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ABSTRACT

Traditional image and video compression techniques, based on
handcrafted transforms and distortion metrics, have proven effec-
tive in earlier applications. However, their inherent limitations in
coding efficiency and perceptual quality become increasingly ev-
ident when faced with the demands of diverse and semantically
complex visual content. With advances in deep generative models,
generative coding has emerged as a promising alternative, offering
improved efficiency, perceptual quality, and flexibility. However,
it also poses challenges in complexity, interpretability, and deploy-
ment. This survey provides a comprehensive overview of genera-
tive coding. We formalize the problem and highlight its theoretical
links to generation and compression. Representative methods are
categorized by model type and technical evolution. Finally, we fur-
ther present comparative experiments and discuss key challenges
and future directions to guide ongoing research.
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1 Introduction

With the widespread adoption of generative artificial intelligence (AI) tech-
nologies and high-performance computing devices, digital content creation has
undergone a profound transformation, ranging from Professional Generated
Content (PGC) [77], to User Generated Content (UGC) [84], and more re-
cently to Artificial Intelligence Generated Content (AIGC) [168, 106]. The
rapid advancement of AI has fundamentally shifted the paradigm of con-
tent creation from manually designed processes to algorithm-driven work-
flows. This shift has substantially fueled the exponential growth of visual data,
thereby introducing new challenges for compression technologies in terms of
storage, transmission, and computational efficiency.

Over the past two decades, traditional image and video compression stan-
dards such as H.264/Advanced Video Coding (AVC) [167], H.265/High Effi-
ciency Video Coding (HEVC) [149], and H.266/Versatile Video Coding (VVC)
[14] have been designed to preserve essential visual information while min-
imizing bitrate, thereby achieving high-efficiency data compression. How-
ever, these manually crafted compression frameworks primarily rely on the
statistical properties of visual data to improve compression efficiency, follow-
ing Shannon’s rate-distortion theory [172], and are gradually approaching a
performance ceiling. On one hand, the marginal gains from traditional cod-
ing techniques have significantly diminished. The report [23] indicates that
only one-quarter of the new tools introduced in the latest coding standard,
VVC, yield performance improvements exceeding 1%. Moreover, hardware
encoders for the current AVS3/VVC generation require approximately three
times the hardware area compared to AVS2/HEVC to achieve a 25% increase
in compression efficiency. In addition, manually designed codecs are typically
tailored to specific data modalities and are not optimized for general or het-
erogeneous content, posing significant limitations in addressing the growing
demand for multimodal compression.

In response to the limitations of hand-crafted coding paradigms, learning-
based compression methods have been introduced as a data-driven extension,
leveraging neural networks to enhance or replace traditional modules [98, 192,
190, 163, 115, 71, 72, 103, 120], and to construct end-to-end trainable im-
age and video coding frameworks [7, 9, 123, 187, 113, 150, 112, 64, 175,
189, 105, 102, 96, 161, 97]. Leveraging large datasets and the robust nonlin-
ear transformation representation capabilities of neural networks, the perfor-
mance of these new compression algorithms has been significantly enhanced.
However, despite their initial success, current end-to-end neural compression
frameworks are also exhibiting signs of saturation. As shown in Figure 1, both
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Figure 1: Both traditional and learning-based methods are approaching their limits.

traditional and learning-based methods are approaching performance bottle-
necks under existing architectural and optimization constraints, highlighting
the need for the exploration of new paradigms. Given the trend of data vol-
ume doubling every two years, one must question: where can we find the
potential for achieving compression ratios thousands of times higher?

In light of these challenges, deep generative models—such as Variational
Auto-encoders (VAEs) [79], Generative Adversarial Networks (GANs) [42],
and Denoising Diffusion Probabilistic Models (DDPMs) [58]—have emerged
as a promising direction for advancing image and video compression. These
models have demonstrated impressive performance across a range of tasks,
including text-to-image generation [131, 92], image super-resolution [94, 139],
style transfer [76, 186], image animation [162, 142], and video generation [114,
57]. Their strong generative capability stems from the ability to model com-
plex data distributions and produce high-fidelity samples that closely resemble
real data. This generative capacity underpins many of the principles shared
with compression. Fundamentally, both generation and compression require
accurate modeling of the underlying data distribution: generative models aim
to synthesize realistic samples from learned distributions [144, 147, 104], while
compression algorithms exploit these distributions to encode data more ef-
ficiently [140, 7]. From this shared foundation, a natural convergence has
emerged, wherein generative models are increasingly integrated into learned
compression frameworks. By capturing semantic priors of texture, structure,
and motion, generative models enable more compact representations. For
instance, in extremely low-bitrate scenarios, high-quality and semantically co-
herent images can be reconstructed at the receiver side from only a few bytes
of transmitted latent variables or text prompts. In this context, generative
compression leverages deep generative networks to learn informative priors of
visual content, encoding both low-level appearance and high-level semantics.
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In summary, with the rapid advancement of GPU computing and artificial
intelligence, particularly in generative technologies, the focus of improving
coding efficiency has shifted away from traditional hand-crafted codecs. To
fulfill the potential of image and video coding as foundational infrastructure
for future digital media, it is essential to achieve breakthroughs offering 5x,
10x, or even 100X improvements over current standards. In this context,
generative coding is poised to redefine the coding paradigm, delivering not
only substantial gains in efficiency but also enhanced perceptual quality [154,
170]. Moreover, with the development of multimodal large models [1, 32] and
AIGC-based applications [15, 36], generative coding exhibits inherent com-
patibility with multimodal representations. By modeling shared latent spaces
across visual, textual, and semantic domains [75, 183], generative approaches
facilitate unified and scalable compression strategies, enabling more immer-
sive and intelligent media experiences. This synergy paves the way for a new
era of intelligent and creative digital media consumption, where high-quality,
cross-modal information can be efficiently encoded, transmitted, and recon-
structed.

This paper presents a comprehensive review of generative coding, focusing
on its potential, capabilities, and challenges. We hope this review elucidates
three key aspects of generative coding: its potential to replace traditional
methods, its advanced capabilities and efficiency, and the current bottlenecks
and challenges. The main contributions are listed as follows.

e We present a principled formulation of generative coding, including pre-
liminary definitions and a general paradigm, and provide a comprehen-
sive survey of representative methods throughout their technical evolu-
tion.

e We report experimental results on our proposed approach along with
representative baselines to demonstrate its practical effectiveness in gen-
erative compression.

o We identify key challenges and outline future research directions to ad-
vance the frontier of generative coding.

2 Generative Coding: Formulation and Paradigm

In this section, we present the formulation, which encompasses detailed expla-
nations of both generation and compression, while thoroughly examining their
interrelations. Grounded in a robust mathematical foundation, we delineate
the definitions and paradigms of generative coding.
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2.1 Mathematical Formulation

Generative models aim to learn a mapping from a simple prior distribution
(e.g., Gaussian) to a complex target distribution. Formally, given a model
G 'Y — X mapping a conditional domain Y to an image domain X, the
generation process is defined as:

' =G(y), ' ~pl'|y), (1)

where p(2’ | y) is the learned conditional distribution. Supposing p(z | y) is
the true conditional distribution, the quality of generated samples is reflected
in how well p(z’ | y) approximates p(x | y). A closer match indicates higher
fidelity and typically better perceptual quality.

Coding algorithms aim to represent visual data with minimal bits while
maintaining high perceptual quality. Formally, given a T-frame sequence
my.r = {m1,ma,...,mz}, where each m; € R¥*W*C denotes a frame with
height H, width W, and C color channels, the goal is to encode and decode it
via a compact bitstream &, such that the reconstructed sequence mq.7 approx-
imates the original with minimal degradation under a given bitrate constraint.
This task is formalized as a rate-distortion optimization problem:

j* = ngin [D(mlzT; ml:T) + AR(&)] 9 (2)

where D(-) denotes the distortion between the original and reconstructed se-
quences, R(-) is the bits consumption, and X is a Lagrange multiplier balancing
rate and distortion.

2.2 Connection Between Generation and Compression

Visual compression and visual generation share fundamental methodological
connections, as both aim to model the target data distribution and con-
struct precise mapping relationships between probability spaces. In image
generation, models learn to approximate the target data distribution by map-
ping variables sampled from a simple prior (e.g., Gaussian or uniform noise)
to realistic outputs. On the other hand, in image compression, especially
deep learning-based approaches, the goal is to minimize the bitrates needed
to represent an image while controlling distortion within acceptable limits.
Information-theoretic principles reveal that the optimal coding strategy is
fundamentally determined by the negative log-likelihood of the data distribu-
tion [140, 7], highlighting that precise distribution modeling is essential for
achieving rate-distortion optimality.
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In generative modeling, let x denote a sample from the data space and z
a corresponding latent variable. To approximate the true data distribution
p(x), a model distribution gg(z) is defined as:

go() = / G0l 2) dz = / 4ol | 2)a(2) dz, (3)

where 0 represents the parameters of the generative model.

