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2
Testing goodness-of-fit of univariate distributions

Exercise 2.1. Prove the monotonicity of ℓp norms: if 1 ≤ r ≤ s ≤ ∞,
then ∥x∥s ≤ ∥x∥r for every x ∈ Rn.

Solution 2.1. Fix any 1 ≤ r ≤ s <∞, and any non-zero x ∈ Rn (if x is
the zero vector, the inequality is trivially true). Then, since x′ := x/∥x∥s
has unit ℓs norm and |x′

i| ≤ 1 for all i, we get

1 =
n∑

i=1
|x′

i|s ≤
n∑

i=1
|x′

i|r =
∥∥x′∥∥r

r

showing that ∥x∥rs ≤ ∥x∥
r
r. Taking the r-th root on both side gives the

result. Finally, the case s = ∞ follows from observing that ∥x∥∞ =
max1≤i≤n |xi|r ≤

∑n
i=1 |xi|r = ∥x∥rr.

Exercise 2.2. Prove Eq. (2.14): that is, the “unique elements” statistic
Z2 from Section 2.1.3 has expectation Ep[Z2] = ∑

i∈X p(i)(1−p(i))n−1.

Solution 2.2. By linearity of expectation,

Ep[Z2] = 1
n

∑
i∈X

Pr[ Ni = 1 ]

where Ni = ∑n
t=1 1{Xt = i} follows a Binomial distribution with pa-

rameters n and p(i). Thus, Pr[ Ni = 1 ] = np(i)(1− p(i))n−1.

2
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Exercise 2.3. Establish Claim 2.2, using (or computing) the expression
for the first 4 moments of a Poisson(λ) random variable.

Solution 2.3. Let λ, µ ≥ 0, and X ∼ Poisson(λ). Then (X − µ)2 =
(X − λ)2 + 2(λ− µ)X + µ2 − λ2, and so

E
[
(X − µ)2 −X

]
= Var[X]− E[X] + 2(λ− µ)E[X] + µ2 − λ2

= 2(λ− µ)λ + µ2 − λ2 = (λ− µ)2

using the fact that Var[X] = E[X] = λ. For the second one, we will also
use the identities

E
[
X2
]

= Var[X] + E[X]2 = λ + λ2

E
[
X3
]

= λ + 3λ2 + λ3

E
[
X4
]

= λ + 7λ2 + 6λ3 + λ4

(which are not hard to prove by manipulating the corresponding series
E[Xm] = e−λ∑∞

k=0
λm+k

k! , but are quite tedious). Then, a brute-force
computation gives

E
[
((X − µ)2 −X)2

]
= µ4 + E

[
X4
]
− (4µ + 2)E

[
X3
]

+ (6µ2 + 4µ + 1)E
[
X2
]
− (4µ3 + 2µ2)E[X]

= µ4 + λ4 + 6λ3 + 7λ2 + λ− (4µ + 2)(λ3 + 3λ2 + λ)
+ (6µ2 + 4µ + 1)(λ2 + λ)− (4µ3 + 2µ2)λ

= µ4 + λ4 + 4λ3 + 2λ2 − 4µλ3 − 8µλ2 + 6µ2λ2 + 6µ2λ− 4µ3λ− 2µ2λ

= (λ− µ)4 + 2λ2 + 4λ3 − 8µλ2 + 4µ2λ

= (λ− µ)4 + 2λ2 + 4λ(λ− µ)2

which is the result we wanted. There probably are more elegant ways
to prove it, but this one works.

Exercise 2.4. Establish the upper bound part of Fact 2.1, by proving via
an Hoeffding or Chernoff bound that the empirical estimator achieves
the stated sample complexity. (The lower bound can be shown by
considering the case α = 1/2, but we have not seen in this chapter the
information-theoretic tools to establish it: this will be in Chapter 3)
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Solution 2.4. Let X1, . . . , Xn ∼ Bern(α) be i.i.d., and consider the
empirical estimator (for α),

α̂ := 1
n

n∑
i=1

Xi.

By linearity of expectation, we have E[α̂] = 1
n

∑n
i=1 E[Xi] = α. Moreover,

by a Hoeffding bound (Corollary A.4), we have, for any η > 0,

Pr[|α̂− α| > η] ≤ 2e−2η2n

which is at most δ for n ≥ 1
2η2 ln 2

δ . Thus, having n :=
⌈

1
2η2 ln 2

δ

⌉
=

O
(

log(1/δ)
η2

)
suffices.

Exercise 2.5. Establish the upper bound part of Fact 2.2, by proving
via a Chernoff bound that appropriately thresholding the empirical
estimator achieves the stated sample complexity. (For the lower bound,
same remark as for Exercise 2.4.)

Solution 2.5. Let X1, . . . , Xn ∼ Bern(α) be i.i.d., β, η ∈ (0, 1], and
consider as before the empirical estimator

α̂ := 1
n

n∑
i=1

Xi

along with the threshold τ := (1 + η
2 )β. We want to argue that, for n

as in the statement of the exercise:

• If α ≤ β, then Pr[α̂ ≥ τ ] ≤ δ; and

• If α ≥ β(1 + η), then Pr[α̂ < τ ] ≤ δ.

By a Chernoff bound (specifically, Theorem A.6, (A.7) with γ := η/2 ∈
(0, 1] and PH := nβ), in the first case we have

Pr[α̂ ≥ τ ] ≤ e− nη2β
12

while in the second case (by (A.8), with γ := η
2(1+η) ∈ (0, 1] and

PL := n(1 + η)β, so that (1− γ)PL = n(1 + η/2)β) we get

Pr[α̂ < τ ] ≤ e
− nη2β

4(1+η)2 ≤ e− nη2β
16 .

Both are at most δ as long as n ≥ 16
βη2 ln 1

δ . Thus, having n :=⌈
16

βη2 ln 1
δ

⌉
= O

(
log(1/δ)

βη2

)
suffices.
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Exercise 2.6. Follow the analysis of Theorem 2.1 to derive, for the
bipartite collisions tester, the guarantee Eq. (2.38) from the variance
bound Eq. (2.37).

Solution 2.6. We have

Var[Z6] ≤ 1
n1n2

∥p∥22 + n1 + n2
n1n2

(∥p∥33 − ∥p∥
4
2) , (2.37)

and we want to show that, in the “far” case,

Pr
p

[
Z6 <

1 + 2ε2

k

]
≤ 5k

4ε4n1n2
+ n1 + n2

n1n2

(
2
√

k

ε
+ 3

ε2

)
. (2.38)

We will mimic the corresponding part of the proof of Theorem 2.1: Let
again α2 := k∥p− uk∥22 ≥ 4ε2, so that E[Z6] = ∥p∥22 = 1+α2

k . Then

Pr
[
Z6 <

1 + 2ε2

k

]
= Pr

[
Z6 <

1 + 2ε2

1 + α2 E[Z6]
]

= Pr
[
Z6 <

(
1− α2 − 2ε2

1 + α2

)
E[Z6]

]

≤ Pr
[
Z6 <

(
1− α2

2(1 + α2)

)
E[Z6]

]
(as α2 ≥ 4ε2)

≤ 4(1 + α2)2

α4 · Var[Z6]
E[Z6]2

(Chebyshev)

≤ 4(1 + α2)2

α4n1n2∥p∥22
+ 4(1 + α2)2(n1 + n2)

α4n1n2
· ∥p∥

3
3 − ∥p∥

4
2

∥p∥42
the last inequality using (2.37). The first term is easily dealt with:
recalling that ∥p∥22 = (1 + α2)/k,

4(1 + α2)2

α4n1n2∥p∥22
= 4(1 + α2)k

α4n1n2
≤ 5k

4ε4n1n2

the last inequality as in the proof of Theorem 2.1, using that x > 0 7→
1+x
x2 is decreasing, α2 ≥ 4ε2, and ε ≤ 1.

To handle the second, we use the inequality proven in (2.12):

∥p∥33 − ∥p∥
4
2 ≤

α3

k3/2 + 3α2

k2
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which as in (2.13) implies

4(1 + α2)2

α4 · ∥p∥
3
3 − ∥p∥

4
2

∥p∥42
≤ 2
√

k

ε
+ 3

ε2

Combining the two, we get

Pr
p

[
Z6 <

1 + 2ε2

k

]
≤ 5k

4ε4n1n2
+
(

3
√

k

ε
+ 3

ε2n

)
n1 + n2

n1n2

as we wanted.

