libri2talker applies
the minimum duration protocol and retains a 100% overlap rate, making it
suitable for both speaker verification and TSE tasks.

These datasets are composed of artificially mixed speech, where both
speakers in each mixture were recorded under studio conditions, resulting
in clean speech. This setup leads to a significant mismatch with real-world
data, which typically contains more variability and noise. Since our ultimate
goal is to handle real-world scenarios, using real-world data as interference
sources is a more suitable approach to bridge this gap and enhance model
robustness.

2.4 Training Strategies for Separation-related Task

There are predominately two categories of state-of-the-art training strategies
for TSE: data simulation and optimization strategies. Data simulation is
crucial for augmenting mixture training data, particularly when real-world
labeled datasets are limited. Common techniques include the following:

• Data Augmentation [1]: This involves generating new training data
by modifying existing datasets using techniques such as adding Gaussian
noise, pitch shifting, or time stretching. Data augmentation helps train
more robust models that generalize better to different environments.

• Dynamic Mixing: This strategy dynamically generates new mixtures
of target and interference speakers during training. By continuously
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varying the conditions in which the target speaker is extracted, dynamic
mixing improves the model’s generalization to different noise and inter-
ference scenarios.

Optimization strategies have also demonstrated significant promise in improv-
ing TSE performance. Common strategies include the following:

• Metric-based Method: To address the training/inference mismatch
in deep noise suppression models, real data can be implemented using
either generative models or reference-free loss without clean speech ac-
cess [52]. With this strategy, an end-to-end non-intrusive DNN, called
PESQ-DNN, is used to estimate the perceptual evaluation of speech
quality (PESQ) [39] scores, providing a reference-free perceptual loss
during training. An alternating training protocol is applied in which the
DNN model is updated on real data, followed by PESQ-DNN updates
on synthetic data. This strategy significantly improves the performance
compared with models trained solely on simulated data.

• Curriculum Learning: CL is a strategy with which training data
is introduced progressively, starting with easier examples and moving
toward more complex ones. CL has been implemented in TSE by sorting
training samples on the basis of predefined difficulty measures such as
gender, speaker similarity, signal-to-distortion ratio (SDR), and SNR.
Initially, easier samples in which the target and interfering speakers are
more distinct are used, and progressively harder cases are introduced as
training advances. CL has been shown to improve model convergence
and performance [25, 24] and was used in our experiments to optimize
TSE training.

3 Libri2Vox Dataset

TSE systems face two critical challenges: limited speaker diversity and ar-
tificial acoustic environments. Current TSE datasets, as shown in Table 1,
typically contain only hundreds to a few thousand speakers, significantly con-
straining model generalization capabilities. This limitation becomes particu-
larly apparent when systems encounter speakers or acoustic conditions outside
the training distribution.

Speaker diversity plays a fundamental role in TSE performance. A rich
speaker set enables models to learn robust representations across various
speech characteristics, including accent variations, speaking styles, and vo-
cal qualities. Our analysis suggests that expanding the speaker sets directly
correlates with improved model generalization and performance metrics.



Target Speaker Extractor Training with Diverse Speaker Conditions and Synthetic Data 9

Apart from speaker diversity, acoustic condition is another intriguing fac-
tor. Most existed datasets for standard TSE training and evaluation are gen-
erated by artificially adding target and interference speech with noise, which
does not fully capture how noise and speech mixtures occur in real environ-
ments. The complexity of how background noise interacts with speech, includ-
ing varying distances between the speakers and noise sources, or overlapped
voices during conversations, makes it difficult to simulate the true nature of
how speech mixtures are created in real-time cases. This is where current
datasets often fall short. Meanwhile, datasets that have been widely used for
other tasks (such as VoxCeleb2 used in this study) often contain real-world
recordings, some of which include background noise from various environ-
ments, making them a closer reflection of the conditions under which TSE
models are expected to operate.

To address these limitations, we leverage VoxCeleb2 recordings as interfer-
ence sources. These recordings inherently contain diverse, real-world acoustic
conditions, providing more real training scenarios for TSE models compared
with traditional artificially mixed clean speech. This approach marks a signif-
icant step toward more realistic scenarios, though it still focuses on 2-speaker
mixtures rather than the full complexity of unconstrained real-world environ-
ments.

3.1 Dataset Construction

In constructing the Libri2Vox database, as shown in Figure 2, we used the
following key steps.

3.1.1 Pre-processing and Mixing

Each audio segment is randomly split into 6 second(s) segments. Segments
shorter than 6s are zero-padded at the end. The dataset is first processed in
the following steps:

• All audio data is pre-processed using sv562 with a scale factor of -26 dB.

• In LibriTTS, target speech shorter than 2s is deleted. Then, speakers
with fewer than 3 utterances are removed, resulting in the deletion of 31
speakers out of 1,151, leaving 1,120 speakers in total.

• For reference speech handling, we implement the following strategy: If
the original utterance is shorter than 10s, we randomly select additional
utterances from the same speaker and concatenate them sequentially

2https://github.com/foss-for-synopsys-dwc-arc-processors/G722/tree/master/sv56

https://github.com/foss-for-synopsys-dwc-arc-processors/G722/tree/master/sv56
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LibriTTS VoxCeleb2

Randomly segment (6s)

Loudness alignment 
with sv56 (optional)

Randomly select one
sentence

Randomly select one
male/female speaker

SNR Mix

Libri2Vox

Libri2Vox-syn

SNR Mix

Speech
generative model

Figure 2: Data generation framework of Libri2Vox and its synthetic version.

until the combined duration exceeds 10s (while ensuring the total du-
ration remains below 15s). If the original utterance is already longer
than 10s but shorter than 15s, we use it as is. If the original utterance
exceeds 15s, we truncate it to 15s. This approach ensures adequate
reference material for speaker embedding extraction while maintaining
reasonable processing lengths.

For the dataset composition, we use VoxCeleb2 as the interference speaker
dataset and LibriTTS as the target speaker dataset. VoxCeleb2 is a large-
scale speaker recognition dataset that was collected “in the wild”, meaning
that the speech segments are naturally corrupted by real-world noise such
as laughter, cross-talk, channel effects, music, and other background sounds.
This adds an element of realism, making the dataset particularly valuable for
training models that need to handle noisy environments. VoxCeleb2 is also
multilingual, featuring speech from speakers of 145 different nationalities and
covering a wide range of accents, ages, and languages.