However, directly optimizing the divergence between the true and model
distributions, KL(p(z) || go(x)), is typically intractable due to the marginal-
ization over latent variables. To address this, variational inference introduces
an auxiliary latent posterior distribution, enabling the transformation of the
marginal KL divergence into a tractable upper bound on the joint KL diver-
gence:

KL(p(x, 2) || a(z, 2)) = KL(p(z) || q())
4 / p(2) KL(p(z | ) || a(z | 7)) da
> KL(p(#) || q(=)). (4)

This joint KL divergence thus serves as a variational upper bound for optimiz-
ing the generative model. By further deriving the variational objective and
estimating the integral via Monte Carlo sampling with the reparameterization
trick, the joint KL divergence can be rewritten as:

Le = Eanpa) [~ logg(x | 2) + KL(p(z [ 2) || ¢(2))], (5)

where E, .,y [KL(p(2 | z) || ¢(2))], encourages the learned posterior p(z | x)
to align with the prior ¢(z), thereby enabling sampling from the prior for
unsupervised generation.

For end-to-end learning-based compression, let xz, z, and x’ denote the
input, the compressed latent representation, and the reconstructed output,
respectively. The rate-distortion optimization objective, consistent with Equa-
tion 2, can be reformulated as:

Lg= EwNp(w)[_ 10g q(z | 1")] + /\E[d(l‘, xl)]a (6)

where the first term, E,p)[—log q(z | x)], represents the expected negative
log-likelihood of the latent variable z given the input x, which corresponds to
the estimated bitrates.

Interestingly, under extreme assumptions, both objectives reduce to condi-
tional maximum likelihood estimation. Specifically, for Equation 5, omitting
the KL term yields an objective that maximizes the conditional likelihood
q(x | z) with z ~ p(z | z), emphasizing reconstruction fidelity and similar to
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a deterministic autoencoder, disregarding the generative quality of samples
drawn from the prior. Conversely, for Equation 6, when the distortion term
is omitted (i.e., A = 0), the objective reduces to maximizing the conditional
likelihood ¢(z | ), which corresponds to learning an encoder that efficiently
models the latent representation, prioritizing bit rate minimization without
considering reconstruction accuracy. In this scenario, as illustrated in Figure
2, the two optimization processes differ primarily in the direction of inference
between the input and output domains.

minE, ., [-logq(x|2)] minE,.,, [~logq(z|x)]

(a) Generation objective. (b) Compression objective.

Figure 2: Illustration of the generation and compression processes under extreme assump-
tions where both objectives reduce to conditional maximum likelihood estimation with
reversed inference directions between the input and output domains.

In summary, although visual generation and visual compression serve dis-
tinct practical purposes, they share a common theoretical foundation based
on effective data distribution modeling. This alignment suggests significant
complementarity and potential for integration, providing a strong basis for
cross-disciplinary approaches and the development of new paradigms like gen-
erative compression.

2.3 Paradigm

Generative compression algorithms aim to leverage deep generative models to
learn compact latent representations of data, and generatively reconstruct tar-
get data from these representations, thereby achieving high-quality inference
for compression tasks and promising rate-distortion performance. Building
upon the preceding derivations, we now conclude the framework for genera-
tive coding, as illustrated in Figure 3. Within this framework, the generative
model, conditioned on the bitstream, functions as the decoder and constitutes
the core of the entire system. To formalize this concept, we define generative
coding for images/videos as follows: Generative coding for images/videos
refers to deep learning-based approaches that generate reconstructed visual data
conditioned on compressed representations encoded from the input, optimizing
efficiency, fidelity, and perceptual quality.
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Side information

Figure 3: Illustration of generative coding framework.The input visual content (image or
video, shown by the icon on the left) is first encoded by the encoder (Enc) into a com-
pact latent representation, which serves as side information. During reconstruction, the
conditional generator (Gen) acts as the decoder. The side information is utilized as a con-
ditioning signal (Cond) to guide the generator in reconstructing the visual content.

3 Generative Coding: Progress Survey

Herein, we propose potential solutions for designing a generative coding frame-
work that achieves high encoding efficiency and perceptually superior recon-
struction, informed by a review from the perspectives of different technical
approaches and focal points. Specifically, we categorize existing generative
coding studies primarily based on the type of core generative model employed,
such as variational autoencoders (VAEs), diffusion models, and generative ad-
versarial networks (GANs). Although some studies incorporate hybrid archi-
tectures (e.g., combining a VAE encoder with a diffusion-based generator), we
classify them based on the dominant generative mechanism, with such cases
grouped under diffusion models. To provide historical context, Figure 4 illus-
trates the chronological evolution of generative models and their impact on
coding research. In the following subsections, we provide a detailed survey of
existing works.

3.1 Explicit and Direct Probability Modeling: Flow and Autoregressive
Models

Flow-based models, also known as normalizing flows [30], constitute a class of
generative models built upon a sequence of bijective and differentiable trans-
formations. Their core principle is to map a complex data distribution px(x)
to a simple and tractable latent distribution pz(z) (typically an isotropic
Gaussian) through invertible functions fy. Thanks to their reversibility, flow
models enable efficient and lossless bidirectional mapping: new samples can
be generated by sampling from the latent space and applying the inverse
transformation f, ! to reconstruct data in the original space.

Autoregressive models [159], by contrast, model the data generation pro-
cess as a sequence of conditional probability estimations. Leveraging the chain
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Figure 4: Development timeline of generative models and their applications in coding. The
upper part illustrates the evolution of core generative models, while the lower part highlights
representative breakthroughs. The progression is divided into three phases, demonstrating
how generative paradigms progressively enhance coding performance.

rule of probability, they decompose the joint distribution into an ordered prod-
uct of conditionals:
n n

p@) = [[p@: | 21,22, .. 1) = [ [ plai | w<), (7

=1 i=1

where © = (x1,x2,...,2,) denotes the input sequence, and z.; refers to all
previously generated elements. Each term p(z; | z<;) is a conditionally sam-
pleable distribution, enabling sequential data generation in a flexible and au-
toregressive manner. This formulation supports precise modeling of complex
dependencies in data sequences.

Despite architectural differences, flow-based and autoregressive models
share a common optimization strategy: maximizing the data log-likelihood,
log pg(x), for explicit probabilistic modeling. In the following, we review rep-
resentative works that leverage these modeling approaches in the context of
image compression.

8.1.1 Flow-based Modeling

et al. Flow-based models were first applied to lossless image compression by
Hoogeboom et al. with the Integer Discrete Flows (IDF) method [61]. IDF
leverages invertible transformations to enable lossless, bidirectional mapping
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between data and latent spaces, achieving state-of-the-art performance at the
time. Its hierarchical design, combining squeeze operations [31], integer flow
layers, and factor-out modules, supports progressive decoding by modeling
the prior in a conditional and multi-scale manner.

In 2021, Helminger et al. [55] introduced normalized flows for lossy image
compression via a three-level hierarchy. Despite suboptimal rate-distortion
performance, their invertible design enabled iterative and multi-pass decoding
without error accumulation (i.e., idempotent reconstruction). To further im-
prove expressiveness, ANFIC [59] introduced a hybrid architecture combining
multi-layer VAEs with invertible flows. Stacking VAE modules hierarchically
achieves quasi-invertibility, retaining flow-based reversibility while enhancing
flexibility. ANFIC outperformed prior flow models [116] and several VAE-
based methods [9, 86, 63] in BD-rate.

However, the aforementioned flow-based approaches still suffer from rela-
tively high bitrates and fail to fully exploit the potential of generative models
in achieving high perceptual quality at extremely low bitrates. To address this
limitation, an innovative method was proposed by [37], which employs flow
models as pre- and post-processing modules around a conventional compres-
sion backbone. This framework leverages invertible transformations to map
the original image into an intermediate, compression-friendly representation.
This design reduces coding redundancy while preserving perceptual quality.
Compared to representative end-to-end methods for extreme low-bitrate com-
pression [74, 188], this approach achieves higher-fidelity reconstruction at bi-
trates below 0.05 bpp, demonstrating the promising potential of flow-based
models in this challenging regime.

In summary, flow-based models provide a principled framework for image
compression, featuring exact likelihood estimation, invertibility, and idempo-
tent reconstruction, where the decoding process avoids error accumulation
across iterative passes, even though lossy quantization still introduces recon-
struction errors. Their unique properties support stable, multi-pass, and loss-
less reconstruction. Nonetheless, flow-based approaches exhibit limitations:
they are less flexible in architectural design, face challenges in modeling high-
dimensional, complex data distributions, and incur substantial computational
costs due to invertibility constraints and Jacobian determinant evaluations.
Consequently, while flow-based compression provides theoretical elegance and
certain unique advantages, overcoming these limitations is essential for improv-
ing both ratedistortion performance and scalability in practical applications.