Exercise 2.7. Show that, in contrast to what we did in the empirical-
distance tester case (Section 2.1.5), one cannot invoke stochastic dom-
inance in the analysis of the bipartite collision tester to obtain the
wishful variance bound Eq. (2.39) instead of Eq. (2.41). Specifically,
show that it fails even for k = 2: if M ∼ Bin(n1, p), N ∼ Bin(n2, p) and
M ′ ∼ Bin(n1, q), N ′ ∼ Bin(n2, q) (all independent) with 1/2 ≤ q < p ≤
1, it is not always true that

MN + (n1 −M)(n2 −N) ⪰M ′N ′ + (n1 −M ′)(n2 −N ′)

Hint: consider the case n1 = 1, and Pr[MN + (n1 −M)(n2 −N) ≥ 1]
as a function of p.

Solution 2.7. If the stochastic dominance relation held, it would im-
ply that f(p) := Pr[MN + (n1 −M)(n2 −N) ≥ 1] is a non-decreasing
function of p ≥ 1/2. Now, to simplify the search for a counterexample,
consider the case n1 = 1 (so M ∼ Bern(p)): then

f(p) = Pr[MN + (1−M)(n2 −N) ≥ 1]
= Pr[M = 1, N > 0 or M = 0, N < n2]
= p(1− (1− p)n2) + (1− p)(1− pn2)

using independence of M, N . One can try to plot the corresponding
function of p for various choices of n2, or differentiate to check if it is
non-decreasing on [1/2, 1]. Long story short: it will be non-decreasing
for n2 ∈ {1, 2, 3}, but for n2 = 4, we get

f(p) = p(1− (1− p)4) + (1− p)(1− p4)
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which has a local minimum at p∗ = 3+
√

3
6 , is decreasing on [1/2, p∗] and

increasing on [p∗, 1].

0.5 0.6 0.7 0.8 0.9 1

0.92

0.94

0.96

0.98

1

p

f
(p

)=
Pr

[M
N

+
(1
−

M
)(

4
−

N
)≥

1]

This gives a counterexample to the statement for, e.g., p = 1/2, q =
3+

√
3

6 , n1 = 1 and n2 = 4.

Exercise 2.8. It is known that x ⪯ y if, and only if, x = Ay for some
doubly stochastic matrix A (Arnold, 1987, Theorem 2.1). Check that
the averaging from Lemma 2.7 indeed corresponds to multiplying the
pmf p (seen as a vector) by such a matrix.

Solution 2.8. Recall that a doubly stochastic matrix is a square matrix
with non-negative entries, where each row and each column sums to
one. In our case, assume for simplicity that the probability distribution
p is non-decreasing, i.e., that p(1) ≥ · · · ≥ (k). This is without loss
of generality, since one can permute the domain for this to hold, and
doubly stochastic matrices are invariant to such permutations: if σ is a
permutation of [k] = {1, 2, . . . , k} and A is doubly stochastic, then for
every j ∈ [k]

k∑
i=1

Aσ(i),σ(j) =
k∑

i=1
Ai,σ(j) = 1

and similarly for the columns sums: for every i ∈ [k], ∑k
j=1 Aσ(i),σ(j) =∑k

j=1 Aσ(i),j = 1. Now, with this assumption, then the transformation
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to obtain p̄ is to average the probability of the first K = ⌈k/2⌉ elements,
and leave the remaining k−K probabilities unchanged. This is achieved
by the matrix A ∈ Rk×k consisting of a square K ×K block with all
entries equal to 1/K in the top left, and the rest being only k − K

diagonal entries equal to 1:

A =



1
K · · · 1

K 0 · · · 0
... . . . ... 0 · · · 0
1
K · · · 1

K 0 · · · 0
0 · · · 0 1 · · · 0
... · · ·

... 0 . . . 0
0 · · · 0 0 · · · 1


=
(

1
K 1K×K 0K×(k−K)

0(k−K)×K I(k−K)×(k−K)

)

It is now easy to check that the matrix A defined above is indeed doubly
stochastic, and further that

Ap =



1
K · · · 1

K 0 · · · 0
... . . . ... 0 · · · 0
1
K · · · 1

K 0 · · · 0
0 · · · 0 1 · · · 0
... · · ·

... 0 . . . 0
0 · · · 0 0 · · · 1





p(1)
...

p(K)
p(K + 1)

...
p(k)


=



1
K (p(1) + . . . p(K))

...
1
K (p(1) + . . . p(K))

p(K + 1)
...

p(k)


= p̄

as we wanted.

Exercise 2.9 (⋆). Generalize Lemma 2.13 to relax the condition n3 ≤
k2/3 to n3 ≤ k(s−1)/s, for any fixed (constant) integer s ≥ 3, by consid-
ering s-collisions instead of 3-collisions in Algorithm 8. How does the
ℓ∞ guarantee bound in (ii) change with s?

Solution 2.9. Fix any s ≥ 4 (Lemma 2.13 already handled s = 3).
Recalling (2.42), we get that under the uniform distribution uk the
probability to observe an s-way collision among n samples is at most

p(n, k, s) ≤ 1
ks−1

(
n

s

)
≤ 1

ks−1

(
n

s

)s

which is at most 1/6 for n ≤ k1−1/s

61/ss
. Now, let C = C(s) be a value to be

determined in the course of the analysis, and assume that ∥p∥∞ > C
n ,
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so that as in the proof of Lemma 2.13, fixing an arbitrary i such that
p(i) = ∥p∥∞, the number of times i appears among the n samples, N i,
is Binomially distributed with parameters n and ∥p∥∞, and thus mean
n∥p∥∞ > C. Again by a Chernoff bound (specifically, (A.8)), we have
that the probability not to observe an s-way collision on element i is at
most, choosing γ such that (1− γ)C = s and recalling that s ≥ 4,

Pr[ N i < s ] = Pr[ N i < (1− γ)C ] ≤ e−γ2C/2 = e
− γ2

2(1−γ) s ≤ e
− 2γ2

1−γ

which is less than 1/6 for (solving numerically), e.g., γ ≥ 0.82. From
the above, this means that we can take any C ≥ s

1−γ (so for instance
C = 6s suffices).

Putting the two conditions together, what we get is an algorithm
which, for any fixed s ≥ 4, distinguishes with probability at least 5/6
between (i) p = uk and (ii) ∥p∥∞ ≥ 6s

n , provided that n ≤ k1−1/s

61/ss
. The

algorithm does so by checking if any s-way collision happens among the
n samples, and declaring (i) if, and only if, no such collision is observed.

As an example, for s ≍ ln k, we get the following:

Corollary 2.1. There exists an algorithm which, given n i.i.d. samples
from some unknown p ∈ ∆k, distinguishes with probability at least 5/6
between (i) p = uk and (ii) ∥p∥∞ ≥ ln k

n , provided that n ≲ k
ln k .

Exercise 2.10 (⋆). Recall that our χ2-based statistic (Eq. (2.19)) was
analyzed under the Poissonized sampling model, which led us to define
it with a −N i term in the numerator. We will show that this term is
necessary: that is, under the Poissonization assumption, consider the
“simpler” statistic

Z ′
3 :=

k∑
i=1

(N i − n/k)2

n/k
.

Show that its expectation is nk∥p− uk∥22 + k (so the expectation gap
remains the same), but that the variance now contains an extra term
k2

n . What sample complexity does this yield?