Regarding speaker diversity characteristics, Libri2Vox inherits rich demo-
graphic variety from both source datasets. From VoxCeleb2, we retain the
diversity in nationalities (145 different countries), with a relatively balanced
gender distribution (61% male, 39% female). The dataset captures diverse age
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groups spanning from young adults to seniors across various professions and
backgrounds. Speaking style diversity is particularly strong in the VoxCeleb2
portion, featuring speech from speakers of different ethnicities captured ’in
the wild’, with background chatter, overlapping speech, public speeches, and
entertainment segments, each with varied speech rates and natural prosodic
patterns. The natural recording environments in VoxCeleb2 contribute to
diversity in speech rates, emotional states, and speaking stylesranging from
formal interviews to casual conversations. Speech segments exhibit differ-
ent emotional qualities including excitement during red carpet events, neutral
tones in studio recordings, and various natural speech patterns. The LibriTTS
portion contributes clean, read speech with 24kHz sampling rate from 2,456
speakers, providing high fidelity target speech. While LibriTTS primarily
contains read speech with less emotional variation, it includes some accent di-
versity, particularly with British, Scottish, Welsh, and Irish accents identified
in specialized subsets. These diverse acoustic characteristics create a chal-
lenging yet realistic environment for TSE systems to operate under real-world
conditions. The variety of recording settings (red carpets, outdoor stadiums,
indoor studios, etc.) further ensures acoustic diversity beyond controlled labo-
ratory conditions. The combination of these two datasets in Libri2Vox creates
a training environment with both controlled, high-quality target speech and
diverse, real-world interference conditions.

One potential problem with VoxCeleb2 for this study is that the speech
segments are predominantly recorded in noisy conditions. However, on the
other hand, the inherent noise in VoxCeleb2 makes it an ideal source for
interference speakers. By using VoxCeleb2 as the interference speaker source,
we can take advantage of the real-world noise captured during the original
recordings, rather than relying on artificially added noise in post-processing.
This enables the dataset to more accurately simulate real acoustic conditions
in TSE.

VoxCeleb2 includes both a development (dev) set and evaluation set. The
dev set contains 5,994 speakers, with a total of 1,092,009 utterances, while
the evaluation set includes 118 speakers and 36,237 utterances. The entire
dataset contains over 1.1 million utterances, making it a rich resource for
training models on diverse speaker characteristics. The average duration of
the utterances in VoxCeleb2 is approximately 7.8s. We randomly select 94
speakers from the dev set of VoxCeleb2 to form the validation set and leave
5,900 speakers for training.

The other data source acquired for this study is LibriTTS [53]. It is
a refined version of LibriSpeech [34], in which a small portion of the noisy
utterances from the latter was removed to ensure cleaner speech for tasks
such as TTS.

For each target speech from LibriTTS, we randomly select one male and
one female interference speaker from VoxCeleb2 in an alternating manner.
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This means that for every target speech, we first choose a male interference
speaker then a female interference speaker, ensuring a balanced gender distri-
bution across the dataset. The mixture is then created by adding the target
speech to the interference speech with an additional scaling factor α, which is
sampled uniformly from the SNR range of [-5, 5] dB. The same mixing proce-
dure applies for the validation and test sets, with the average SNR across the
train, validation, and test sets being approximately -0.11 dB.

3.2 Statistics of Libri2Vox

Libri2Vox was pre-split after collecting and processing, as shown in Table 2
For the training set, LibriTTS provides 1,151 speakers, with 8.97 hours of
data. Each LibriTTS utterance generates one corresponding data point (mix-
ture, reference, target). VoxCeleb2 contributes 5,900 interference speakers for
this partition, making the training set contains 149,691 triplets, equivalent
to 250 hours of mixture data. The validation set consists of 40 LibriTTS
speakers (approximately 8.97 hours) and 94 VoxCeleb2 speakers, totaling 134
speakers and 7,200 utterances. The test set includes 39 LibriTTS speakers
(approximately 8.56 hours) and 118 VoxCeleb2 speakers, with a total of 157
speakers and 6,000 utterances.

Table 2: Libri2Vox statistics. “Total” column shows total number of utterances combined
with corresponding LibriTTS and VoxCeleb2 sets.

Set # of Speakers # of Utterances Duration (h)LibriTTS VoxCeleb2 Total
Training 1,151 5,900 149,691 250
Validation 40 94 7,200 8.97
Testing 39 118 6,000 8.56

4 Synthetic Libri2Vox Dataset

4.1 Why Synthetic Speakers?

Enhancing the diversity of training data can significantly improve the perfor-
mance of TSE models. Conventionally, this has been achieved by applying
data augmentation to real data [1]. However, the diversity provided by data
augmentation is limited in terms of the range of data distribution it can cover.
Another approach to generating large amounts of data with diverse speaker
characteristics is to use speech generative models [19, 44, 38]. These recent
models enable speech generation with a high level of naturalness and speaker
similarity. This development brings up a key question: can these generative
models be used to generate specialized training data for TSE?
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There are several strategies to generate training data with generative mod-
els, one of which involves producing diverse synthetic interference speakers
from the existing interference ones, ensuring the defined difference [29, 27].
This is the strategy we investigated.

4.2 Two Types of Synthetic Interference Speaker Generation Methods

We developed two different generation methods used to generate synthetic
interference speakers that are distinct from the real speakers selected from
VoxCeleb dataset, i.e. SynVox2 [29] and speaker anonymization through latent
transformation (SALT) [27]. These two methods are used to increase the
diversity of interference speakers used in TSE tasks. Below is a description of
SALT .

4.2.1 SALT

SALT generates synthetic interference speakers by manipulating the latent
space of pre-trained speaker representations. In the context of speaker ex-
traction, let si represent the given interference speaker’s audio. The steps to
generate a synthetic speaker with SALT are as follows:

• WavLM Representation Extraction: We first extract the WavLM
[3] representation, WavLM(si), of the input interference speaker speech
si. This representation captures both the content and speaker-related
features, as evident in that previous study [3]. Then, reference speaker
(sr) representations, WavLM(sjr), j ∈ [1, N ], are also extracted from a
pool of N speakers by WavLM.