3.1.2 Autoregressive Modeling

In recent years, autoregressive modeling has been widely adopted in image
compression [123, 193, 107]. As discussed earlier, autoregressive mechanisms



Generative Coding: Promise and Challenges 11

are frequently employed in vector quantization (VQ)-based schemes as well.
Broadly speaking, research in this direction can be categorized into two main
approaches.

The first involves classical autoregressive image modeling, which typically
estimates the conditional probability distribution of pixels using masking
strategies during generation, often enhanced by context models to improve
entropy coding efficiency. These methods are generally integrated into the
entropy model to reduce bitrates [124, 86, 130, 127]. The second approach
extends the paradigm of large language models (LLMs) to image compres-
sion, giving rise to a novel language-driven perspective on image compression
[52, 20, 33, 93, 146]. This emerging direction highlights the potential of in-
tegrating generative modeling with multimodal perception and compression,
and is expected to play a pivotal role in the future convergence of generative
compression and multimodal generation.

In the domain of autoregressive image compression, the overall framework
is illustrated in Figure 5, where the decoder is typically trained using gen-
erative techniques. El-Nouby et al. [127] proposed replacing conventional
vector quantization with product quantization (PQ), an intermediate form
between vector and scalar quantization. This design expands the trade-off
space between rate and reconstruction quality. Combined with a masked im-
age modeling-based conditional entropy model, their method enables robust
reconstruction even when only partial tokens are available. For video com-
pression, Yang et al. [178] unified generative modeling, variational inference,
and autoregressive flows. By introducing structured priors between motion
and residual latent variables, they improved entropy modeling and achieved
rate-distortion performance comparable to HEVC.

\\\ imu|
| o. |
Encoderﬁ H

|

/) B
Figure 5: Overview of an autoregressive generative image compression framework. AE and
AD denote arithmetic encoder and decoder, respectively. The autoregressive models esti-
mate pg(q; | g<i) for both entropy coding and sequential token prediction during decoding.

The masked module facilitates context modeling by limiting access to future tokens during
training and inference.

A g ive Models |

| P6(ai | g<i)

Input Output

Recent studies have extended autoregressive modeling to large language
models (LLMs) for image and video compression. Han et al. [52] directly
modeled bitstreams from traditional codecs (e.g., JPEG, AVC/H.264) using
7B-parameter LLaMA-2 [157], introducing JPEG-LM and AVC-LM for gener-
ative decoding. Building on this, Chen et al. [20] proposed a lossless approach
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by encoding per-pixel RGB values with prompt templates and fine-tuning
LLaMA-3 [43], achieving competitive bit-per-subpixel (bpsp) on CLIC.mobile
[155] (2.08) and Kodak [25] (2.83), albeit with an average decoding time of
273.11 seconds on Kodak. Similarly, Du et al. [33] used LLMs as entropy
models to predict residual distributions conditioned on lossy reconstructions,
attaining comparable bpsp but with even longer decoding times (495.6 sec-
onds). These results highlight the promise of LLM-based compression while
emphasizing the need for more efficient decoding.

Another line of work incorporates LLMs at the encoding stage for semantic-
aware compression without requiring additional training of the large models
themselves [93, 146]. These methods leverage vision-language models such as
GPT-4 Vision [1], Grounding DINO [109], and SAM [80] to extract object-level
semantic hierarchies from input images, including global captions, individual
object descriptions, and corresponding binary masks. A low-bitrate end-to-
end codec is then used to compress a reference image, forming a multimodal
bitstream that includes textual descriptions, masks, and image tokens. At
the decoder side, ControlNet [182] guides the reconstruction by sequentially
conditioning on the semantic information, ultimately achieving high-fidelity
generation.

Despite recent progress, LLM-driven image compression remains far from
practical deployment. The primary bottleneck lies in its excessive decoding
complexity and inference latency. Striking a balance between generative flexi-
bility and computational efficiency will be crucial for advancing this direction
and realizing its potential in real-world applications.

In summary, autoregressive methods distinguish themselves by factorizing
data distributions into conditionals, enabling precise dependency modeling
and high-fidelity generation. This makes them particularly suited for inte-
grating semantic information and extending toward multimodal compression
with visionlanguage models. However, these advantages come at the cost of
sequential decoding, which severely limits efficiency, and of high computa-
tional and memory demands, particularly in LLM-based frameworks. These
characteristics suggest that while autoregressive compression is theoretically
powerful and semantically rich, its future progress will critically depend on
innovations such as token pruning and compression [12, 91, 166] to reduce
decoding complexity and improve scalability.

3.2 Approzimate Inference: VAFEs and Diffusion Models

Variational Autoencoders (VAEs) [79] constitute one of the earliest generative
frameworks grounded in variational inference and probabilistic graphical mod-
eling. They adopt an encoderdecoder architecture, where the encoder maps
input data to a probability distribution in the latent space, and the decoder
reconstructs the original data from sampled latent variables.
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Denoising diffusion models [147, 58] represent another class of generative
approaches that achieve high-quality sample generation by inverting a noise
corruption process. The core idea involves constructing a forward diffusion
process (typically modeled as a Markov chain) that gradually transforms data
from the target distribution into standard Gaussian noise [144]. A neural
network is then trained to approximate the reverse denoising process, enabling
the reconstruction of data from pure noise.

Unlike flow-based and autoregressive models that support exact likelihood
estimation, variational autoencoders (VAEs) and diffusion models rely on ap-
proximate inference to model data distributions. In the following, we review
representative works based on these two paradigms.

8.2.1 VAEs Modeling

As one of the earliest generative models, the VAEs has been widely adopted
in image and video coding tasks, serving as a fundamental building block in
the construction of learned codec frameworks.

Gregor et al. [45] first applied generative modeling to lossy image com-
pression by introducing a hierarchical latent variable structure based on VAEs.
This design enables multi-scale representation, capturing both high-level se-
mantics and low-level details. By hierarchically organizing latent variables,
the model retains only top-layer latent during inference and reconstructs the
rest during decoding, effectively balancing compression rate and reconstruc-
tion quality. This conceptual compression framework has inspired a range of
learned image codecs [160, 153, 9].

Building on this foundation, Jia et al. [73] extended the generative la-
tent space to discrete representations via vector quantization [44], advancing
the VQ-VAE framework [160]. Their method employs a three-stage training
scheme: (i) learning a latent space via encoder-decoder training, (ii) applying
transform coding for entropy compression of latent, and (iii) joint fine-tuning.
This approach significantly reduces hyperprior redundancy and outperforms
pixel-space methods at extremely low bitrates, while also exhibiting richer
semantic expressiveness and better alignment with human perception.

Similar to image coding, variational autoencoders (VAEs) form a founda-
tional framework for generative video compression. Early work by Han et al.
[111] integrated deep generative models with quantization and entropy coding,
employing a sequential VAE to encode video frames individually. Building on
this, Habibian et al. [49] introduced a 3D autoencoder with a deterministic
encoder and an autoregressive prior to jointly model short video clips (e.g., 8
frames). These efforts mark a transition from frame-wise modeling to tempo-
rally coherent sequence-level modeling in generative video compression.
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Overall, VAEs are inherently limited in generative fidelity and struggle to
scale toward high-resolution synthesis. Even so, VAEs made two lasting contri-
butions to visual compression: they established the paradigm of probabilistic
latent-space modeling with a systematic variational optimization scheme, and
they enabled hierarchical or quantized latent representations that integrate
naturally with entropy coding. These advances not only shaped early codec
design but also laid the foundation for more expressive generative approaches.

8.2.2  Diffusion Modeling

Since 2021, diffusion-based generative image coding has rapidly emerged as
a prominent research direction in the field of image compression. As sum-
marized in Table 1, existing approaches can be broadly categorized into two
groups: Pure diffusion-based coding frameworks and hybrid diffusion frame-
works. The key distinction lies in the source of the diffusion models input and
its functional role within the overall compression pipeline.

Table 1: Summary of diffusion modeling approaches for generative coding.