Solution 2.10. By linearity of expectation, we can just use the same
analysis (and the expression established in Exercise 2.3), “adding back”
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the E[N i] = np(i) terms, to get

E
[
Z ′

3
]

=
k∑

i=1

E
[
(N i − n/k)2 −N i

]
+ E[N i]

n/k

= k

n

k∑
i=1

((
np(i)− n

k

)2
+ np(i)

)

= nk
k∑

i=1

(
p(i)− 1

k

)2
+ k

k∑
i=1

p(i)

= nk∥p− uk∥22 + k ,

so, indeed, the expectation gap Ep[Z ′
3]−Euk

[Z ′
3] = nk∥p− uk∥22 remains

the same. However, the variance is now (using independence of the
summands)

Var[Z ′
3] =

k∑
i=1

Var[(N i − n/k)2]
n2/k2

= k2

n2

k∑
i=1

(
E
[
(N i − n/k)4

]
− E

[
(N i − n/k)2

]2)

At this point, we have to compute this horrible-looking expression.
This is quite painful, but as in Exercise 2.3 (or using something like
Mathematica if one would rather not go through that ordeal again) one
can check that, for X ∼ Poisson(λ) and any µ,

E
[
(X − µ)4

]
−E

[
(X − µ)2

]2
= 2λ2 +4λ(λ−µ)2 +4λ(λ−µ)+λ . (2.1)
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This leads to

Var[Z ′
3]

= k2

n2

k∑
i=1

(
2n2p(i)2 + 4n3p(i)

(
p(i)− 1

k

)2
+ 4n2p(i)

(
p(i)− 1

k

)
+ np(i)

)

= Var[Z3] + k2

n2

k∑
i=1

(
4n2p(i)

(
p(i)− 1

k

)
+ np(i)

)

= Var[Z3] + 4k2
k∑

i=1
p(i)

(
p(i)− 1

k

)
+ k2

n

= Var[Z3] + 4k2
(
∥p∥22 −

1
k

)
+ k2

n

= Var[Z3] + 4k2∥p− uk∥22 + k2

n

where we recognized (and took out) the expression of Var[Z3] from
Section 2.1.4. To see the sample complexity this would lead to, note
that to get “variance ≪ (expectation gap)2” we will need, considering
the three terms of Var[Z ′

3] above,

Var[Z3]≪ (nk∥p− uk∥22)2,

k2∥p− uk∥22 ≪ (nk∥p− uk∥22)2,

k2

n
≪ (nk∥p− uk∥22)2

The first one is exactly what we had in Section 2.1.4, and leads to
the condition n ≫

√
k/ε2. The second is not too problematic: after

simplication, and recalling that in the “far” case we have ∥p− uk∥2 ≥
2ε/
√

k, this results in the (weaker) condition n≫
√

k/ε. The third one,
however, is the bottleneck: again using the bound on ∥p− uk∥2 in the
“far” case (the only handle we have on this quantity), it results in the
condition

k2

n
≪ n2k2 · ε4

k2

which means, reorganizing, that n must satisfy n≫ k2/3

ε4/3 . Altogether,
and once made formal via, e.g., Chebyshev’s inequality as usual, these
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3 conditions will yield the sample complexity

n = O

(
max

(
k2/3

ε4/3 ,

√
k

ε2

))
which is suboptimal (and, as a side note, is the expression for the sample
complexity of closeness testing, the harder testing problem where both
p and q are unknown).

Exercise 2.11 (⋆). Combine the doubling search technique discussed
in Section 1.1 with the sample complexity of uniformity testing given
in Eq. (2.50) to prove the following. There is an adaptive uniformity
testing algorithm which, on input k and ε ∈ (0, 1], and access to samples
from an unknown distribution p ∈ ∆k:

• correctly distinguishes between (1) p = uk and (2) ε(p) :=
dTV(p, uk) > ε, with probability at least 2/3;

• always takes at most

O

(
1
ε2

(√
k log log 1

ε
+ log log 1

ε

))
samples; but also

• if ε(p) > ε, takes at most

O

(
1

ε(p)2

(√
k log log 1

ε(p) + log log 1
ε(p)

))
samples, with probability at least 2/3; and, finally,

• show that this constant-probability bound on the number of
samples also holds in expectation.

That is, in the “far” case this algorithm never does much worse (up to
a log log factor) than an ideal algorithm provided with the exact value
ε(p) and asked to distinguish between p = uk and dTV(p, uk) = ε(p).

Solution 2.11. As discussed in Section 1.1, the overall idea is to run
a uniformity tester sequentially, with varying parameters (the j-th in-
stance, for 0 ≤ j ≤ L, being run with parameters k, εj , δj , for decreasing
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values of εj), and to stop and return 0 if any of the tester’s invocations
returns 0. If all of the L + 1 invocations returns 1, then we return 1.

Specifically, we set L := ⌈log(1/ε)⌉, and for 0 ≤ j ≤ L choose

εj := 2−j , δj := 2
π2(j + 1)2

If the unknown distribution p is uniform, then by a union bound all
L + 1 invocations of the uniformity tester will return 1 with overall
probability at least

1−
L∑

j=0
δj ≥ 1−

∞∑
j=0

δj = 1− 2
π2

∞∑
j=0

1
(j + 1)2 = 2

3 .

However, if ε(p) := dTV(p, uk) > ε, then there exists 1 ≤ j(p) ≤ L

such that 1
2j(p) < ε(p) ≤ 1

2j(p)−1

and so either the algorithm rejects before reaching invocation j(p)
(which is alright) or reaches invocation j(p), when it then rejects with
probability at least

1− δj(p) = 1− 2
π2(j(p) + 1)2 ≥ 1− 1

2π2 ≥
2
3 .

This deals with the correctness; we still need to establish the 3 com-
ponents of the sample complexity (worst-case as a function of ε, with
high probability as a function of ε(p) in the non-uniform case, and on
expectation as a function of ε(p) in the non-uniform case). Let n(k, ε, δ)
denote the optimal sample complexity from Eq. (2.50).

• Since we are running at most L + 1 invocations of the uniformity
tester, the sample complexity is at most the sum of these L + 1
sample complexities, and so is bounded by

L∑
j=0

n(k, εj , δj) ≍
L∑

j=0

√
k log(1/δj) + log(1/δj)

ε2
j

≍
L∑

j=0
22j
(√

k log(j + 1) + log(j + 1)
)

≍ 22L
(√

k log(L + 1) + log(L + 1)
)



14 Testing goodness-of-fit of univariate distributions

which, recalling our choice of L = ⌈log(1/ε)⌉, is

O

(√
k log log(1/ε) + log log(1/ε)

ε2

)

as claimed.

• In the non-uniform case, where ε(p) > ε, it suffices to note that
with probability at least 1− δj(p) the algorithm with stop at the
j(p) invocation (where j(p) is as defined above, within a factor
two of ε(p)). We thus can reuse the above analysis of the sample
complexity, but stopping at j(p), to obtain that with probability
at least 1− δj(p) ≥ 2/3 the number of samples taken will be

O

(
22j(p)

(√
k log(j(p) + 1) + log(j(p) + 1)

))
,

which is O

(√
k log log(1/ε(p))+log log(1/ε(p))

ε(p)2

)
.

• Finally, to get the same guarantee on expectation in the non-
uniform case, let T (a random variable) denote the index of the
last invocation of the tester, so that 0 ≤ T ≤ L. We have seen
that T = j(p) with probability at least 1 − δj(p); but we have
much stronger guarantees! Namely, for any j > j(p),

Pr[ T ≥ j ] ≤
j−1∏

i=j(p)
δi ≤ δ

j−j(p)
j(p)

since this means that all invocations from j(p) onwards must have
failed (i.e., did not reject even though they should have). The
expected sample complexity is then at most

L∑
j=0

Pr[ T ≥ j ]·n(k, εj , δj) ≤
j(p)∑
j=0

n(k, εj , δj)+
L∑

j=j(p)+1
δ

j−j(p)
j(p) n(k, εj , δj) .

We have already analyzed the first term of the RHS, showing it
was O

(√
k log log(1/ε(p))+log log(1/ε(p))

ε(p)2

)
. The second term is at most
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(ignoring constants and recalling the setting of δj)
L∑

j=j(p)+1

1
(2π2)j−j(p) · 2

2j
(√

k log(j + 1) + log(j + 1)
)

≤ 22j(p)
∞∑

j=1

( 2
π2

)j(√
k log(j + j(p) + 1) + log(j + j(p) + 1)

)

≲ 22j(p)
(√

k log(j(p) + 1) + log(j(p) + 1)
)

which is O

(√
k log log(1/ε(p))+log log(1/ε(p))

ε(p)2

)
as well. Here, we relied

on the fact that 2
π2 < 1 to be able to bound the converging series

by its first term: at its core, this is possible because the probability
Pr[ T ≥ j ] to keep running the tests after reaching j(p) decreases
exponentially quickly with j.

Exercise 2.12. Given two probability distributions p, q, an integer
n ≥ 1, and a parameter α ∈ [0, 1], consider the following two sampling
processes:

• Sample N ∼ Poisson(n), and draw N i.i.d. samples from the
mixture (1− α)p + αq.

• Sample N ∼ Poisson(n), and draw N i.i.d. samples from p. Then,
for each 1 ≤ i ≤ N , independently sample Bi ∼ Bern(α): if
Bi = 1, replace the i-th sample by a new (and independent from
everything else) sample drawn from q.

Show that these two processes result in the same distribution.