• k-nearest neighbor (k-NN) Search: Given WavLM(si) as the query,
a k-nearest neighbor (k-NN) [6] search is conducted for each frame of
the query representation. At each time step, the k most similar frames
are selected from the reference speaker representations of all N speakers.
This process yields a set of closest representations Dj for each of the N
selected reference speakers.

• Weighted Summation: After selecting k-NN representations, random
weights wj are assigned to each of the reference speaker representation
sets, Dj . These weights are sampled from a normal distribution and nor-
malized to sum to one. The weighted sum of the selected representations
is then combined with the original interference speaker representation
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via linear interpolation, as follows:

(D1, · · · ,DN ) = kNN(WavLM(si),WavLM(sjr))

O = (1− p)

N∑
j=1

wjDj + p · WavLM(si)

where p is a parameter that controls the balance between the original
and synthetic representations.

• Vocoder-based Reconstruction: Finally, the interpolated represen-
tation O is passed through the HiFi-GAN vocoder [21] to generate a
waveform of the synthetic interference speaker.

For this study, the number of nearest neighbors considered for interpolation
was k = 4, and the interpolation weight between the original speaker rep-
resentation and synthetic speaker representation was p = 0.5. We used the
WavLM-Base3 model trained on LibriSpeech, to extract latent space represen-
tations from the third layer. For the interpolation method, 50 speakers are
randomly chosen from the LibriSpeech train-clean-100 dataset. For each of
these speakers, 50 audio samples are selected at random to extract their fea-
tures. The number of random reference speakers, N , is fixed at 4. The setting
is the same as in the original paper [27].

By using SALT, we can generate a large variety of synthetic interference
speakers that are different from real speakers, providing a more challenging
dataset for TSE model training. This method enables for a balance between
speaker similarity and diversity through parameters k and p, which enables
better control over the generated synthetic speakers.

4.2.2 SynVox2

SynVox2 was designed for speaker anonymization using an orthogonal House-
holder neural network (OHNN) [30, 29]. The framework operates through the
following three essential components:

• Disentanglement: Speech characteristics are derived using specialized
encoders. The Yet Another Algorithm for Pitch Tracking (YAAPT)
[20] extracts the fundamental frequency (F0), while the ECAPA-TDNN
[7] speaker encoder, trained on VoxCeleb2, generates 192-dimensional
speaker identity embeddings. Additionally, a Hidden Unit BERT
(HuBERT)-based soft content encoder, fine-tuned on LibriTTS-train-
clean-100 from a pre-trained HuBERT model [17], captures linguistic
content information.

3https://huggingface.co/microsoft/wavlm-base

https://huggingface.co/microsoft/wavlm-base
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• Anonymization: The system use an OHNN-based anonymizer [30]
that transforms original speaker embeddings into anonymized represen-
tations through multiple orthogonal Householder transformation lay-
ers. The network uses randomly initialized weights and is optimized
using classification and distance-based loss functions to ensure the
anonymized speaker identities are distinct from both the original and
other anonymized speakers.

• Generation: The synthesis stage integrates the extracted content fea-
tures, F0 information, and anonymized speaker embeddings into a HiFi-
GAN model trained on LibriTTS-train-clean-100. This integration pro-
duces high-quality anonymized speech waveforms that preserve natural
speech characteristics while ensuring distinct speaker identities.

4.3 Synthetic Data and Statistics

Since the synthetic data generated for Libri2Vox-syn only slightly alters the
duration of the original VoxCeleb2 recordings, and we randomly select 6s
audio segments for all speakers, the statistics for the Libri2Vox-syn dataset
remain identical to those of the original Libri2Vox dataset. This means that
the number of speakers, total number of utterances, and total duration of the
dataset are consistent across both the real and synthetic versions.

5 Constructing TSE Models on Libri2Vox

5.1 Architecture of Different Target Speaker Extraction Models

This section describes the four TSE neural networks we used for the experi-
ments: Conformer [16], VoiceFilter [47], SpeakerBeam [56], and bidirectional
LSTM (BLSTM) (see Figure 3).

5.1.1 Conformer

The application of the acquisition of time-frequency representation for
Conformer-based TSE was proposed [24]. Conformer has a hybrid architec-
ture, combining convolutional layers and multi-head attention mechanisms.
This makes it effective in capturing both local and global features in the in-
put audio.

Input Process: The input consists of a 256-dimensional real part and 256-
dimensional imaginary part of the STFT (obtained from a 512-point FFT with
the direct current component removed), along with a 192-dimensional x-vector
(a speaker embedding extracted using ECAPA-TDNN [7] and concatenated
along the time dimension).
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Figure 3: Details of Conformer, BLSTM, and SpeakerBeam TSE models.

Extraction Network (Conformer blocks): The model consists of four
stacked Conformer blocks:

• Feedforward Layers: Each block begins with a feedforward layer of size
1024, with dropout set to 0.2.

• Multi-Head Attention: Multi-head attention is applied with four heads
and a dropout rate of 0.2.

• Convolutional Layers: A convolution layer with a kernel size of 3, fol-
lowed by batch normalization and the Swish activation function, is ap-
plied with dropout.

• Residual Connections: Residual connections with half-scaling are ap-
plied throughout the network.

• Final Linear Layer: The final output is a 512-dimensional feature vector,
which is split into real and imaginary parts to compute the complex mask
for STFT reconstruction.

Output Process: The model outputs a complex ratio mask [49] to apply
to the complex-valued mixture STFT for reconstructing the target speaker’s
waveform.
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5.1.2 BLSTM

BLSTM is a variation of the Conformer, in which the Conformer blocks have
been replaced with BLSTM layers. Other aspects remain unchanged, except
for the final FC, which is adjusted from 1024 to 512 dimensions to ensure
consistent output.

5.1.3 SpeakerBeam

SpeakerBeam [56] is based on a BLSTM speaker encoder that extracts the
target speakers voice using the speaker embedding as a guide. Different from
the original SpeakerBeam , which uses magnitude spectra as input, we use
complex spectra, as it has shown significant improvements over magnitude
spectra. We use the same network architecture from the original version to
extract speaker information. In such a case, only the input and output have
been changed. This was done to evaluate whether our method is effective for
the inner speaker information extraction network as well. Further details can
be found in the complete architecture description in Appendix A.1.