Publicati Publication Venue Remarks
Lucas Theis 2022 [152] Arxiv Progressive Encoding Scheme
Tom Bordin 2023 [13] IEEE MMSP D ion Maps for Guid:
Ruihan Yang 2023 [177] NIPS Image latent-guided diffusion
Eric Lei 2023 [R‘)] ICML workshop Text + Sketch Guidance
Pure Diffusion Codec Marlene Careil 2024 [16] ICLR Dual Latent Space with VQ-text Conditioning
(LDM with Feature or Text Guidance) Tom Bachard 2024 [6] PCS Hybrid CLIP Latent & Color Map Encoding
Lucas Relic 2024 [134] ECCV VAE-diffusion Hybrid Framework
Meigin Liu 2024 [10] Arxiv Unified Diffusion-based Video Codec
‘Wenzhuo Ma 2025 [117] Arxiv Diffusion with Temporal Reuse
Diffusion Junlong Gao 2023 [39] DCC Cheng2020 + Text Enhancement
Noor Fathima Ghouse 2023 [41] Arxiv Diffusion-based Residual G
Junlong Gao 2024 [38] TCSVT Cross-modal Encoding
Hybrid Codec
Haowei Kuang 2024 [85] ACM MM Postprocessing with Syntax-guided Diffusion
(Base Codec with Diffusion Post-processing)
Emiel Hoogeboom 2024 [60] Arxiv Diffusion-autoencoder with rectified flows
Yiyang Ma 2024 [115] ICML Workshop | Diffusion-decoder with privileged correction
Zhiyuan Li 2024 [101] TCSVT ing VAE Latent

In pure diffusion-based frameworks, the diffusion model operates directly
on a latent representation extracted from the input image via an encoder. It
serves as the central component responsible for both compression and recon-
struction. Representative examples include Latent Diffusion Models (LDMs)
guided by semantic priors. By contrast, hybrid diffusion frameworks adopt a
modular design that combines a traditional or learned-based codec with a diffu-
sion model. In this setting, the base codec performs the primary encoding and
decoding, while the diffusion model is applied to intermediate reconstructions,
either in the image or latent domain, produced by the base codec. The follow-
ing sections provide a detailed review of representative works in each category.
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Pure Diffusion Codec

Within the framework of fully diffusion-based image compression, the model-
ing paradigm has evolved from unconditional generation to conditional guid-
ance. Theis et al. [152] introduced a pioneering unconditional diffusion-based
compression framework, marking a departure from traditional compression
pipelines that rely on transform coding and quantization. In contrast to main-
stream end-to-end learned compression systems, which are typically composed
of an encoder transform, entropy model, and decoder reconstruction module
[8, 179], this method applies Gaussian perturbations directly in the pixel space
and reconstructs the image via a reverse diffusion process. The formulation en-
ables inherently progressive decoding and represents a paradigm shift beyond
standard compression architectures.

Subsequently, researchers introduced conditional diffusion modeling to en-
hance the modeling capacity. The Conditional Diffusion Compression (CDC)
model proposed by Yang et al. [177] draws on the latent variable modeling
paradigm of VAEs, using the latent variable z extracted by the encoder as
a conditioning input to guide the reverse diffusion process in reconstructing
image content. Meanwhile, the remaining high-frequency texture details are
modeled through the generative capacity of the diffusion process. As the
first diffusion-based compression framework reported to surpass GAN-based
methods, CDC has established a representative baseline for this direction and
demonstrated strong performance across various datasets and evaluation pro-
tocols.

Extending this line of work, subsequent research broadened the scope of
conditional information from single latent variables to multi-level structural
priors, as is shown in Figure 6. By incorporating structured guidance sig-
nals, such as semantic segmentation maps and color maps, these approaches
introduced stronger constraints into the diffusion process to facilitate more
faithful reconstruction. Bordin et al. [13] conditioned diffusion models on
semantic segmentation maps, further guided by color maps to enhance seman-
tic fidelity and color consistency. Their method maintains high reconstruction
quality even with heavily downsampled segmentation inputs, demonstrating
strong generalization beyond input priors. Building on the idea of leverag-
ing alternative structural cues, Lei et al. [89] achieved extreme compression
(< 0.01 bpp) through text-sketch decomposition and ControlNet [182]-based
reconstruction, though at the cost of severe distortions in object details. Push-
ing further, Bachard et al. proposed CoCliCo [6], which incorporates global
semantic embeddings from CLIP [132] alongside color maps to guide latent-
space diffusion. CoCliCo achieves visually rich outputs at extremely low bi-
trates (e.g., <0.002 bpp), showcasing the potential of semantic guidance for
high-fidelity compression under extreme constraints. In parallel, Careil et al.
[16] combined vector-quantized latent representations with text-guided condi-
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Figure 6: Illustration of generative coding with multi-level priors. The input image is
encoded into multiple priors including structural priors (e.g., depth, segmentation, pose,
edges) and semantic priors (e.g., text captions). These priors are compressed into bitstreams
and transmitted to the decoder. A conditional generative model, exemplified by diffusion,
reconstructs the original image by progressively denoising from noise, guided by semantic
and spatial priors.

tional decoding, achieving photorealistic reconstructions at ultra-low bitrates
(0.1 ~ 0.003 bpp). Their approach surpasses traditional codecs by an order of
magnitude, highlighting the strength of pre-trained diffusion models as image
priors.

The aforementioned works have not explicitly addressed the complexity of
diffusion models, which often suffer from high decoding latency. To tackle the
computational overhead during diffusion inference, Relic et al. [134] model
the quantization error as a denoising task and introduce a parameter esti-
mation module to jointly learn adaptive quantization parameters and the
optimal number of denoising steps. Unlike conventional diffusion models that
initiate sampling from pure Gaussian noise, their method starts directly from
quantized latents, enabling effective elimination of redundant diffusion steps
through joint prediction. Under low-bitrate conditions, the approach achieves
high perceptual quality using less than 10% of the sampling steps, significantly
improving decoding efficiency.

Extending to temporal dynamics, Liu et al. [108] proposed a fully genera-
tive video compression framework that unifies intra- and inter-frame modeling
within a single conditional diffusion process. Unlike traditional hybrid codecs
relying on explicit motion estimation, their method employs diffusion inversion
to implicitly align inter-frame information. Reference frame features serve as
priors to guide a selective DDIM [145] denoising on motion-sensitive regions,
effectively capturing temporal dependencies and enhancing frame consistency.
Building on this, Ma et al. [117] extended the DCVC-DC architecture [96]
by introducing a conditional diffusion model that incorporates both temporal
context and latent reconstructions of the current frame. This design improves
visual quality while preserving temporal coherence. To address the computa-
tional cost of diffusion inference, they further proposed a temporal informa-
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tion reuse strategy that recycles diffusion trajectories from previous P-frames,
achieving significant acceleration with negligible quality degradation.

Hybrid Diffusion-based Compression
These methods typically enhance the initial reconstruction produced by a base
codec using diffusion models, forming a hybrid compression framework.

A representative line of work is proposed by Gao et al. [39, 38], which
builds upon the Cheng2020 [22] model and applies a text-guided diffusion
model as a post-processing enhancement. This framework integrates the en-
hancement process into a unified rate-distortion optimization objective and
demonstrates substantial advantages under extremely low bitrate conditions.
Another line of work builds on the U-Net architecture by injecting guidance
at various stages of the diffusion process. Kuang et al. [85] proposed a
consistency-guided diffusion model, which extracts a syntax vector from the
initial reconstruction and incorporates a Syntax-driven Feature Fusion (SFF)
module to guide the multi-scale diffusion process within the U-Net backbone.
This design jointly improves perceptual quality and fidelity. Li et al. [101]
introduced a control module that conditions a frozen pre-trained diffusion
model on latent representations of the reconstructed image. By training only
the controller, the method achieves lightweight and efficient adaptation.

Other approaches draw inspiration from residual coding by modeling the
residual between the original and reconstructed images using diffusion models
[41]. This enables a plug-and-play post-processing module that significantly
enhances perceptual quality without altering conventional metrics such as
PSNR.

Within hybrid frameworks, recent advances address the high inference
complexity through model simplification and encoder-side guidance. Hooge-
boom et al. [60] introduced Rectified Flows [110] to design a lightweight post-
processing module that reduces sampling steps while improving efficiency. De-
spite fewer steps, it outperforms standard diffusion and scales well with more
iterations. Ma et al. [118] proposed a correction-guided mechanism that es-
timates the score function [148] or its linear approximation at the encoder
side based on the original and initially reconstructed images. This estimated
guidance is transmitted as auxiliary information to the decoder, steering the
diffusion process initialized from the latent representation. The method im-
proves reconstruction at low bitrates and significantly reduces decoding cost.

To conclude, diffusion models have redefined generative compression by
turning data synthesis into a noise-to-signal mapping with clear interpretabil-
ity. Their stepwise denoising paradigm stabilizes training and yields recon-
structions of exceptional perceptual quality, while flexible noise scheduling
enables broad extensions to conditional and multimodal settings. Yet these
benefits are tempered by slow sampling and high computational overhead,
leaving efficiency the key obstacle to practical deployment.
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3.8 Implicit Modeling: Generative Adversarial Networks

Generative Adversarial Networks (GANSs), one of the most influential genera-
tive paradigms in the deep learning era, were pioneered by Goodfellow et al.
[42] in 2014. Rooted in game theory and the principle of adversarial train-
ing, GANs employ a dual-network architecture consisting of a generator G
and a discriminator D to model complex data distributions. The generator
G(z) : 2 — X maps latent z ~ p, to the data space in order to synthe-
size samples that aim to deceive the discriminator, while the discriminator
D(z) : X — [0,1] is trained to distinguish real data from generated samples.
Formally, this adversarial mechanism is expressed as a minimax optimization
problem:

min max By p,,, [10g D(2)] + Eznp, [log(1 = D(G(2)))], (8)

which implicitly minimizes the JensenShannon (JS) divergence between the
model distribution pg and the data distribution pgaga-

Unlike explicit density estimation and approximate inference frameworks,
GANS characterize data distributions through adversarial training rather than
tractable likelihoods. Build on this foundation, this section provides a system-
atic review of GAN-based generative image coding approaches, as summarized
in Table 2. We classify these approaches into five key categories: (1) End-to-
end Coding Frameworks with Adversarial Training; (2) Variable Bitrate and
Rate Control Mechanisms; (3) Image Interpolation Structures Based on Dual
Decoders; (4) Multi-modal Hierarchical Prior Modeling Frameworks; and (5)
Discretized Representation Learning Based on VQ-GAN. These categories re-
flect a technological progression from “Perceptual Optimization = Practicality
Extension = Structural Innovation = Semantic Enhancement = Paradigm
Shift in Discrete Representation,” showcasing the evolution of GAN-based
generative image coding in performance, flexibility, and expressive capacity.