Solution 2.12 (Sketch). Condition on a given value of N . In both cases,
the N samples are mutually independent, so it is enough to show that
the marginal distribution of a single sample is the same in both cases.
This part is then quite straightforward: suppose X is a sample from
the mixture (1 − α)p + αq, and Y obtained by the second process
(draw independently Y ′ ∼ p, Y ′′ ∼ q, and B ∼∼ Bern(α), and set
Y = (1−B) · Y ′ + B · Y ′′). Then, for all x,

Pr[X = x] = (1− α)p(x) + αq(x)
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while

Pr[Y = x] = Pr[ Y = x | B = 0 ] · Pr[B = 0] + Pr[ Y = x | B = 1 ] · Pr[B = 1]
= Pr

[
Y ′ = x

∣∣ B = 0
]
· (1− α) + Pr

[
Y ′′ = x

∣∣ B = 1
]
· α

= p(x)(1− α) + q(x)α .

Exercise 2.13 (⋆). Establish the analogue of Theorem 2.22 for the
two-distribution case (when both p, q are unknown, and you are given
n i.i.d. samples from each). Specifically, consider the statistic Z ′ =∑k

i=1
(
(Xi − Yi)2 −Xi − Yi

)
for which you will have to establish the

following counterpart of Claim 2.2:

Claim 2.1. If X ∼ Poisson(λ) and Y ∼ Poisson(µ) are independent,
then E

[
(X − Y )2 −X − Y

]
= (λ−µ)2 and E

[
((X − Y )2 −X − Y )2] =

(λ− µ)4 + 2(λ + µ)2 + 4(λ + µ)(λ− µ)2.

Show that the sample complexity is O(max(∥p∥2, ∥q∥2)/ε2). Try to
establish the (incomparable) bound O(min(∥p∥2, ∥q∥2)/ε2 + 1/ε).

Solution 2.13. We will not here establish Claim 2.1, which can be
checked by tedious computations (if you have an elegant proof of this
claim, let me know!). Consider the following algorithm, the analogue
of Algorithm 11 for two unknown distributions: The proof will be very

Algorithm 1 Robust ℓ2 Tester (for Closeness)
Require: Multisets of n samples each, x1, . . . , xn ∈ X and y1, . . . , yn ∈
X , parameters ε ∈ (0, 1]. ▷ Assumes Poissonization

1: Set τ ← 3n2ε2

2: Compute
Z =

∑
j∈X

(
(N j −N ′

j)2 −N j −N ′
j

)
where N j ←

∑n
t=1 1{xt = j}, N ′

j ←
∑n

t=1 1{yt = j}.
3: if Z ≥ τ then return 0 ▷ p, q far (in ℓ2)
4: else return 1 ▷ p, q close (in ℓ2)

similar to that of Theorem 2.22. Assuming Poissonization, if x1, . . . , xn

are independent samples from p and y1, . . . , yn from q, we get that,



17

for all j ∈ X , N j ∼ Poisson(np(j)) and N ′
j ∼ Poisson(nq(j)) and so,

by Claim 2.1 above,

Ep[Z] =
k∑

j=1
(np(j)− nq(j))2 = n2∥p− q∥22 (2.2)

and

Varp[Z] =
k∑

j=1
Var

[(
(N j −N ′

j)2 −N j −N ′
j

)]

=
k∑

j=1

(
E
[
((N j −N ′

j)2 −N j −N ′
j)2
]
− n4(p(j)− q(j))4

)

=
k∑

j=1

(
2n2(p(j) + q(j))2 + 4n3(p(j) + q(j))(p(j)− q(j))2

)
≤ 4n2

(
∥p∥22 + ∥q∥22

)
+ 4n3(∥p∥2 + ∥q∥2)∥p− q∥22 (2.3)

the last step again using p(j) + q(j) ≤ ∥p∥∞ + ∥q∥∞ ≤ ∥p∥2 + ∥q∥2.

• If ∥p− q∥2 ≤ ε, then Ep[Z] ≤ n2ε2 and by Markov’s inequality

Pr
[
Z ≥ 3n2ε2

]
≤ Ep[Z]

3n2ε2 ≤
1
3

• If ∥p− q∥2 ≥ 2ε, then Ep[Z] ≥ 4n2ε2 and by Chebyshev’s

Pr
[
Z < 3n2ε2

]
≤ 16 Varp[Z]

Ep[Z]2
≤ 64(∥p∥22 + ∥q∥22)

n2∥p− q∥42
+ 64(∥p∥2 + ∥q∥2)

n∥p− q∥22

≤ 8 max(∥p∥2, ∥q∥2)2

n2ε4 + 32 max(∥p∥2, ∥q∥2)
nε2

which is less than 1/3 for n ≥ 100 max(∥p∥2, ∥q∥2)/ε2.

This establishes the first bound from the exercise.
The second is a little trickier, and we here only provide an outline.1

It will relies on the following lemma (which will not be proven here, but
can be shown by, e.g., adapting Batu and Canonne (2017, Lemma 3.1)):

1If you have a fully written solution you’d like to include, or if you think something
isn’t quite right, do contact me!
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Lemma 2.2 (Constant-factor estimate of the ℓ2 norm). There exists an
algorithm which, given n i.i.d. samples from an unknown distribution
p ∈ ∆N and a parameter τ ∈ (0, 1], outputs a value ρ̂ ∈ (τ, 1]∪{⊥} and
has the following guarantees:

• if ∥p∥2 ≥ τ , then ρ̂ ̸= ⊥ with probability at least 9/10;

• if ρ̂ ̸= ⊥, then ∥p∥2/2 ≤ ρ̂ ≤ 2∥p∥2 with probability at least 9/10;

as long as n = Θ(1/τ).

Essentially, the above state that it is possible to use O(1/τ) samples
to obtain (with high constant probability) a constant-factor estimate of
the ℓ2 norm of a distribution if we are promised that this norm is at
least τ (and, if that norm is much less than τ , then we will detect it).

With this at our disposal, we can proceed as follows:

1. Set τ ≍ ε, and use the above algorithm with O(1/ε) samples from
both p and q to try and get estimates of their ℓ2 norms.

2. If we get ⊥ for both, then we know that ∥p− q∥2 ≤ ∥p∥2+∥q∥2 ≤
2τ ≤ ε and we are done;

3. If we get estimates ρ̂p, ρ̂q ≥ τ for both, then

(a) we check that those two values are within a (sufficiently)
large constant factor of each other: if not, we know that
∥p− q∥2 ≥ 2ε and we are done;

(b) if they are within constant factors, we get that ∥p∥2 ≍ ∥q∥2,
and so min(∥p∥2, ∥q∥2) ≍ max(∥p∥2, ∥q∥2) and we can use
the algorithm from the first part, with sample complexity
O(max(∥p∥2, ∥q∥2)/ε2) = O(min(∥p∥2, ∥q∥2)/ε2), and we
are done;

4. If we get an estimate for one (say p but ⊥ for the other (say q),
then we know that ∥q∥2 ≤ τ and have a constant-factor estimate
ρ̂p for ∥p∥2.

(a) If ρ̂p ≫ ε, then we know that ∥p− q∥2 ≥ ∥p∥2 − τ ≫ 2ε

and we are done.
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(b) If ρ̂p ≍ ε, then we know that max(∥p∥2, ∥q∥2 ≍ ε, so we can
use the algorithm from the first part, with sample complexity
O(max(∥p∥2, ∥q∥2)/ε2) = O(1/ε), and we are done.

Overall, the sample complexity is O
(
max

(
min(∥p∥2, ∥q∥2)/ε2), 1/ε

)
,

establishing the second bound from the exercise.

Exercise 2.14. Show that the transformation Φ from Section 2.2.2
(Eq. (2.59)) “maps χ2 divergence to ℓ2 distance” in the following, ap-
proximate way: for any p, q ∈ ∆k,

∥Φq(p)− Φq(q)∥22 =
∑
i∈X

(p(i)− q(i))2

1 + ⌊kq(i)⌋ .

Conclude that, assuming mini q(i) ≥ 1/(2k) (as we could in Section 2.2.1
after using the “mixture trick” of Eq. (2.52)),

1
2χ2(p || q) ≤ k∥Φq(p)− Φq(q)∥22 ≤ χ2(p || q)

for every p ∈ ∆k.