5.1.4 VoiceFilter

Analogous to SpeakerBeam, only the input and output have been changed
to complex spectra for VoiceFilter, while the pre-trained d-vector used in the
original version was replaced with the same x-vector as Conformer. The rest of
the structure remains the same. Further details can be found in the complete
architecture description in Appendix A.2.

5.2 Speaker Information Extraction Model

ECAPA-TDNN [7] is a state-of-the-art speaker encoder. It uses convolutional
and residual blocks for feature extraction, followed by attentive statistical
pooling [33] to generate speaker embeddings. The model is trained with ad-
ditive angular margin softmax [45]. The original model, available via Speech-
Brain [35], was trained on VoxCeleb1 [31] and VoxCeleb2 [4].

For this study, we used the training framework from SpeechBrain, while re-
training the model on the CN-Celeb dataset [23]. Although our target dataset
contains English speech recordings, the model trained on CN-Celeb demon-
strated superior performance compared with training on the original VoxCeleb
1+2 datasets. This improvement could be attributed to the increased speaker
diversity and noise present in CN-Celeb.
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5.3 Loss Function and Evaluation Metrics

We use both SNR as the loss function and SDR as the evaluation metric to
assess the quality of separated or enhanced speech in TSE tasks.

5.3.1 Loss Function

The loss function used in this study is based on a negative SNR, calculated
as the ratio between the power of the target speech and error (difference
between the target speech and predicted target speech) in the time domain.
It is expressed as:

Losssnr = −10 log10
s2

(s− ŝ)
2 , (1)

A higher SNR indicates better reconstruction of the target speech. where s
represents the ground truth target speaker’s speech, and ŝ is the network’s
estimated target speaker’s speech. The negative sign is used to convert the
SNR into a loss value that can be minimized during training.

5.3.2 Evaluation Metric

To evaluate our TSE system performance, we used the widely-used SDR met-
ric [50, 51], which measures the ratio of the target speech’s power to the
power of distortions introduced by the extraction system. For SDR computa-
tion, we use the implementation provided by torchmetrics [8]. For evaluation,
improvement is measured using the improvement in SDR (iSDR), defined as
the relative increase in SDR compared to the mixture. Specifically, iSDR is
calculated as the difference between the SDR of the extracted target speech
relative to the clean target speech, and the SDR of the original mixture rela-
tive to the clean target speech.

In addition to SDR, we use several perceptual quality metrics. The Per-
ceptual Evaluation of Speech Quality (PESQ) [39] provides a mean opinion
score (MOS) that correlates with subjective quality assessments, with values
typically ranging from -0.5 to 4.5. The Short-Time Objective Intelligibility
(STOI) [42] measure evaluates speech intelligibility by comparing the tempo-
ral envelopes of clean and processed speech, with values ranging from 0 to 1.
Furthermore, we use deep noise suppression mean opinion scores (DNSMOS)
[37], a non-intrusive speech quality assessment model trained to predict hu-
man ratings of speech quality without requiring a reference signal, with scores
ranging from 1 to 5. For all these evaluation metrics, higher values indicate
better performance.
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6 Experiments

6.1 Experimental Setup and Model Configurations

All TSE models were trained using a custom learning rate scheduler, de-
signed to adjust the learning rate dynamically on the basis of the number
of steps. Each step corresponds to one mini-batch, where the mini-batch size
was set to 48. The initial learning rate was set to 1 Œ 10−3, with a mini-
mum threshold of 1 Œ 10−5. The learning rate was warmed up linearly for
the first 5000 steps (covering approximately 104,000 samples), after which it
followed an inverse square root decay on the basis of the step count. Specif-
ically, after the warm-up phase, the learning rate decayed proportionally to
(warmup_steps/global_step)0.5. This dynamic learning rate schedule enabled
for smooth transitions during training while avoiding rapid drops in learning
rate that could destabilize the optimization process.

The Adam optimizer was used with the default settings of β1 = 0.9,
β2 = 0.999, and ϵ = 10−8. No additional data augmentation, feature nor-
malization, or input trimming was applied during training. All experiments
were conducted on an Nvidia Tesla A100 GPU, with each model trained for
three independent runs using different random seeds. The final results are
reported as the average across these runs to ensure robustness and minimize
the effects of random initialization.

The sampling frequency of the speech waveform was set to 16 kHz. The
STFT parameters for the mixture signal included a window length of 32 ms
and hop size of 8 ms with a 512-point FFT.

6.2 Training Strategy

6.2.1 Noisy Data Augmentation

We used noise from the deep noise suppression(DNS) Challenge dataset [36].
During training, there was a 50% chance that a randomly selected 6-second
noise segment would be dynamically mixed with the target speakers audio.
The SNR for this dynamic mixing was uniformly sampled from the range of
[−5, 10] dB. The purpose of applying noise augmentation is to explore whether
it can further enhance the model’s performance, especially since VoxCeleb2
already contains some real-world noise. We chose to implement augmentation
during training rather than embedding it directly in the Libri2Vox dataset to
maintain dataset integrity and flexibility. This approach allows us to system-
atically investigate how additional noise affects performance while preserving
the natural acoustic variations already present in the VoxCeleb2 recordings.
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6.2.2 Curriculum Learning

To enhance the models ability to distinguish between target and interference
speakers with varying degrees of similarity, we implemented a CL strategy.
Following our previous research[25], the training process is divided into three
stages, as illustrated in Figure 4:

• Stage 1: In the first stage, the training data consists primarily of target
and interference speaker pairs with low similarity. The goal at this stage
is to enable the model to focus on simpler tasks, thus establishing a solid
foundation for learning speaker characteristics.

• Stage 2: In the second stage, the model is exposed to speaker pairs
with higher similarity, which gradually increases the complexity of the
task.

• Stage 3: Finally, in the third stage, in addition to low and high sim-
ilarity speaker pairs, synthetic interference speakers are introduced to
further diversify the data and improve the model’s generalization capa-
bility.