GAN-exclusive Decoder Training

Early studies in the domain did not alter the encoding-decoding architecture
but instead focused on optimizing the decoder directly through adversarial
training. Rippel et al. [135] first introduced GANs into lossy image com-
pression, employing a pyramid-based autoencoder for feature extraction and
a generator for high-detail image synthesis. Their method demonstrated the
potential of GANs to surpass traditional codecs like JPEG in rate-distortion
performance, while enabling real-time encoding and decoding via a lightweight
framework. Santurkar et al. [137] formally introduced the concept of “Gener-
ative Compression” in the literature, merging the efficient encoding capabili-
ties of VAEs with the high-quality reconstruction advantages of GANs. They
further extended this idea to video, making one of the earliest attempts at
generative video compression via frame-by-frame processing.
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Table 2: Summary of GANs-based approaches for generative coding.

I Publication Publication Venue Remarks
Oren Rippel 2017 [135] ICML First GAN-based Image Compression Framework
Shibani Santurkar 2018 [137] PCS First Attempt at Generative Video Compression
Birikur Agustsson 2019 [3 . First Full-resolution Generative Image Compression
Generative Compression with Partial Reconstruction
Younhee Kim 2020 [78] CVPR workshop Hybrid VVC-GAN Architecture with Adversarial Loss
Fabian Mentzer 2020 [122] NIPS Landmark GAN-based High-fidelity Compression
GAN-exclusive Decoder Training Shubham Dash 2020 133 WACV Stacked Autoencoders with Patch GAN
(End-to-end GAN Integrated Framework) Jooyoung Lee 2020 [88] CVPR workshop GAN-based Decoder and Enhancement Fine-tuning
Zhengxue Cheng 2021 [21] | CVPR workshop Enhanced Cheng2020 Framework with GAN Optimization
Zeyu Yan 2021 [174] ICML Theoretical Foundations of Adversarial Training for Compression
Bowen Liu 2021 [105] CVPR GAN + ConvLSTM latent prediction
Saiping Zhang 2021 [185] VvCIp Enhancing DVC via GAN-refined motion and residuals
Dailan He 2022 [54] CVPR Enhanced ELIC Framework with GAN Optimization
Chaoyi Han 2020 [50] TCSVT Quantization on Channel Variance for Latent Compression
Lirong Wu 2020 [169] WACV Importance Map-driven Bit Allocation Mechanism
Variable Bitrate and Rate Control Design Yixin Gao 2021 [40] CVPR Adaptive spatial bit allocation with GAN enhancement
(Adaptive Rate Allocation Strategy) Rushil Gupta 2022 [48] CVPR workshop Input: Importance Map for Bit Allocation
Eirikur Agustsson 2023 [2] CVPR Conditional Decoder with Realism-aware Factor
Shoma Iwai 2024 [68] WACV Rate Control via Factor-level Guided
GAN Michael Tschannen 2018 [158] NIPS WGAN-WVAE: Zero-to-perfect bitrate interpolation
Hiroaki Akutsu 2020 [4] CVPR workshop Dual-loss Decoder (Adversarial + MS-SSIM Optimization)
Dual-decoder Interpolation
Shoma Twai 2020 [69] ICPR Dual-loss Decoder (Adversarial + MSE Optimization)
(Distortion-perceptual Loss Hybrid)
Zeyu Yan 2022 [173] ICML Theoretical Proof: DP-curve Coverage via Decoder Interpolation
Nikolai Korber 2024 [81] ECCV t Discriminator with ion Guidance
Danlan Huang 2022 [63] JSAC Semantic Segmentation-driven Rate Control
) . ) . Chen Zhu 2022 [191] TCSVT Perceptual frame enhancement via edge guidance
Hierarchical Multimodal GAN Architecture
. Ren Yang 2022 [176] LICAIL Recurrent GAN exploiting motion and hidden states
(Cross-domain Representation Learning) i e )
Fabian Mentzer 2022 [121] ECCV Dual-path GAN for inter-frame synthesis
Jianhui Chang 2023 [17] nev Hierarchical Encoding: Structure + Texture
Xuhao Jiang 2023 [75] AAAT Text Feature-guided Generation
Matthew Muckley 2023 [126] ICML Non-binary Discriminator for VQ-VAE Representation
Vector-quantized GAN Naifu Xue 2023 [171] ICME VQ Tokenization with Checkerboard Transformer
(Discrete Representation) Qi Mao 2024 [119] DCC VQ Tokenization with Autoregressive Modeling
Angi Li 2025 [90] ICLR Patch-based Encoding with Adaptive Rate Control

While early generative compression methods demonstrated feasibility, they
were constrained to low resolutions (typically < 64 x 64). To overcome this,
Agustsson et al. [3] proposed a multi-scale framework with an enhanced dis-
criminator, enabling the first successful compression of full-resolution Kodak
[25] and Cityscapes [26] 2K images. They also introduced a selective com-
pression strategy guided by semantic maps, preserving salient regions while
aggressively compressing backgrounds, paving the way for perception- and
semantics-aware coding. Building upon these, Mentzer et al. [122] made a
landmark contribution with a refined conditional GAN framework, integrating
hyperprior modules [9] while strategically simplifying the architecture. This
approach demonstrated 50% bitrate reduction over MSE-optimized and con-
ventional codecs at equivalent perceptual quality, establishing itself as the
definitive baseline for subsequent research.

Subsequent research integrated GAN training into learned compression
frameworks by incorporating adversarial modules as perceptual optimization
components. Building on existing architectures, several studies advanced end-
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to-end image coding through the integration of adversarial components: Kim
et al. [78] extended VVC [14], Lee et al. [88] enhanced JointIQ-Net [87], Cheng
et al. [21] improved upon Cheng2020 [22], and He et al. [54] advanced ELIC
[53]. Parallel innovations include Dash et al. [133], who fused a Stacked Au-
toencoder with PatchGAN [67] via adversarial training, and Yan et al. [174],
whose hybrid framework pairing an MSE-optimized encoder with an adver-
sarial decoder outperformed conventional frameworks using distortion plus
adversarial loss. The latter study further established seminal theoretical con-
tributions: perfect perceptual quality necessitates doubling the minimal MSE
distortion, classical rate-distortion encoders retain optimality in perceptual
tasks, and distortion loss proves redundant for training a perceptual decoder.
These insights provide a crucial theoretical basis for designing more efficient
perceptual compression algorithms.

For video compression, Liu et al. [105] enhanced latent modeling by incor-
porating a GAN-augmented autoencoder with ConvLSTM-based prediction,
achieving competitive compression performance while enabling downstream
tasks such as anomaly detection. Zhang et al. [185] integrated perceptual
enhancement into the end-to-end deep video codec (DVC) framework [113],
using GANSs to refine motion and residual reconstructions. These works repre-
sent early efforts to extend generative techniques from image to video domains,
demonstrating the potential of adversarial training in capturing temporal con-
sistency and enhancing perceptual quality.

Variable Bitrate and Rate Control Design
The above implementations still necessitate distinct training for each prede-
fined rate configuration, leaving the fundamental rate-distortion trade-off un-
derexplored. Notably, generative compression architectures exhibit inherent
compatibility with content-aware compression strategies. Intuitively, they en-
able low-bitrate generative synthesis for perceptually less significant regions
while allocating higher bitrates to semantically critical areas to ensure high-
fidelity reconstruction. Among these advancements, Han et al. proposed
channel-wise correlation variance masking to optimize redundancy in quan-
tized latent spaces [50], while Wu et al. [169] developed perceptual signifi-
cance mapping via importance matrices for quantization-aware bit allocation.
Gao et al. [40] further advanced spatial scale hyperpriors in context modules
for content-adaptive bitrate control, and adopted the gain unit and weighted
quantization from G-VAE [27] to enable continuous variable bitrate compres-
sion. Gupta et al. [48] developed a GAN-based framework that integrates user-
defined bitrate constraints and importance maps to guide bitrate allocation,
significantly enhancing perceptual quality in semantically critical regions.
However, these approaches still rely on existing end-to-end variable-rate
frameworks and have not achieved fundamental breakthroughs under the gen-
erative paradigm. Agustsson et al. [2] proposed a novel generative compression
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framework that exploits the flexibility of conditional GANs. By introducing
a tunable realism factor 3, the model enables diverse reconstructions, ranging
from low-distortion to high-perceptual quality, using a single latent represen-
tation. This approach achieves a state-of-the-art balance between distortion
and perceptual fidelity. Building on this, Iwai et al. [68] further integrated a
bitrate control variable level alongside 3, resulting in a unified compression
framework for both adaptive rate control and perceptual optimization.