Solution 2.14. From the expression of Φ and with the notation of
Section 2.2.2, we have

∥Φq(p)− Φq(q)∥22 =
k′∑

j=1
(Φq(p)− Φq(q))2

=
k′∑

j=1

(
k∑

i=1

(p(i)
ki
− q(i)

ki

)
1{j ∈ Si}

)2

=
k′∑

j=1

k∑
i=1

1{j ∈ Si}
(p(i)

ki
− q(i)

ki

)2
(∗)

=
k∑

i=1

1
k2

i

(p(i)− q(i))2
k′∑

j=1
1{j ∈ Si}

=
k∑

i=1

(p(i)− q(i))2

ki
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where for (∗) we used that exactly one term of the inner sum in non-zero
(as each j ∈ [k] belongs to exactly one set Si), allowing us to bring the
sum and indicator outside the square; and later that ∑k′

j=1 1{j ∈ Si} =
|Si| = ki. The result then follows from the definition of ki = 1 + ⌊kq(i)⌋
(for i ∈ [k]).
Finally, if mini q(i) ≥ 1/(2k) we get that

kq(i) ≤ 1 + ⌊kq(i)⌋ ≤ 2kq(i), i ∈ [k]

where the RHS is obtained by observing that maxx≥1/2
1+⌊x⌋

x = 1/2.
This directly implies

1
2

k∑
i=1

(p(i)− q(i))2

q(i)︸ ︷︷ ︸
1
2 χ2(p||q)

≤ k
k∑

i=1

(p(i)− q(i))2

1 + ⌊kq(i)⌋︸ ︷︷ ︸
k∥Φq(p)−Φq(q)∥2

2

≤
k∑

i=1

(p(i)− q(i))2

q(i)︸ ︷︷ ︸
χ2(p||q)

as wanted.

Exercise 2.15 (⋆⋆). Generalize the transformation Φ from Section 2.2.3
in two ways: first, by replacing the mixture Φ(3)

q (p) = 1
2p + 1

2uk by
αp+(1−α)uk, where α ∈ (0, 1). Second, by replacing the choice k′ = 4k

in Φ(2)(p) by k′ = βk, for some integer β such that β(1− α) ≥ 1.

1. By tracking down the various restrictions on α, β and their use
across Φ(1), Φ(2), and Φ(3), show that doing so now maps identity
testing with parameters (k, ε) to uniformity testing with parame-
ters (

βk, α

(
1− 1

β(1− α)

)
ε

)
2. Check that setting (α, β) = (1/2, 4) as in Section 2.2.3 recovers

Theorem 2.28, and the blowup factor of 32 discussed at the end
of the section.

3. Recalling that the sample complexity scales as
√

k/ε2, optimize
over (α, β) to find the optimal choice of parameters, and prove
that the resulting blowup is ≈ 12.2.

4. What would be the optimal choice of (α, β), and the corresponding
blowup, in a setting where the sample complexity of uniformity



21

testing scales as k/ε2 instead of
√

k/ε2? (This is not that far-
fetched: we will see in Section 4.3 an example of such a setting.)

Solution 2.15. The solution below follows the aalysis of Section 2.2.3.

1. By setting things as suggested, we will be able to assume in our
analysis of Φ(2) that k′q(i) ≥ k′(1−α)/k = β(1−α) for all i ∈ [k],
and then

min
i

⌊
k′q(i)

⌋
k′q(i) ≥

β(1− α)− 1
β(1− α) (2.4)

(the
⌊
k′q(i)

⌋
in the numerator is the reason we need to enforce

β(1− α) ≥ 1). We then get the analogue of Eq. (2.65): for every
p1, p2 ∈ ∆k,

dTV

(
Φ(2)(p1), Φ(2)(p2)

)
≥ β(1− α)− 1

β(1− α) dTV(p1, p2) , (2.5)

We then only have to take into account the last piece, i.e., that
Φ(3) does allow us to assume that Eq. (2.4) holds, but doing so
comes at the cost of shrinking the total variation distance by a
factor α as well; so that, when combining Φ(1), Φ(2), and Φ(1) all
together, we get a mapping Φ such that, for every p1, p2 ∈ ∆k,

dTV(Φ(p1), Φ(p2)) ≥ α

(
1− 1

β(1− α)

)
dTV(p1, p2) . (2.6)

Overall, for any choice of α ∈ [0, 1] and β ≥ 1 such that β(1−α) ≥
1, we can convert an identity testing instance with parameters
(k, ε) to a uniformity testing instance with parameters (k′ =
βk, ε′ = α

(
1− 1

β(1−α)

)
).

2. For α = 1/2 and β = 4, we get α
(
1− 1

β(1−α)

)
= 1/4, and so

√
k′

ε′2 =
√

β(
α
(
1− 1

β(1−α)

))2 ·
√

k

ε2 =
√

4
(1/4)2 ·

√
k

ε2 = 32 ·
√

k

ε2

3. From the above, we want to choose α, β to minimize the factor
√

β(
α
(
1− 1

β(1−α)

))2 (2.7)
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subject to β(1 − α) ≥ 1, α ∈ [0, 1], β ≥ 1. For the sake of the
minimization, it is easier to minimize the square of this quantity,
and to set γ := β(1− α), so that we seek to find the minimizer of

β

α4
(
1− 1

β(1−α)

)4 = 1
α4(1− α) ·

γ5

(γ − 1)4

subject to α ∈ [0, 1] and γ ≥ 1. The variables are now separated,
and we can minimize separately in α and in γ. This leads to mini-
mizers α∗ = 4/5 and γ∗ = 5. Getting back to our original quantity,
we therefore get that it is minimized for (α, β) = (4/5, 25), for
which the blowup factor in Eq. (2.7) is approximately 12.21 .

4. If the sample complexity were to scale as k/ε2 instead of
√

k
ε2 , then

the blowup factor would become

k′/ε′2

k/ε2 = β(
α
(
1− 1

β(1−α)

))2 (2.8)

and minimizing this, as before subject to β(1− α) ≥ 1, α ∈ [0, 1],
β ≥ 1, leads in the same way to minimizers (α, β) = (2/3, 9), for
which the blowup factor in Eq. (2.8) is approximately 45.56 .



3
Information-theoretic lower bounds

Exercise 3.1. Combine (the second part of) Lemma B.4 with (the first
part of) Lemma B.5 to obtain Eq. (3.16) from Eq. (3.7). Use it to derive
Theorem 3.3.
Solution 3.1. Invoking Lemma B.4 (specifically, Eq. (B.9)) and Lemma B.5,
we get

1− 2δ ≤ dTV

(
Eθ

[
p⊗n

θ

]
, p⊗n

1

)
(Eq. (3.7))

≤ 1− 1
2e−D(Eθ[p⊗n

θ ]∥p⊗n
1 ) (Eq. (B.9))

≤ 1− 1
2(1 + χ2

(
Eθ

[
p⊗n

θ

]
|| p⊗n

1

) (Lemma B.5)

which, reorganizing the inequality, yields Eq. (3.16):
1
4δ
≤ 1 + χ2

(
Eθ

[
p⊗n

θ

]
|| p⊗n

1

)
.

Now, since in Eq. (3.14) we had derived

χ2
(
Eθ

[
p⊗n

θ

]
|| p⊗n

1

)
= Eθ,θ′

[
(1 + H(θ, θ′))n]− 1 ≤ e

81ε4n2
k − 1

we can plug this in Eq. (3.16) to obtain the necessary inequality
1
4δ
≤ e

81ε4n2
k , (3.1)

23
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that is, n ≥
√

k log(1/(4δ))
9ε2 ; proving Theorem 3.3. (As a side note: one can

similarlyE: Try it! prove a lower bound of n = Ω
(
log(1/δ)/ε2) using Lemma B.4

instead of Pinsker’s inequality in Eq. (3.4); and combining the two leads
to the following bound for uniformity testing,

n = Ω
(√

k log(1/(δ)) + log(1/δ)
ε2

)
, (3.2)

which is optimal.

Erratum: The first part of the next exercise (about the distance to Pk)
was incorrectly stated in the published version.

Exercise 3.2. Fix a property Pk ⊆ ∆k of distributions, and denote
by P̃k its “extension to probability measures” (not just probability
distributions) defined as follows:

P̃k := { αq : q ∈ Pk, α ≥ 0 } (3.3)

(for instance, for uniformity, Pk = {uk} and P̃k = {α1k}α≥0.) Let p
be a measure (not necessarily a probability measure) such that the
ℓ1 distance between p and P̃k satisfies ℓ1(p, P̃k) > 2ε, and 1/2 ≤
∥p∥1 ≤ 3/2. Defining p′ := p/∥p∥1 (an actual probability distribution),
provide a lower bound on dTV(p′,Pk). Moreover, show that obtaining
n “samples” from the Poisson process with measure p is equivalent to
getting Poisson(n∥p∥1) samples from the distribution p′.