Stage 1 Stage 2 Stage 3

low speaker similarity

low speaker similarity

high speaker similarity

low speaker similarity

high speaker similarity

synthetic speakers

⭐

⭐⭐

⭐⭐⭐

Easy

Medium

Hard

Figure 4: Three-stage CL.

7 Main Results

Using Libri2Vox and its synthetic version, we conducted extensive experi-
ments to evaluate the impact of synthetic data integration with CL on TSE
performance, with main results presented in Table 3. We implemented a CL
training strategy with three distinct stages and evaluated eight configurations
for each model, including baseline without CL, single-stage CL with real data,
two-stage CL with real data, three-stage CL with real data, and two variants
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of three-stage CL incorporating synthetic data (SynVox2 or SALT). For the
“(Real only)” configuration, Stage 2 incorporates the complete real dataset,
and Stage 3 continues with the same complete real dataset for additional train-
ing epochs. This design allows us to isolate the impact of CL from potential
benefits of extended training epochs.

Table 3: iSDR(0.07dB), iPESQ(1.514), iSTOI(0.734), iDNSMOS(2.356), results of three
stage methods for Libri2Vox test set. Values in ’()’ represent baseline performance metrics
of original mixture signals compared WITH the clean target. “Real only” means use of only
real data with cosine similarity less than 0.5 in 1st stage (about 71% of all data).

Model Method Stage 1 Stage 2 Stage 3 iSDR iPESQ iSTOI iDNSMOS

Conformer

w/o CL (Real only) ✓ 15.42 1.325 0.198 0.650
w/o CL (Real+SynVox2) ✓ 15.46 1.295 0.196 0.640
w/o CL (Real+SALT) ✓ 15.43 1.287 0.194 0.635
w/ 1-stage CL (Real only) ✓ 15.39 1.401 0.203 0.664
w/ 2-stage CL (Real only) ✓ ✓ 15.89 1.424 0.205 0.664
w/ 3-stage CL (Real only) ✓ ✓ ✓ 16.01 1.420 0.205 0.664
w/ 3-stage CL (Real + SynVox2) ✓ ✓ ✓ 16.20 1.470 0.206 0.692
w/ 3-stage CL (Real + SALT) ✓ ✓ ✓ 16.20 1.466 0.207 0.683

BLSTM

w/o CL (Real only) ✓ 12.34 0.852 0.157 0.495
w/o CL (Real+SynVox2) ✓ 12.53 0.903 0.164 0.501
w/o CL (Real+SALT) ✓ 12.54 0.885 0.161 0.491
w/ 1-stage CL (Real only) ✓ 11.73 0.794 0.149 0.473
w/ 2-stage CL (Real only) ✓ ✓ 12.50 0.922 0.162 0.520
w/ 3-stage CL (Real only) ✓ ✓ ✓ 12.65 0.932 0.165 0.531
w/ 3-stage CL (Real + SynVox2) ✓ ✓ ✓ 13.07 0.997 0.171 0.554
w/ 3-stage CL (Real + SALT) ✓ ✓ ✓ 13.06 0.986 0.170 0.544

SpeakerBeam

w/o CL (Real only) ✓ 11.62 0.804 0.150 0.489
w/o CL (Real+SynVox2) ✓ 12.01 0.915 0.156 0.503
w/o CL (Real+SALT) ✓ 12.07 0.887 0.153 0.501
w/ 1-stage CL (Real only) ✓ 11.17 0.753 0.144 0.473
w/ 2-stage CL (Real only) ✓ ✓ 11.76 0.869 0.159 0.512
w/ 3-stage CL (Real only) ✓ ✓ ✓ 11.88 0.899 0.163 0.519
w/ 3-stage CL (Real + SynVox2) ✓ ✓ ✓ 12.35 0.974 0.171 0.547
w/ 3-stage CL (Real + SALT) ✓ ✓ ✓ 12.34 0.959 0.168 0.533

Voicefilter

w/o CL (Real only) ✓ 11.92 0.818 0.158 0.453
w/o CL (Real+SynVox2) ✓ 11.41 0.747 0.149 0.402
w/o CL (Real+SALT) ✓ 11.46 0.728 0.147 0.398
w/ 1-stage CL (Real only) ✓ 11.34 0.709 0.149 0.414
w/ 2-stage CL (Real only) ✓ ✓ 12.10 0.847 0.161 0.463
w/ 3-stage CL (Real only) ✓ ✓ ✓ 12.15 0.856 0.164 0.468
w/ 3-stage CL (Real + SynVox2) ✓ ✓ ✓ 12.39 0.927 0.169 0.493
w/ 3-stage CL (Real + SALT) ✓ ✓ ✓ 12.26 0.908 0.166 0.476

The results indicate consistent performance improvements across all mod-
els when implementing CL strategies. Conformer showed particularly notable
gains, with iSDR improving from a baseline of 15.42 to 15.89 dB using two-
stage CL with real data. The introduction of synthetic data in the third stage
further enhanced performance, achieving 16.20 dB with both SynVox2 and
SALT variants. Importantly, this improvement surpassed the control condi-
tion using only real data (16.01 dB), confirming that the benefits stem from
the synthetic data rather than extended training epochs. To isolate the impact
of synthetic data from potential benefits of extended training, we included a
controlled condition under which the third stage continued with real data only
(w/ 3-stage CL (Real only)). The results clearly indicate that while additional
training epochs with real data provided slight improvements, they were infe-
rior to the gains achieved through synthetic data integration, validating the
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effectiveness of introducing synthetic data into the training pipeline.
To demonstrate the benefits of CL in using synthetic data, we compared

different integration strategies. Starting with 50% real and 50% synthetic
data at stage 1 only (e.g., w/o CL (Real+SynVox2)) does not show substantial
improvements compared with using synthetic and real data in Stage 3 (e.g.,
w/ 3-stage CL (Real + SynVox2)), while CL further enhances the performance
of the latter setup.