Dual-decoder Interpolation

After addressing the limitation that existing methods require separately
trained models for each predefined bitrate, researchers turned to more flex-
ible architectures to tackle the distortionperception trade-off. A notable in-
novation is the dual-decoder framework, which employs two decoders inde-
pendently optimized with distortion and perceptual objectives. As shown in
Figure 7, this design enables interpolation between the two outputs, allowing
for continuous and controllable balancing between distortion and perceptual
quality within a generative compression framework.

I
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Figure 7: Schematic of the image compression framework based on dual-decoder interpo-
lation. Q, AE, and AD denote the quantizer, arithmetic encoder, and arithmetic decoder,
respectively.

Tschannen et al. [158] pioneered this approach by integrating Wasser-
stein Autoencoder [156] and Wasserstein GAN [5] principles, demonstrating
seamless transitions between generative data modeling (zero bitrate) and ex-
act reconstruction (high bitrates). Subsequent refinements include Akutsu et
al’s [4] GAN-conditioned primary decoder with selective detail decoding via
weighted MS-SSIM optimization, augmented by causal attention and super-
resolution modules. Iwai et al. [69] further advanced this paradigm through
two-stage parameter interpolation that suppresses low-bitrate (< 0.1 bpp)
artifacts. Notably, Yan et al. [173] provided theoretical validation, demon-
strating that any point along the distortion-perception (D-P) tradeoff bound
can be attained via a simple linear interpolation between the outputs of a min-
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imum MSE decoder and a specially designed perfect perceptual decoder. The
state-of-the-art is exemplified by Korber et al.’s [81] Output Residual Predic-
tion (ORP) module, which dynamically adjusts the residual R between MSE-
and GAN-optimized decoder outputs during reconstruction, achieving distor-
tion performance comparable to VI'M 20.0 while simultaneously advancing
perceptual quality.

Hierarchical Multimodal GAN Architecture

Beyond decoder design, some studies focus on prior modeling and semantic
guidance in encoding. Integrating multimodal information as auxiliary guid-
ance enhances generative reconstruction quality, while hierarchical feature
extraction improves compression efficiency, particularly at ultra-low bitrates.
Several works have explored combining these strategies within generative com-
pression frameworks.

Huang et al. [65] introduced a semantic-layered framework that encodes
object categories, features, and spatial relations. A reinforcement learning-
based bit allocation and a hierarchical adversarial decoder with cross-scale
attention enable perceptually coherent reconstruction at low bitrates. Chang
et al. [17] demonstrated superior performance via dual-layer semantic-texture
disentanglement and GAN-driven synthesis, outperforming hybrid codecs in
both perceptual quality and downstream vision task compatibility. Jiang et al.
[75] enhanced text-guided compression with an Image-text Attention module
for cross-modal feature fusion and a decoder-side module that adaptively inte-
grates text priors. A multimodal semantic-consistency loss ensures alignment
among reconstructed images, original inputs, and associated texts, leading to
improved perceptual quality over HiFiC [122].

Extending these advances to video compression, Zhu et al. [191] guided
texture generation via edge maps and motion estimation, improving visual
quality. Mentzer et al. [121] proposed a GAN-based inter-frame synthesis
framework combining UFlow and generative I-frame compression, with a dual-
path discriminator supervising both structure and texture. Building on this,
Yang et al. [176] designed a recurrent discriminator and generator architecture
that jointly exploits motion, latent features, and ConvLSTM-based history.
Their method significantly outperformed HEVC and several learned codecs in
perceptual quality at low bitrates.

Vector-quantized GAN

Increasing attention has been paid to the discretization of the latent space
in generative compression, aiming to more effectively capture semantic priors
embedded in generative models. Compared to continuous latent variables,
the discrete tokens introduced by VQ-GAN [35] significantly improve training
stability and representation capacity.
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Muckley et al. [126] pioneered a non-binary adversarial discriminator
based on VQ-VAE autoencoders, integrating with the Mean-scale [123] frame-
work to form the MS-ILLM architecture. This approach enhances statistical
fidelity through locally conditioned latent modeling, achieving state-of-the-art
rate-distortion-perception trade-offs. Xue and Mao et al. [171, 119] proposed
a hierarchical tokenization scheme with transformer-based modeling, enabling
ultra-low bitrate compression (< 0.03 bpp) while preserving visual details.
Notably, they made a pioneering attempt to unify entropy probability esti-
mation with the probabilistic formulation of generative models, addressing a
core limitation in prior methods. More recently, Li et al. [90] developed a
variable-length VQ-GAN supporting fine-grained bitrate control via spatially
adaptive VQ indices and non-parametric entropy coding. A probabilistic con-
ditional decoder further improves reconstruction realism through hierarchical
aggregation of multi-granularity representations, achieving optimal efficiency,
perceptual quality, and adaptability.

Overall, GAN-based approaches have achieved striking progress in per-
ceptual compression, enabling highly realistic reconstructions at high reso-
lutions and substantially advancing generative quality. However, they also
face persistent challenges, including unstable training dynamics, mode col-
lapse, and inherent difficulty in probabilistic density modeling, which makes
them less compatible with entropy modeling or ratedistortion optimization.
Despite these limitations, the paradigm has significantly expanded the expres-
sive power and application boundaries of generative models, marking GANs
as a pivotal milestone in the development of generative compression research.

4 Generative Coding: Key Issues

The preceding survey highlights the advanced capabilities of generative cod-
ing in terms of perceptual quality, semantic consistency, and compression effi-
ciency, demonstrating its feasibility across a wide range of scenarios. However,
achieving optimal performance and enabling practical deployment of genera-
tive coding systems necessitates addressing several critical challenges. These
challenges are essential to the successful application and further development
of this emerging paradigm. The following subsections elaborate on these key
issues.

Modeling Frameworks

One of the central challenges in current generative compression lies in the fact
that its framework design remains immature and insufficiently well-defined,
as shown in Figure 8. The key design is how to effectively balance perceptual
generation with fidelity-oriented reconstruction.
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Figure 8: Illustration of image and video compression frameworks. From left to right: (a)
traditional coding, (b) end-to-end coding, and (c) generative coding. The first row presents
image compression pipelines, while the second row illustrates the corresponding video com-
pression paradigms. Unlike traditional and end-to-end approaches with well-established
frameworks, generative coding remains non-standardized and is an area of ongoing research.

Generative coding requires not only the generation of plausible content
but also the preservation of the essential semantic and structural information
from the input. In particular, clarifying the pathway from lossy compression to
lossless representation is essential. This transition not only involves ensuring
the interpretability and controllability of model architectures, but also directly
impacts the reliability and deployability of compression systems in real-world
applications.

In summary, although the previous section reviewed several efforts to ex-
plore and utilize prior information, the path toward establishing a unified and
mature framework for generative compression is still far from complete. We
believe that a promising direction toward addressing this gap is to focus on
the design of generative models specifically tailored for coding tasks.

Metrics and Evaluation

The absence of effective evaluation metrics remains a critical barrier to the
advancement and standardization of generative compression. Traditional low-
level distortion measures, while sensitive to fine-grained structural variations,
fail to capture semantic consistency and perceptual relevance, rendering them
insufficient for evaluating the quality of generative reconstructions. Con-
versely, high-level perceptual metrics, although better aligned with human
visual similarity, often compromise input fidelity and deviate from the funda-
mental objectives of compression. As illustrated in Table 3, each category of
evaluation metric presents distinct trade-offs across dimensions. There is a
pressing need for comprehensive, multi-level evaluation protocols that jointly
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Table 3: Comparison of commonly used evaluation metrics in generative compression. Sym-
bols v/, X, and @ denote high, low, and medium performance respectively.

Metric Semantic Consistency Perceptual Quality —Fidelity Interpretability ~Widely Adoption
PSNR/SSIM [164] X X v v v
LPIPS [184] v v X X v
FID [56]/KID [11] v v X X v
VIF [141] X [ ] v [ [ ]
DISTS [29] X v v X [ ]
NIQE [125] X [} X [ ] v
mloU v X X X X
VMAF [100] X v [ ] X v
Human Opinion Score v v v v X

account for semantic alignment, perceptual quality, and reconstruction accu-
racy.