Conclude with how one could use a testing algorithm A for property
Pk given Poisson(n) samples (i.e., in the Poissonized sampling model) to
distinguish between two families of measures (yes- and no-instances) far
in ℓ1 distance, thus justifying the relaxed assumption from Section 3.2.

Solution 3.2. Let p, Pk, P̃k, and p′ as above. Fix any q ∈ Pk; we have

∥∥p′ − q
∥∥

1 =
∥∥∥∥∥ p
∥p∥1

− q
∥∥∥∥∥

1
= 1
∥p∥1

∥p− ∥p∥1q∥1

≥ 2
3∥p− ∥p∥1q∥1 >

2
3 · 2ε

using for the last inequality that ∥p∥1q ∈ P̃k, as a (positive) rescaling
of q ∈ Pk. As q was arbitrary, this implies dTV(p′,Pk) > 2

3ε.
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Then, the output of a Poisson process with parameter np (i.e.,
parameter n and underlying measure p) is by definition a set of
mutually independent values N1, . . . , Nk, where N i is distributed as
Poisson(np(i)) = Poisson(n∥p∥1p′(i)). Which is exactly what one get
by drawing Poisson(n′) i.i.d. samples from p′ for n′ := n∥p∥1 (not
necessarily an integer).

Finally, suppose we have a testing algorithm A for property Pk,
which succeeds when given Poisson(n) samples for n = n(k, ε, δ). Then
we can use it to distinguish whether the unknown measure p is a
yes- (p/∥p∥1 ∈ Pk) or a no- instance (p/∥p∥1 2ε-far in ℓ1 distance, or
equivalently ε-far in TV distance) in our “relaxed,” “Poisson process”
setting by feeding the output of our Poisson process with parameter n′p
for n′ := 2n(k, 2

3ε, δ). By the above, this corresponds to Poisson(n′∥p∥1)
samples from p′, which (i) in the yes case is in Pk, and (ii) in no case
will be 2

3ε-far from Pk, and

n′∥p∥1 = 2∥p∥1 · n(k,
2
3ε, δ) ≥ n(k,

2
3ε, δ)

since ∥p∥1 ≥ 1/2; so A will be correct with probability at least 1− δ.
This implies that any lower bound in this “relaxed” setting carries over,
with only constant-factor losses in the parameters, to the Poissonized
setting.

Exercise 3.3 (⋆). Recall that we defined the no-instances in Section 3.2
by Eq. (3.17) (measures, instead of bona fide probability measures) in
order to guarantee mutual independence of N1, . . . , Nk (conditioned on
b. Check the argument to see which part of the argument would fail if we
had used Eq. (3.11) instead. Then, modify the argument to fix this, and
obtain the same sample complexity lower bound. (Hint: we still have mu-
tual independence of the k/2 random variables (N1, N2), . . . , (Nk−1, Nk)
conditioned on b. Establish the analogue of Eq. (3.20) with N1 = j, N2 =
ℓ instead of N1 = j, and proceed from there.

Solution 3.3. We can proceed as in Section 3.2 to bound I(b ∧X), but
now keeping in mind (as per the hint) that only the pairs (N2i−1, N2i)
are mutually independent conditioned on b, not the N i themselves. We
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can adapt the argument, and write
I(b ∧X) = H(N1, . . . , Nk)−H((N1, . . . , Nk) | b)

= H(N1, . . . , Nk)−
k/2∑
i=1

H((N2i−1, N2i) | b)

(conditional independence)

≤
k/2∑
i=1

H((N2i−1, N2i))−
k/2∑
i=1

H((N2i−1, N2i) | b)

(subadditivity)

=
k/2∑
i=1

I(b ∧ (N2i−1, N2i)) ,

leading to an analogue of Eq. (3.19):

I(b ∧X) ≤ k

2 I(b ∧ (N1, N2)) . (3.4)

Building towards the counterpart of Eq. (3.20), we then have
I(b ∧ (N1, N2))

= Eb
[
D
(
P(N1,N2)|b∥P(N1,N2)

)]
≤ Eb

[
χ2
(
P(N1,N2)|b || P(N1,N2)

)]
= 1

2
(
χ2
(
P(N1,N2)|b=1 || P(N1,N2)

)
+ χ2

(
P(N1,N2)|b=0 || P(N1,N2)

))
= 1

2
( ∞∑

j=0

∞∑
ℓ=0

(Pr[N1 = j, N2 = ℓ | b = 1]− Pr[N1 = j, N2 = ℓ])2

Pr[N1 = j, N2 = ℓ]

+
∞∑

j=0

∞∑
ℓ=0

(Pr[N1 = j, N2 = ℓ | b = 0]− Pr[N1 = j, N2 = ℓ])2

Pr[N1 = j, N2 = ℓ]
)

= 1
2

∞∑
j=0

∞∑
ℓ=0

(Pr[N1 = j, N2 = ℓ | b = 0]− Pr[N1 = j, N2 = ℓ | b = 1])2

Pr[N1 = j, N2 = ℓ | b = 0] + Pr[N1 = j, N2 = ℓ | b = 1]

≤ 1
2

∞∑
j=0

∞∑
ℓ=0

Pr[N1 = j, N2 = ℓ | b = 1]
(

1− Pr[N1 = j, N2 = ℓ | b = 0]
Pr[N1 = j, N2 = ℓ | b = 1]

)2

using as before for the second-to-last equality that, b being a uniform bit,
Pr[N1 = j, N2 = ℓ] = 1

2(Pr[N1 = j, N2 = ℓ | b = 1]+Pr[N1 = j, N2 = ℓ | b = 0])
for all j, ℓ ≥ 0.
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This gives us Eq. (3.5), our “new Eq. (3.20):”

I(b ∧X) ≤ k

4

∞∑
j=0

∞∑
ℓ=0

Pr[N1 = j, N2 = ℓ | b = 1]
(
1− Pr[N1=j,N2=ℓ|b=0]

Pr[N1=j,N2=ℓ|b=1]

)2
.

(3.5)
To bound it, we need to compute Pr[N1 = j, N2 = ℓ | b = 1] and

Pr[N1 = j, N2 = ℓ | b = 0] for arbitrary integers j, ℓ ≥ 0. Thankfully,
this is not too difficult (recall that we still work in the Poissonized
sampling model):

Pr[N1 = j, N2 = ℓ | b = 1] = e− n
k

(n/k)j

j! · e− n
k

(n/k)ℓ

ℓ! = e− 2n
k

(n/k)j+ℓ

j!ℓ!
Pr[N1 = j, N2 = ℓ | b = 0]

= 1
2e− n(1+3ε)

k
(n(1 + 3ε)/k)j

j! e− n(1−3ε)
k

(n(1− 3ε)/k)ℓ

ℓ!

+ 1
2e− n(1−3ε)

k
(n(1− 3ε)/k)j

j! e− n(1+3ε)
k

(n(1 + 3ε)/k)ℓ

ℓ!

= e− 2n
k

(n/k)j+ℓ

j!ℓ! · (1 + 3ε)j(1− 3ε)ℓ + (1− 3ε)j(1 + 3ε)ℓ

2 ,

and so, for all j, ℓ ≥ 0,

Pr[N1 = j, N2 = ℓ | b = 0]
Pr[N1 = j, N2 = ℓ | b = 1] = 1

2
(
(1 + 3ε)j(1− 3ε)ℓ + (1− 3ε)j(1 + 3ε)ℓ

)
(3.6)

(Compare this to Eq. (3.22)!). Plugging this into Eq. (3.5) leads to

I(b ∧X) ≤ k

4

∞∑
j=0

∞∑
ℓ=0

e− 2n
k

(n/k)j+ℓ

j!ℓ!
(
1− (1+3ε)j(1−3ε)ℓ+(1−3ε)j(1+3ε)ℓ

2

)2

= k

2 sinh2 9nε2

k

≤ 81n2ε4

2k
· e

3nε2
k (3.7)

the last equality again following either by somewhat tedious series
computations, or a symbolic computation system such as Julia, Mathe-
matica, or Maple; and the inequality being sinh u ≤ ueu2/6 (for u ∈ R.)1

1See, e.g., https://math.stackexchange.com/a/1759409/75808.

https://math.stackexchange.com/a/1759409/75808
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We can then conclude as in Section 3.2: since we must have I(b ∧X) ≳ 1
by Fact 3.1, we must have n2ε4

k ≳ 1, showing the n = Ω
(√

k/ε2
)

lower
bound.