While BLSTM, SpeakerBeam, and Voicefilter exhibited lower absolute per-
formance compared with Conformer, they showed proportionally larger rela-
tive gains by incorprating CL. BLSTM achieved a 0.73 dB improvement (from
12.34 to 13.07 dB), while SpeakerBeam showed gains of 0.73 dB (from 11.62
to 12.35 dB), and Voicefilter demonstrated an improvement of 0.47 dB (from
11.92 to 12.39 dB). Conformer demonstrated particularly notable gains, with
an improvement of 0.78 dB (from 15.42 dB without CL to 16.20 dB with
3-stage CL incorporating synthetic speakers) over conventional random sam-
pling approaches. Notably, both synthetic data approaches (SynVox2 and
SALT) yielded comparable improvements, likely due to their shared use of
the HiFi-GAN vocoder architecture. These results collectively indicate the ef-
fectiveness of combining synthetic data augmentation with CL for enhancing
TSE system performance.

The experimental results also reveal improvements across perceptual met-
rics. While intelligibility metrics showed modest improvements, with iSTOI
increasing only marginally from 0.198 to 0.207 for Conformer with SALT
data, quality-related metrics exhibited substantially more significant gains.
The iPESQ improvements were particularly notable, with Conformer show-
ing an increase from 1.325 to 1.470 (11% improvement) when using SynVox2
synthetic data, and similar patterns were observed across all architectures.

Likewise, iDNSMOS scores improved considerably from 0.650 to 0.692
(6.5% improvement) for Conformer with SynVox2. This pattern indicates
that our approach predominantly enhances perceptual quality aspects of ex-
tracted speech rather than intelligibility. This suggest that the synthetic data
integration through CL particularly addresses distortions and artifacts that
affect perceived speech quality, which is often more critical in real-world ap-
plications.

8 Evaluation on Real-world Recordings

To further validate the advantages of TSE models trained on Libri2Vox in re-
alistic environments, we conducted additional experiments using the ICASSP
2021 Deep Noise Suppression Challenge test set [36]. This test set con-
tains real-world recordings collected in various acoustic environments, such
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as restaurants, cafeterias, and public transportation, captured using mobile
devices and other recording equipment.

Since the real recordings portion of the test set contains original rever-
berant speech samples, and our research does not focus on far-field speech
and reverberation issues, we first removed far-field reverberant speech sam-
ples using the official meta information of each sample. We also excluded
speech samples marked with musical and emotional elements, resulting in 87
real recordings with a total duration of approximately 22.7 minutes of speech
audio uttered by 13 speakers.

Since these real-world recordings do not include clean oracle reference sig-
nals, traditional reference-based metrics such as SDR, cannot be calculated.
Instead, we used DNSMOS since it does not require reference signals. In ad-
dition to the TSE models trained on the Libri2Vox dataset, we also used TSE
models trained using the Libri2Talker dataset for comparisons.

Table 4 presents the DNSMOS results for different model configurations
when tested on real-world recordings. The results of BLSTM clearly indicate
that models trained solely on Libri2Talker perform poorly on real recordings,
with a negative DNSMOS gain of -0.666. This poor performance persists even
with noise augmentation (-0.421). In contrast, models trained with Libri2Vox
achieved a substantial improvement with a DNSMOS gain of -0.081. This
enhancement can be attributed to Libri2Vox’s incorporation of real noisy
speech from VoxCeleb2. Adding noise augmentation to Libri2Vox further im-
proved performance (0.139), while our three-stage CL approach with SynVox2-
generated synthetic speakers achieved the best results with a DNSMOS gain
of 0.190. Similar trends were observed across all architectures (Conformer,
SpeakerBeam, and VoiceFilter), with the combination of Libri2Vox and 3-
stage CL with synthetic speakers consistently achieving the best performance.

9 Ablation Study Regarding Synthetic Data

To further investigate the specific factors contributing to the performance im-
provements observed in our main experiments, we conducted two ablation
studies regarding synthetic speakers. These studies were designed to isolate
and quantify the individual impact of key components in our approach, pro-
viding deeper insights into how different elements contribute to overall system
performance.

9.0.1 Comparison of Different Synthetic Data Ratios within Mini-batch

The goal of this experiment was to determine the optimal ratio of synthetic
speakers within each mini-batch at Stage 3 of CL, finding the balance that
maximizes performance while avoiding degradation from excessive synthetic
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Table 4: DNSMOS results on real-world recordings from ICASSP 2021 DNS Challenge test
set. Higher values indicate better performance. (Mixture DNSMOS:2.270).

Training Data iDNSMOS

Conformer

Libri2Talker -0.722
Libri2Talker+Noise -0.534
Libri2Vox -0.047
Libri2Vox+Noise 0.017
Libri2Vox & 3-stage (Real + SynVox2) 0.186

BLSTM

Libri2Talker -0.666
Libri2Talker+Noise -0.421
Libri2Vox -0.081
Libri2Vox+Noise 0.139
Libri2Vox & 3-stage (Real + SynVox2) 0.190

SpeakerBeam

Libri2Talker -0.701
Libri2Talker+Noise -0.542
Libri2Vox -0.289
Libri2Vox+Noise -0.009
Libri2Vox & 3-stage (Real + SynVox2) 0.031

VoiceFilter

Libri2Talker -0.739
Libri2Talker+Noise -0.369
Libri2Vox -0.309
Libri2Vox+Noise -0.140
Libri2Vox & 3-stage (Real + SynVox2) 0.064

data. The experiments involved the Stage 3 with SALT-generated synthetic
speakers, following the configuration “w/ 3-stage CL (Real + SALT)” of Con-
former shown in Table 3. As shown in Figure 5, optimal performance was
achieved with synthetic speaker ratios of 0.2 and 0.5, both yielding an iSDR
of 16.20 dB. These configuration outperformed the baseline configuration us-
ing only real data (ratio = 0.0), which achieved an iSDR of 16.01 dB. However,
increasing the synthetic speaker ratio beyond these optimal values led to per-
formance degradation. Note that when synthetic speakers comprised 90% of
the training data, the iSDR decreased to 15.82 dB. Such degradation was
furthered with the ratio being 1.0, resulting in an iSDR of 13.61 dB.

It is worth mentioning that as shown with the red dashed line in the figure,
if we start training the model from scratch using only synthetic data instead
of using the aforementioned configuration, the resulting iSDR is 7.17 dB. This
poor result is due to the significant mismatch between the synthetic training
data and real test data. Therefore, it is necessary to train the model with real
data first then incorporate synthetic data step by step.