A fundamental barrier lies in redefining the concept of “distortion” for
generative coding, which should be tailored to meet the specific requirements
of different applications. Key considerations include determining the degree
of generated content that is acceptable to viewers under various bitrates and
scene conditions. It is also important to recognize that human perception
is not the only targetgenerative compression holds significant promise for
machine-oriented applications (e.g., Image/Video coding for machine [34, 180,
151]), which opens up new and exciting directions for future research.

Complexity and Deployment Feasibility

Generative models are typically large in scale, incurring substantial training
and inference costs, which hinders their practical deployment. For any com-
pression standard to be viable in real-world scenarios, lightweight and low-cost
deployment on edge or terminal devices is essential. While some workssuch
as those based on GANshave demonstrated real-time encoding and decoding
capabilities [135, 128], the overall deployment landscape remains challenging.

Table 4 provides a comparative analysis of encoding and decoding times for
representative traditional, end-to-end, GAN-based, and diffusion-based com-
pression methods on the Kodak [25] dataset. As shown, traditional codecs
like VIM [14] suffer from prohibitively high encoding times, whereas GAN-
based approaches such as HiFiC [122] and MS-ILLM [126] achieve significantly
lower latency. However, diffusion-based methods (e.g., CDC [177] and DiffEIC
[101]), though promising in perceptual quality, remain computationally inten-
sive, especially during decoding.

The future viability of generative compression as a practical standard
hinges on the development of model designs that balance performance and
computational efficiency. This includes advancing key technologies such as
model compression [28], quantization [47, 138], and adaptation to heteroge-
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Table 4: Model parameters, and encoding/decoding speed (in seconds) on the Kodak [25]
dataset. Values are reported as mean 4 standard deviation.

Category Method Params BPP  Encoding Time Decoding Time Platform Config
Traditional VTM [14] - 0.406  60.871 + 22.461 0.158 & 0.014  Intel Xeon Silver 4310 QP = 32
End-to-end ELIC [53] 34M 0497  2.878 £ 0.188 2.792 + 0.173 NVIDIA RTX 3090  —
HiFiC [122] 185M  0.303 0.660 £ 0.164 1.435 + 0.210 NVIDIA RTX 3090
GAN Based
MS-ILLM [126] 181.5M 0.433  0.171 + 0.388 0.086 + 0.024 NVIDIA RTX 3090  —
. CDC [177] 850M  0.485 3.324 £ 0.031 NVIDIA RTX 3090 Denoising steps=>50
Diffusion Based
DIiffEIC [101] 950M  0.123  0.330 + 0.383 6.854 + 0.128 NVIDIA RTX 3090  Denoising steps=50

neous hardware platforms [70, 46]. Ultimately, these advances will facilitate
a meaningful transition from centralized systems to edge-level deployment.

5 Experiment

In this section, we present a comprehensive evaluation to assess the perfor-
mance and feasibility of generative compression. To better illustrate the
current landscape, we first include two case studies as representative exam-
ples of emerging directions. Generative video compression is still in its early
stage, and most existing advances are concentrated on specific domains such
as talking-face or human-body videos. In this context, our first study demon-
strates the effectiveness of generative compression for talking-face videos, high-
lighting the potential in specialized domains. Furthermore, leveraging large
multimodal language models (MLLMs) for video coding remains a bold and
largely unexplored attempt. Our second study provides a preliminary explo-
ration in this direction, marking one of the first unified applications of foun-
dational MLLMs and generative models in video coding. Second, we conduct
extensive comparisons with representative baselines in the field to benchmark
and highlight their strengths and limitations.

5.1 Our Attempts at Generative Compression
5.1.1 Efficient Compression for Talking-face Videos

Talking-face videos exhibit strong spatio-temporal regularities, offering sig-
nificant opportunities for enhanced compression efficiency in communication
systems. Traditional model-based approaches have demonstrated the poten-
tial for ultra-low bitrate transmission. More recent advancements employ 3D
techniques [24] and deep generative frameworks [42, 142, 162] to further im-
prove rate-distortion performance. However, these methods typically rely on
hand-crafted and explicit representations, such as facial landmarks or key-
points, which constrain their ability to capture complex motion dynamics
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and limit their integration with established hybrid video coding standards.
This underscores the need for a more compact and expressive representation
that can effectively model temporal trajectories in talking-face videos. Such a
representation should facilitate high-fidelity reconstruction under constrained
bandwidth conditions and align with the hybrid video coding paradigm to
ensure compatibility and robustness in practical deployment scenarios.

For this purpose, we design a novel talking-face video compression frame-
work based on Compact Temporal Trajectory Representation (CTTR) [19],
which replaces explicit, hand-crafted representations with a learned, compact
encoding of temporal motion. By capturing the intrinsic dynamics of facial
movements through data-driven modeling, CTTR, enables more efficient and
robust video reconstruction. To further enhance performance, we introduce
a dynamic reference refresh mechanism and enforce temporal consistency via
end-to-end training. This design not only achieves superior rate-distortion
performance at ultra-low bitrates, but also ensures compatibility with tradi-
tional hybrid video coding frameworks.

As shown in Figure 9, the encoder side of the proposed framework inte-
grates an intra-coding scheme based on traditional hybrid video coding to
compress key-reference frames, a compact feature representation module to
model the dynamic trajectory variations of inter frames, and a context-based
feature encoding module for efficient feature compression via inter prediction
and entropy coding. An identified key-reference frame of a specific sequence
is compressed using the VVC encoder, which provides the fundamental tex-
ture representation. Based on this reference, the remaining frames are rep-
resented through a learned compact feature space. Both the reconstructed
key-reference and inter frames are projected into this highly compact latent
space. The resulting feature representations are then processed through in-
ter prediction, quantization, and entropy coding. On the decoder side, the
key-reference frames are reconstructed via VVC decoding, while inter-frame
features are recovered through context-based decoding and feature compensa-
tion. A sparse motion field is then constructed from the reconstructed features
and refined into a dense motion map and occlusion map. These, together
with the decoded key-reference frames, are fed into a neural frame generation
module to produce high-quality talking-head video with realistic motion and
appearance.

As shown in Table 5, the proposed CTTR framework achieves remark-
able bitrate savings compared to the latest VVC codec, with reductions of
78.84% in Rate-DISTS, 73.00% in Rate-LPIPS, and 77.72% in Rate-FID at
a resolution of 256 x 256. Additionally, CTTR outperforms the state-of-the-
art generative methods Face_vid2vid [162] and CFTE [18], offering over 20%
bitrate savings across all three deep learning-based quality metrics. These
results demonstrate the superior compression efficiency of CTTR under deep
perceptual quality metrics.
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Figure 9: Overview of proposed generative compression framework for talking-face video.

Table 5: Average bit-rate savings of 40 talking-face sequences at the resolution of 256 x 256.
Anchor: CTTR (ours).

Anchors Rate-DISTS Rate-LPIPS Rate-FID
VVC [14 -78.84% -73.00% -77.72%
FOMM [142] -64.19% -65.80% -64.85%
FOMM?2.0 [143] -43.54% -46.28% -43.02%
Face_ vid2vid [162] -24.70% -30.80% -25.67%
CFTE [18] -24.32% -25.80% -28.13%

Moreover, to demonstrate the coding efficiency, we evaluate trade-offs in
model size (Params), computational cost measured in multiply-adds (MAdd),
and actual inference time on both the encoder and decoder. Experiments are
conducted on a Tesla A100 GPU with 15-core Intel Xeon Platinum 8369B
CPUs, using a test sequence of 250 frames at 256(E256 resolution. Encoder
and decoder times are averaged over five quantization parameters (QPs) (32,
37,42, 47, and 52). As shown in Table 6 , compared with the traditional VVC
codec, generative compression schemes substantially reduce encoder-side in-
ference time, although decoding complexity increases. Among these methods,
the proposed CTTR approach achieves a favorable balance between Params,
MAdd, and encoder-side Time, while decoding efficiency is slightly affected
by the inclusion of an additional temporal discriminator.

5.1.2  Cross-modality Video Coding with MLLMs

Traditional approaches of video compression often struggle to maintain seman-
tic integrity and perceptual quality under tight bitrate constraints. Meanwhile,
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Table 6: Complexity comparison in terms of model size (Params), computational cost
(MAdd), and inference time (Time) at both encoder and decoder sides.

Measures  VVC [14] FOMM [142] FOMM?2.0 [143] Face vid2vid [162] CFTE [18] CTTR(Ours)

Params(M) - 14.215 14.147 72.195 14.131 14.131
Encoding  MAdd(G) - 1.277 1.059 317.324 0.989 0.989
Time(Sec)  1323.495 21.065 19.648 18.829 16.402 16.095
Params(M) - 45.575 45.575 53.101 43.885 43.910
Decoding  MAdd(G) - 53.643 53.643 178.282 54.822 189.858
Time(Sec) 0.650 14.274 14.257 20.093 13.232 22.880

Multimodal Large Language Models (MLLMs) [51, 136] have shown a remark-
able ability to process sequential inputs and understand temporal patterns in
multimodal data. Their potential to encode rich semantic cues from video
content opens new possibilities for video compression, particularly for gener-
ating compact representations that preserve meaning and structure, even at
extremely low bitrates.