Exercise 3.4. Verify that applying Theorem 3.9 to (i) the uniform
distribution uk and (ii) the “Zipf” distribution q ∈ ∆k such that
q(i) ∝ 1/

√
i leads, in both cases, to an Ω(

√
k/ε2) sample complexity

lower bound for identity testing.

Solution 3.4. (i) When applying Theorem 3.9 to the uniform distri-
bution (i.e., q = uk), for any given ε ∈ (0, 1/4) the vector q̃− max

−4ε

is the m-dimensional vector with all coordinates equal to 1/k, where
m := k − (1 + ⌊4εk⌋) ≥ (1 − 4ε − 1/k)k (since we removed the first
coordinate, as well as the last ⌊4εk⌋). Then,∥∥∥q̃− max

−4ε

∥∥∥
2/3

=
(

m · 1
k2/3

)3/2
= m3/2

k
≥ (1/2− 4ε)3/2√k ≥

√
k

43/2

the first inequality as k ≥ 2, and the second for ε ≤ 1/16. This gives
the lower bound Ω

(∥∥∥q̃− max
−4ε

∥∥∥
2/3

/ε2
)

= Ω
(√

k/ε2
)

we wanted.

(ii) When applying the theorem with q set to be the Zipf distribution,
that is, q(i) = 1

Hk,1/2
√

i
for every i ∈ [k] with Hk,1/2 = ∑k

i=1
1√
i

=

Θ
(√

k
)
, for any given ε ∈ (0, 1/4) we get

∥∥∥q̃− max
−4ε

∥∥∥
2/3

= H−1
k,1/2

(
ℓ∑

i=2

1
i1/3

)3/2

≍

(
ℓ2/3

)3/2

Hk,1/2
≍ ℓ√

k

where ℓ is the smallest integer such that H−1
k,1/2

∑k
i=ℓ 1/

√
i ≤ 4ε. Comput-

ing the asymptotics of the sum shows that ℓ satisfies
√

k −
√

ℓ ∼ 4ε
√

k,
leading to ℓ ∼ (1− 4ε)2k. For ε ≤ 1/5 (for instance), this again gives∥∥∥q̃− max

−4ε

∥∥∥
2/3

= Θ
(√

k
)
, and Theorem 3.9 then yields the same (tight,

in view of the identity testing upper bound) sample complexity lower
bound Ω

(√
k/ε2

)
.

Exercise 3.5. Check that you can express several of the algorithms in
Section 2.1 as a function of F only (as defined in Section 3.3). Specifically,
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verify this for Algorithms 1, 2 and 4. Verify this also for Algorithm 3,
keeping in mind that this algorithm was stated and analyzed in the
Poissonized setting: what does it change?

Solution 3.5. We can rewrite Z1, from Algorithm 1, as

Z1 = 1(n
2
) ∑

i∈X

(
N i

2

)
= 1(n

2
) ∑

i∈X

n∑
j=0

(
j

2

)
1{N i = j} = 1(n

2
) n∑

j=0

(
j

2

)∑
i∈X

1{N i = j}

= 1(n
2
) n∑

j=0

(
j

2

)
F j .

Similarly, Z2, from Algorithm 2, is given by

Z2 = 1
n

F 1

while Z4, from Algorithm 4, can be written as

Z4 = 1
2

n∑
j=0

∣∣∣∣ jn − 1
k

∣∣∣∣F j .

We can also rewrite Z3 as a function of the fingerprint F ; however, in
the Poissonized setting, F ∈ NN (it is no longer a finite-dimensional
vector, but a sequence) and does not necessarily sum to n anymore.
With this in mind, we get

Z3 =
∑
i∈X

(N i − n/k)2 −N i

n/k

=
∑
i∈X

∞∑
j=0

(j − n/k)2 − j

n/k
1{N i = j}

=
∞∑

j=0

(j − n/k)2 − j

n/k
F j .

Note that we now have to sum over all integers, not just up to n.

Exercise 3.6 (⋆). Prove that the mapping Φ defined in Eq. (3.40) does
satisfy the requirements of a reduction, for k′ = 2k and ε′ = ε/2.
That is, if p ∈ ∆k is ε-far from uk, then Φ(p) ∈ ∆2k is ε′-far from
every distribution q ∈ P↘

2k . (Hint: for any given monotone q, analyse
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the distance dTV(Φ(p), q) according to whether q(k) > 1/(2k) or not,
relating this to the set S ⊆ [k] on which p is greater than uk.) Moreover,
show that this loss by a factor 1/2 in the distance is necessary.

Solution 3.6. Fix any p ∈ ∆k such that dTV(p, uk) > ε, and let
S ⊆ [k] the set which witnesses it: S := { 1 ≤ i ≤ k : p(i) > 1/k }
which satisfies

p(S)− uk(S) = uk([k] \ S)− p([k] \ S) > ε

Further define T := [k]\S ⊆ {1, 2, . . . , k}, and S+k = { i + k : i ∈ S } ⊆
{k + 1, . . . , 2k}. By definition of Φ(p), we then have

u2k(T )−Φ(p)(T ) = Φ(p)(S + k)−u2k(S + k) = 1
2(p(S)−uk(S) >

ε

2 .

Now, fix any monotone distribution q ∈ P↘
2k . We have two cases:

• If q(k) > 1/(2k), then, since q is monotone, q(i) > 1/(2k) for
every i ≤ k. This implies

q(T )− Φ(p)(T ) ≥ u2k(T )− Φ(p)(T ) >
ε

2

• If q(k) ≤ 1/(2k), then q(i) ≤ 1/(2k) for every i ≥ k. This implies

Φ(p)(S + k)− q(S + k) ≥ Φ(p)(S + k)− u2k(S + k) >
ε

2

This shows that dTV(Φ(p), q) > ε/2. For the “necessary” part, consider
p such that p(1) = 1.

Exercise 3.7. A Poisson Binomial Distribution (PBD) with parameters
k and p⃗ = (p1, . . . , pk) is the distribution of the sum of k indepen-
dent Bernoulli random variables X1, . . . , Xk, where Xi ∼ Bern(pi).
(This is a generalization of Binomial distributions, which correspond
to p1 = · · · = pk.) Let P ·⊂⋊

k denote the class of all PBDs with param-
eter k. Using the facts that (1) P ·⊂⋊

k can be agnostically learned with
O(log2(1/ε)/ε2) samples (independent of k) (Daskalakis et al., 2015),
and (2) the “standard” Binomial distribution Bin(k, 1/2) is a PBD,
show that testing P ·⊂⋊

k has sample complexity Ω(k1/4/ε2) (as long as
ε ≥ 1/2O(k1/8)). (Hint: combine the results of Sections 3.4 and 3.5.)
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Solution 3.7. For convenience, denote by q the Binomial Bin(k, 1/2),
and fix δ = 1/3. We will apply Theorem 3.11 with P ′ := {q} and
P := P ·⊂⋊

k , so that P ′ ⊆ P.
From the statement of the exercise, from (Daskalakis et al., 2015)2

we know that the sample complexity of agnostically learning P ·⊂⋊
k is

nL(k, ε, 1/3) = O

(
log2(1/ε)

ε2

)

so to apply the theorem it remains to give a lower bound on nT (k, ε, 1/3)
(sample complexity of testing P ′) and comparing the two. But testing
our P ′ is by definition testing identity to q, for which we can apply
Theorem 3.9: for all ε ∈ (0, 1/4),

nT (k, ε, 1/3) = Ω
(∥∥∥q̃− max

−4ε

∥∥∥
2/3

/ε2
)

,

where q̃− max
−4ε is as defined in the statement of Theorem 3.9. In our case,

to get a hold of
∥∥∥q̃− max

−4ε

∥∥∥
2/3

, we will make three observations. (The
argument below is heuristic and informal, but can be made rigorous).
First, the maximum probability value of q is 1

2n

( k
k/2
)

= Θ
(

1√
k

)
, so

removing it will be negligible. Second, to remove the 4ε probability mass
from the tails of q, we can use Hoeffding’s inequality (Corollary A.4)
as heuristic, since even though it provides an upper bound instead of a
lower bound, Hoeffding’s inequality is essentially tight for the standard
Binomial. Working it out, this then tells us that

Pr
[∣∣∣∣X − k

2

∣∣∣∣ ≥ m

]
≈ 4ε

for m ≍
√

k log 1
ε , which means that we only keep 2m = Θ

(√
k log 1

ε

)
coordinates in our vector q̃− max

−4ε (since q is symmetric around its
expectation, those are the 2m middle elements of the domain, centered
at k/2). That is quite difficult to bound, though, so since we are only
aiming to lower bound

∥∥∥q̃− max
−4ε

∥∥∥
2/3

we can remove more elements, and

only keep the middle 2m′ for say m′ :=
√

k ≤ m.
2This is not explicit in the paper, but their cover-based approach implies agnostic

learning, for a (large, but constant) C ≥ 1.
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Finally, since q is unimodal, among those 2
√

k elements the minimum
probability is q(k/2 +

√
k), which by Stirling can be bounded as

q(k/2 + m′) = 1
2k

(
k

k
2 +
√

k

)
≍ 1√

k
.