9.0.2 Comparison of Different Amount of Synthetic Data

In the previous experiments, the number of synthetic speakers used for TSE
model training was fixed. Given that SynVox2 and SALT generate distinct
speaker sets, their combination effectively increases the total number of syn-
thetic speakers. The same SALT method can also be used to generate a
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Figure 5: Impact of synthetic speaker ratio within one mini-batch at Stage 3 of configuration
“w/ 3-stage CL (Real + SALT)” on Conformer. Red dashed line corresponds to performance
(7.17 dB) where training started from scratch using synthetic data only.

different set of speakers by changing the parameter configuration.4 Since syn-
thetic data can be generated infinitely, we aim to evaluate whether increasing
the number of synthetic datasets impacts performance. The amount of syn-
thetic data per epoch remains consistent (randomly sampled from multiple
synthetic datasets to match the amount of real data), but the total training
process now exposes the model to several times more synthetic data than be-
fore. The goal of this study was thus to determine if increasing the number
of synthetic speakers would improve the performance of BLSTM.

Two types of scenarios were considered: a scenario in which the number
of speakers is increased in Stage 3, and another scenario in which Stage 4 is
introduced after Stage 3 to increase the total number of synthetic speakers
in Stages 3 and 4. They use consistent configurations for Stages 1 and 2 as
specified in Table 3 under “w/ 2-stage CL (Real only)”. Specifically, Stage
1 used data with cosine similarity below 0.5, and Stage 2 incorporated the
complete dataset.

Table 5 presents the experimental results across different synthetic speaker
configurations. For example, Experiment No. 8 involved using SALT for Stage
3 and additionally SynVox2 for Stage 4.

When both SALT-based and SynVox2-based synthetic datasets were used
simultaneously in Stage 3 (No. 4), we observed an improvement to 13.16
dB, indicating the potential benefits of increased speaker diversity. We also
observed incremental gains when adding SALT’ and SALT” in Stage 3 (13.18
and 13.31 dB, respectively), and finally integrating all four datasets (13.36

4The SALT’ version was generated using parameters k=4, p=0.5 without adding back-
ground noise, while the SALT” version was generated using parameters k=4, p=1.
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Table 5: Comparison of different numbers of synthetic speakers. “Stage 3” and “Stage 4”
columns indicate which synthetic data types were used in each stage, while “-” indicates
no additional data were used in that stage. Each dataset maintains same size to ensure
consistent experimental conditions.

No. Stage3 Stage4 iSDR
1 SALT - 13.06
2 SALT’ - 13.11
3 SALT” - 13.24
4 SALT, SynVox2 - 13.16
5 SALT, SALT’ - 13.18
6 SALT, SALT’, SALT” - 13.31
7 SALT, SALT’, SALT”, SynVox2 - 13.36
8 SALT SynVox2 13.44
9 SynVox2 SALT 13.43
10 SynVox2 SALT, SynVox2 13.30

dB).
However, the most significant performance gain emerged from CL training

strategies. No. 8 and 9 implemented alternating synthetic datasets between
Stage 3 and 4, achieving the highest iSDR (13.44 and 13.43 dB respectively).
These CL training strategies are more effective than simultaneous dataset
utilization (No. 7, 13.36 dB).

10 Ablation Study Regarding Datasets

Two ablation studies were conducted regarding the datasets. This analysis
only focused on datasets, therefore synthetic speakers were not used.

10.1 Cross-dataset Evaluation

Using the existing Libri2Talker and WSJ0-2mix-extr and proposed Libri2Vox,
we conducted a cross-dataset evaluation. We trained TSE models using one of
the datasets with and one without noise argumentation and tests the models
on test sets of the remaining datasets. On both Libri2Talker and Lirbri2Vox
, the target speakers were selected from Librispeech/LibriTTS, but the inter-
fering speakers are selected from different databases. Because these datasets
have different characteristics, the model trained from each dataset is not well
generalizable to the test set of the other datasets, and domain mismatch is
likely to occur.

The experimental results are presented in Table 6. As expected, each
model performed best when evaluated on the test set corresponding to its
training dataset, with significant performance degradation observed in cross-
dataset scenarios. When training on Libri2Vox, we observed optimal perfor-
mance on the Libri2Vox test set, achieving an iSDR of 15.42 dB with the Con-
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former model. However, this same configuration showed severe performance
degradation (iSDR: -0.16 dB and 0.18 dB, respectively) when evaluated on
the Libri2Talker or WSJ0-2mix-extr test sets. Similarly, models trained only
on Libri2Talker exhibited degraded performance when tested on Libri2Vox
or WSJ0-2mix-extr test sets. Models trained only on WSJ0-2mix-extr strug-
gled significantly with other datasets, with the BLSTM model achieving only
-1.72 dB on the Libri2Talker test set and 1.49 dB on the Libri2Vox test set.
This pattern suggests a consistent limitation in the generalization capability
of models trained on single datasets, regardless of which specific dataset is
used. These results indicate that these datasets could be complementary to
each other. This will be investigated in the next subsection.

Table 6: Experimental results of cross-dataset comparisons in iSDR(dB).

Model Libri2Talker Libri2Vox WSJ0-2mix Noise aug. Libri2Talker Libri2Vox WSJ0-2mix

Conformer

✓ 12.01 12.45 6.76
✓ ✓ 12.21 12.76 7.54

✓ -0.16 15.42 0.18
✓ ✓ -0.85 15.33 0.09

✓ -4.37 1.67 10.71
✓ ✓ -3.38 -1.41 11.88

BLSTM

✓ 9.02 8.57 6.39
✓ ✓ 9.32 9.85 7.25

✓ -0.5 12.32 0.05
✓ ✓ 0.21 13.16 0.35

✓ -1.72 1.49 7.53
✓ ✓ -4.71 0.23 8.94

SpeakerBeam

✓ 9.47 8.95 7.78
✓ ✓ 9.32 9.70 8.46

✓ -1.57 11.62 -0.08
✓ ✓ -1.60 12.40 2.85

✓ 0.60 2.14 8.96
✓ ✓ -6.28 -5.55 9.28

Voicefilter

✓ 8.88 8.51 5.21
✓ ✓ 8.76 9.11 5.81

✓ -3.30 11.92 0.81
✓ ✓ -2.86 11.63 1.13

✓ 1.73 2.99 8.24
✓ ✓ -0.60 1.56 8.72

Noise augmentation appears most beneficial for models trained on WSJ0-
2mix, likely because this dataset is relatively small (about 30 h) and entirely
clean, making it more sensitive to additional variability. In contrast, both
Libri2Talker and Libri2Vox already provide hundreds of hours of training data,
and Libri2Vox further incorporates real acoustic variability from VoxCeleb2.
As a result, noise augmentation yields only limited or mixed effects on these
larger datasets, and in some cases may even be counterproductive.