In light of this, we introduce a novel Cross-modality Video Coding (CMVC)
framework that incorporates MLLMs and video generation techniques to
achieve efficient and flexible video coding [183]. CMVC supports two tailored
reconstruction modes: Text-text-to-video (T'T2V), which uses text-based rep-
resentations to reconstruct video content with strong semantic alignment at
ultra-low bitrate, and Image-text-to-video (IT2V), which combines text with
keyframes to enhance visual fidelity and temporal consistency at extremely low
bitrate. The IT2V mode further benefits from Low-rank Adaptation (LoRA)
[62] based frame interpolation for smoother transitions.

The pipeline of the proposed CMVC framework is illustrated as Figure 10.
It consists of an encoder-decoder architecture designed to enable efficient video
compression with high semantic and perceptual fidelity. In the encoding stage,
we apply a keyframe selection strategy to segment the video into discrete
clips, as in part (a) of Figure 10. This facilitates the extraction of spatial
features from keyframes and temporal information from the motion between
them. CLIP-based similarity metrics are used to ensure coverage of salient
temporal changes. Both the selected keyframes and the corresponding motion
between them are then transformed into compact textual representations via
V2T models, forming the core multimodal inputs for compression, as in part
(b) of Figure 10. The decoder supports two distinct reconstruction modes
tailored to different bit-rate and quality requirements. As illustrated in part
(c) of Figure 10, the TT2V mode reconstructs video content solely from text,
emphasizing semantic coherence and enabling ultra-low bitrate transmission.
In contrast, as shown in part (d) of Figure 10, the IT2V mode incorporates
both decoded keyframe images and motion descriptions to enhance perceptual
quality, and further applies a Stable Diffusion-based generative model with
LoRA tuning to refine temporal consistency across frames. By leveraging the
cross-modal representation capabilities of foundational MLLMs, the proposed
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Figure 10: The framework of the proposed CMVC scheme. The input video is divided
into clips via keyframe selection, from which spatial and temporal priors are extracted.
Multimodal representations are obtained using MLLMs and compressed into bitstreams by
the encoder (E). At the decoder side (D), we demonstrate two modes: TT2V for semantic
quality and IT2V for perceptual quality, both enabling flexible integration with state-of-
the-art generative models.

CMVC framework provides a unified and adaptable solution for video coding
under extreme bitrate constraints.

In the IT2V mode, the proposed CMVC framework is compared against
traditional codecs (x264 [167], x265 [149], VTM [14]), deep learning-based
codecs (DCVC [95], DCVC-DC [96]), and state-of-the-art video generation
models (RIFE [66], AMT [99], DiffMorpher [181]). As shown in Figure 11,
CMVC consistently achieves superior perceptual quality, particularly under
extremely low bitrate constraints, where existing pretrained deep codecs show
limitations. Our approach demonstrates stable and high-quality reconstruc-
tion across various datasets, with improved bitrate control via keyframe se-
lection and quality adjustment. This work marks the first unified application
of foundational MLLMs and generative models in video coding. Nevertheless,
CMVC entails substantially higher complexity due to the heavy computational
demands of large multimodal language models. In the IT2V mode, the en-
coding and decoding processes take considerably longer, requiring 722.54 and
211.25 seconds, respectively, when utilizing 4 NVIDIA GeForce RTX 3090
GPUs. We present this study as an initial attempt, underscoring both the
potential and challenges of this direction.

5.2 Benchmarking Against State-of-the-art Methods

We conducted a comprehensive evaluation by comparing several representa-
tive generative image compression methods, alongside neural compression
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The comparisons are

performed on the Class B, Class C, Class D, Class E, UVG, and MCL-JCV, respectively.
In the figures, “Ours” refers to the proposed CMVC framework.

techniques and traditional approaches.

The generative image compression

methods considered include:

1.

High Fidelity Compression (HiFiC) [122], trained for three target bi-
trates r; € {0.14,0.30,0.45}.

. Conditional Diffusion Compression (CDC) [177] consists of two vari-

ants: y-prediction and e-prediction. The x-prediction model achieves
compression performance similar to that of e-prediction, requiring only
a few decoding steps (compared to hundreds) and without the need for
post-processing. The implementation includes two model configurations
controlled by the hyperparameter p, where p = 0.9 and p = 0.0 represent
different perceptual loss weightings. Here, we focus on the x-prediction
variant with a denoising step set to 50.

. Diffusion-based Extreme Image Compression (DiffEIC) [101], trained for

five target bitrates r; € {0.02,0.04,0.06,0.09,0.12}.

. Mean-scale implicit local likelihood model (MS-ILLM) [126], which is

a VQGAN-based method that improves statistical fidelity using local
adversarial discriminators.

. Multi-realism Image Compression (MRIC) [2], which aims to train a

single generator G to adapt to any realism weight 8 € [0, 2.56], where
B = 0 corresponds to the lowest distortion and § = S,,4, corresponds
to the highest perceptual realism in the reconstruction.
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6. Perceptual compression (PerCo(SD)) [82, 16], which is conditioned on
both a vector-quantized latent image representation and a textual image
description.

7. Rate-distortion Optimization for Cross Modal Compression (RDO-
CMCQ) [39], in which we employed its variant based on a diffusion model
for the decoder.

8. Unified Image Generation-compression (UIGC) [171], which is based on
a vector-quantized representation and employs a multi-stage transformer
architecture for extreme compression.

For comparison, we include the neural image compression method ELIC
[53], as well as traditional methods VVC [14], implemented using the reference
software VIM-23.0 with intra configuration, and BPG [10]. And the QPs for
BPG and VTM is set to {30,35,38,42,50}. We assess the aforementioned
methods using the Kodak image dataset [25], which comprises 24 images,
each with a resolution of 768 x 512. To ensure a fair and comprehensive
evaluation of the compression performance of each model, we employed both
PSNR and MS-SSIM [165] to assess distortion, and LPIPS [184] and FID [56]
to evaluate perceptual quality. Specifically, we utilized the AlexNet-based
[83] LPIPS for perceptual distance. Additionally, considering that variations
in low-level preprocessing, such as image resizing and patching can introduce
significant differences and unexpected effects on the FID metric, we adopted
the clean-FID implementation [129] to mitigate such issues.

As shown in Figure 12, generative models generally exhibit superior per-
ceptual quality at lower bitrates, but tend to underperform in terms of fidelity
compared to traditional and end-to-end learned methods. Among the gener-
ative approaches, MS-ILLM offers a favorable trade-off between perceptual
quality and fidelity. Compared to VTM, it achieves an 86.25% improvement
in LPIPS-BD rate, at the expense of a 70.72% increase in PSNR-BD rate.

6 Conclusion

In this paper, we present a comprehensive review of generative coding, an
emerging paradigm that leverages generative models for efficient visual data
compression. We provide a principled formulation that emphasizes the intrin-
sic theoretical connections between generation and compression, highlighting
their potential for mutual integration and cross-fertilization. Through a sys-
tematic survey categorized by the underlying generative model types, we trace
the technical evolution of representative methods and distill their core inno-
vations. We also present experimental studies, including both our own ex-
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Figure 12: Tradeoffs between bitrate (x-axes, in bpp) and different metrics (y-axes) for

various models tested on Kodak. The labels indicate the paradigm of each method.

plorations and comparisons with representative baselines, offering practical
insights into the feasibility and limitations of current approaches.

Generative coding is poised to reshape the future of visual communication,
particularly in the context of foundation models and machine-centric media
understanding. Based on current developments, we believe that the following
directions are particularly promising for advancing generative compression

research:

e Paradigm Innovation in Generative Video Compression: While genera-
tive image compression has witnessed notable advances, its video coun-
terpart remains at a nascent stage, often constrained within the modular
replacement of conventional codecs (e.g., motion estimation or reference

reconstruction). Most existing approaches follow a frame-by-frame pro-

gression built upon motion compensation, which inherently limits their
temporal modeling and compression efficiency.



34

Ma et al.

Leveraging LLMs for Lossy Compression: Large language models have
shown strong capabilities in cross-modal understanding and structured
generation. While early attempts have applied LLMs to lossless im-
age compression, their use in lossy visual compression remains underex-
plored. Future work may investigate LLM-driven compression pipelines,
where semantic tokenization and reconstruction are guided by language-
based priors.

Deployability and Edge-cloud Adaptation: High computational cost and
low interpretability limit the practical use of generative coding. To en-
able deployment across edge and cloud systems, future work should focus
on lightweight, efficient decoders, model compression (e.g., distillation,
quantization), and balancing computation with coding performance.
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