Thus, we can bound∥∥∥q̃− max
−4ε

∥∥∥
2/3
≥
(
2m′ · q(k/2 + m′)2/3

)3/2

≍ k3/4 · q(k/2 +
√

k)
≍ k1/4

and Theorem 3.9 then tells us that nT (k, ε, 1/3) = Ω
(
k1/4/ε2

)
. (Intu-

itively: the standard Binomial distribution is “roughly flat” within a few
standard deviations of its expectation, which means it is sort-of-uniform
on a domain of size Θ(

√
k). So we get “the uniformity testing lower

bound” but on a domain of size Θ(
√

k), not k: hence the k1/4.
To conclude and apply Theorem 3.11, we just need to check the

third item, and see if there is a range of parameters for which

nL(k, Cε, 1/3) ≤ 1
2nT (k, 3Cε, 1/3)

(where again, C ≥ 1 is a constant, implicit in (Daskalakis et al., 2015)).
This boils down to checking when

log2(1/ε)
ε2 ≪ k1/4

ε2

which is true for ε ≥ 1/2O(k1/8). Theorem 3.11 then yields the Ω(k1/4/ε2)
lower bound for testing P ·⊂⋊

k in that parameter regime.



4
Testing with Constrained Measurements

Exercise 4.1. Verify that the error amplification technique discussed
in Lemma 1.1 still goes through in the communication-constrained
distributed setting.
Solution 4.1 (Sketch). Regardless of the specific distributed setting
(private-coin, public-coin, or sequentially interactive), one can still run
m = O(log(1/δ)) independent instances of the protocol on m disjoint
sets of users, and use the same argument as in Lemma 1.1.
Exercise 4.2. Verify that the reduction from identity to uniformity
testing discussed in Section 2.2.3 still goes through in the communication-
constrained distributed setting, both in the private- and public-coin
settings. Do the users need to know the reference distribution q?
Solution 4.2. As described in Acharya et al. (2020, Proposition A.16),
the reduction does go through, as each user can “locally” and indepen-
dently apply the mapping Ψq to their sample, to get a draw from the
distribution Φq(p). This preserves the setting of randomness (private-
or public-coin), as it only require private randomness; however, as men-
tioned in Acharya et al. (2020, Remark A.17), all users do need to
know the reference distribution q (in order to be able to compute the
mapping Ψq.

33
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However, the two specific approaches seen in Section 4, for private-
coin protocols (Section 4.2) and public-coin protocols (Section 4.3) can
be used to perform identity testing even if the users do not know the
reference q. Namely:

• In the private-coin case, distributed simulation (Theorem 4.2) can
still be used to simulate n′ ≍ n2ℓ/k samples from p at the server.
The server (which does know q, even if it is the only one to do
so) can then convert these n′ i.i.d. samples into n′ i.i.d. samples
from Φq(p), performing the reduction to uniformity testing in a
centralized fashion.

• In the public-coin case, domain compression (Theorem 2.12) is
used to convert the n i.i.d. samples from p into n i.i.d. samples from
some (randomly chosen) pΠ on a domain of size L := 2ℓ. This still
works and can be done without knowledge of q; then, the guarantee
of Theorem 2.12 ensures that dTV(pΠ, qΠ) ≳

√
L/k · dTV(p, q).

This means that the server (which knows q as well as the public
randomness used to choose Π, and thus can compute what the
“new reference” qΠ is) can apply the reduction from identity testing
(with reference qΠ over [L]) to uniformity testing locally, since it
has all it needs for this: n i.i.d. samples from pΠ, and knowledge
of qΠ and ε′ ≍

√
L/k · ε.

Exercise 4.3 (⋆). Extend the argument of Lemma 4.3 to ℓ ≥ 1, to
establish the more general Theorem 4.2. (Hint: suppose that 2ℓ − 1
divides k, and partition the domain in m := k/(2ℓ − 1) sets. Each pair
of users is now “assigned” one of these sets.)

Solution 4.3. As suggested, partition the domain into m :=
⌈
k/2ℓ − 1

⌉
sets (e.g., intervals) S1, . . . , Sm, each of size k′ := 2ℓ − 1 except at most
one possibly smaller (if 2ℓ − 1 does not divide k). As in the proof of
Lemma 4.3, we first show how to generate one sample from 2m users.

Divide these 2m users into m pairs, where users of the pair (2i−1, 2i)
are “assigned” set Si. The ℓ-bit message these two users send is defined
as follows: either the all-zero sequence 0ℓ if their sample did not fall
in Si, or, if it did, the exact value of the sample (they can do so, as



35

|Si| ≤ 2ℓ − 1, as long as the protocol specified an encoding beforehand):

Y2i−1 =

encode(X2i−1) if X2i−1 ∈ Si

0ℓ otherwise.

Y2i =

encode(X2i) if X2i ∈ Si

0ℓ otherwise.

As in the single-bit (ℓ = 1) case, the server, upon receiving these 2m

messages, will check the following two conditions:

• there exists one, and only one, pair (2i− 1, 2i) of users for which
the “even” user sent a non-zero value (that is, Y2i ̸= 0ℓ); and

• for this pair (2i− 1, 2i), the “odd” user sent the all-zero sequence
(Y2i = 0ℓ).

If those two conditions do not simultaneously hold, then the server
aborts (does not output any sample, but instead the special symbol ⊥).
Otherwise, the server outputs (the decoding of) Y2i, which is X2i, as its
sample. Then, analogously to the proof of Lemma 4.3, for any j ∈ [k],
letting i(j) be the index of the set such that j ∈ Si(j), the probability
to output j is

Pr[output is j] = p(j)·(1−p(Si(j)))
∏

1≤i≤m
i ̸=i(j)

(1−p(Si)) = p(j)
m∏

i=1
(1−p(Si)) .

We have Pr[output is j] ∝ p(j) for all j ∈ [k], so all we need to prove,
as before, is that Pr[output is ⊥] is not too close to one, or, equivalently,
that ∏m

i=1(1−p(Si)) is not vanishingly small. The exact same argument
as the one leading to Eq. (4.4) shows that

m∏
i=1

(1− p(Si)) ≥
1
4

as long as max1≤i≤m p(Si) ≤ 1
2 , which is implied by ∥p∥∞ ≤ 1/2 and

thus can be ensured by using the same trick as in Lemma 4.3 (only
losing, as we did there, a factor 2 in the number of users). Altogether,



36 Testing with Constrained Measurements

this establishes that we can generate (on expectation) one sample from
p using the ℓ-bits messages from

4 · 4m = 16
⌈

k

2ℓ − 1

⌉
users. By repeating this on disjoint groups of users, this yields Theo-
rem 4.2, showing that we can generate an expected

n′ ≥ 1
16 ·

n⌈
k

2ℓ−1

⌉ ≍ 2ℓn

k

i.i.d. samples, using the ℓ-bits messages from n users. For a more
detailed proof and discussion of Theorem 4.2, see Acharya et al. (2020,
Theorem IV.9).

Exercise 4.4 (⋆⋆). Extend the argument of Theorem 4.2 further to
apply to the case where user has a communication constraint ℓi (het-
erogeneous constraints among users). Establish an analogous bound,
with 2ℓ replaced by 1

n

∑n
j=1 2ℓj . (Hint: consider a dyadic partition of

the domain [k]. It should work.)

Solution 4.4. No solution for this one (for now at least). Feel free to
contact me if you’ve tried and are stuck!
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