10.2 Two-stage CL with Multiple Datasets

Finally, we demonstrated that the use of multiple datasets in CL can effectively
reduce domain mismatch. Unlike previous experiments, the second stage of
CL involved a training procedure that strategically uses multiple datasets
simultaneously.
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Table 7: Two-stage curriculum learning performance (iSDR in dB) on different test sets
using various training dataset combinations. The first two columns show datasets used in
Stage 1 and Stage 2 for training, and the last three columns show iSDR performance on
each test set.

Stage 1 Stage 2 Libri2Talker Libri2Vox WSJ0-2mix-extr
Libri2Talker 9.02 8.57 6.39
Libri2Talker Libri2Talker, Libri2Vox, WSJ02mix 10.23 11.98 11.16
Libri2Vox -0.50 12.32 0.05
Libri2Vox Libri2Talker, Libri2Vox, WSJ02mix 10.36 13.02 10.55
WSJ0-2mix -1.72 1.49 7.53
WSJ0-2mix Libri2Talker, Libri2Vox, WSJ02mix 8.83 11.04 9.81

Table 7 presents performance comparisons across different two-stage CL
configurations with the BLSTM model. When Libri2Vox was used in Stage
1 followed by multi-dataset training in Stage 2, we achieved the best overall
cross-dataset performance (10.36 dB on Libri2Talker, 13.02 dB on Libri2Vox,
and 10.55 dB on WSJ0-2mix-extr). This significantly outperformed other con-
figurations, including when Libri2Talker or WSJ0-2mix-extr was used in Stage
1. Notably, despite having less data than Libri2Talker, Libri2Vox proved more
effective as the foundation for CL, suggesting that its realistic acoustic varia-
tions provide a stronger initial representation that can be effectively refined
with additional data sources.

Performance would probably be further improved if synthetic versions of
Libri2talker and WSJ0-2mix-extr datasets are created and used in Stage 3 of
CL, as shown in Table 3. However, this is beyond the scope of this paper and
is a topic for future work.

11 Conclusion

In this paper, we first introduced Libri2Vox, a novel dataset designed to ad-
dress the challenges of TSE in real-world acoustic environments. The dataset
combines clean speech from LibriTTS with naturally noisy interference from
VoxCeleb2, creating a diverse training environment with over 7,000 speakers.
This approach bridges the gap between idealized synthetic mixtures and un-
controlled recordings by incorporating VoxCeleb2’s natural acoustic variations,
channel effects, and ambient conditions. Most notably, our evaluations on real-
world recordings confirm that models trained on Libri2Vox achieve positive
quality gains, while models trained on conventional artificial mixtures signif-
icantly underperform, demonstrating that the realistic acoustic variations in
our dataset translate directly to improved performance in genuine real-world
applications. We further enhanced the dataset’s utility through synthetic data
generation, developing two complementary methods, SynVox2 and SALT, to
expand speaker diversity. Our experiments revealed that progressively adding
more synthetic speakers with three-stage CL continues to yield performance
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improvements, with sequential introduction of different synthetic speaker sets
providing additional gains. This finding is particularly promising as synthetic
data generation offers unlimited potential for further scaling speaker diversity
beyond what is possible with real-world recordings alone. Unlike real record-
ings which are constrained by available speakers and recording conditions,
synthetic speakers can be generated in virtually unlimited quantities, allow-
ing for continuous expansion of training data diversity without the practical
limitations of real-world data collection.

While synthetic speaker data offers valuable diversity for training TSE
models, it is important to recognize the inherent limitations of using speech
generative models. The useful distribution provided with these generative
models is often constrained, and understanding which specific distributions
are most beneficial for training remains a challenge. In some cases, only
a small portion of the generated data may be truly useful for covering the
necessary distribution. Generating more data beyond this point might not
provide additional value, as certain types of data become redundant, offering
no new information for the model [13]. The “new knowledge” provided with
these speech generative models can quickly become repetitive, and the model
may not need to repeatedly learn from similar data.

For future work, we will explore what types of synthetic data are most
beneficial for TSE, potentially through data selection methods. For example,
tracking the gradient changes of a network at each step could help determine
whether the current data are useful for training. We will also explore using
dataset distillation methods to generate synthetic data that represents real
data characteristics. These synthetic data points could help us better under-
stand the types of representations needed for TSE tasks.

A Details of Network Architecture

A.1 Architecture of SpeakerBeam

Input Process: The real and imaginary parts of the STFT are concatenated,
resulting in a 512-dimensional input. The speaker embedding is extracted by
processing the magnitude of the STFT of the reference speech through a fully
connected layer then concatenated along the time dimension, resulting in an
input of T × (256 + 256 + 192).

BLSTM Layers: This model uses 3 BLSTM layers, each with 512 hidden
units per direction. The first layer processes the concatenated input.

Fully Connected Layers: Each BLSTM layer’s output is passed through
fully connected layers, reducing the output back to 512 dimensions.
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A.2 Architecture of Voicefilter

Convolutional Layers: This model comprises 8 convolutional layers:

• Layers are zero-padded with kernel sizes varying from 1 to 7 and 64
output channels.

• Dilation factors increase from 1 to 16, and each layer is followed by batch
normalization and ReLU activation.

• The final layer is a 2-channel convolution with a kernel size of 1.

LSTM Layer: A BLSTM with 400 hidden units per direction pro-
cesses the concatenated convolution outputs and the 192-dimensional x-vector,
which, similar to Conformer, is concatenated along the time dimension before
being fed into the LSTM.

Fully Connected Layers: The first fully connected layer reduces the
LSTM output to 600 dimensions. The second fully connected layer maps the
result to 512 dimensions (for real and imaginary parts of the STFT).
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