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A Inference with non-hierarchical natural conjugate and

independent priors

In this section, we review non-hierarchical Bayesian estimation of simple regression models

under natural conjugate and independent priors. Most of the shrinkage priors that we review in

this paper have forms of either conjugate or independent prior, conditional on the parameters

such as prior variances of the slope coefficients. Therefore, it is helpful to first review the

conditional posterior distributions under the non-hierarchical priors.

Consider the simple linear regression model of the form

yi = xiβ + εi, εi ∼ N(0, σ2), i = 1, ..., n, (A.1)

where β is a p × 1 vector. We define y = (y1, ..., yn)
′, X = (x′1, ..., x

′
n)

′ and ε = (ε1, ..., εn)
′,

such that the stacked form of the regression model is

y = Xβ + ε, (A.2)

where ε ∼ Nn(0n×1, σ
2In). In this section, we assume that the prior variances on β are fixed

and will review posterior sampling under generic normal-inverse-gamma priors on β and σ2.

The prior of β can be defined either dependent or independent on σ2. In both cases, assume

an inverse gamma prior1 on σ2.

σ2 ∼ Inv −Gamma (a, b) , (A.3)

where we use the parametrization so that if x ∼ Inv − Gamma (a, b), then it has density

p(x) = ba

Γ(a)

(
1
x

)a+1
exp

(
− b
x

)
.

1The conditional posteriors under the improper prior σ ∼ 1
σ2 dσ

2 are similar.
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A.1 Natural conjugate prior

In the first case, the prior on β is defined conditional on σ2. The hierarchical structure is

summarized as follows.

β|σ2 ∼ Np

(
µβ, σ

2V β

)
, (A.4)

The conditional posteriors are of the form

β | • ∼ Np

(
V ×

[
X ′y + V −1

β µβ

]
, σ2V

)
, (A.5)

σ2 | • ∼ Inv −Gamma

(
a+

n+ p

2
, b+

1

2

[
(y −Xβ)

′
(y −Xβ) +

(
β − µβ

)
V −1

β

(
β − µβ

)])
,(A.6)

where V = (X ′X + V −1
β )−1 and • denotes data and all the parameters except for the

parameter that is being updated.

Derivation

The joint prior is

p(β, σ2) = (2π)−p/2|σ2V β|−1/2exp

[
− 1

2σ2
(β − µβ)

′V −1
β (β − µβ)

]
ba

Γ(a)

(
1

σ2

)a+1

exp

(
− b

σ2

)
∝
(

1

σ2

)a+p/2+1

exp

[
− 1

σ2

{
b+

1

2
(β − µβ)

′V −1
β (β − µβ)

}]
,

where the proportionality sign is with respect to the parameters (β, σ2). The likelihood is

p(y|β, σ2)(2π)−n/2
(

1

σ2

)n/2
exp

[
− 1

2σ2
(y −Xβ)′(y −Xβ)

]
.

The posterior is

p(β, σ2|y) ∝ p(y|β, σ2)p(β, σ2)

∝
(

1

σ2

)a+ p+n
2

+1

exp

[
− 1

σ2

{
b+

1

2

[
(β − µβ)

′V −1
β (β − µβ) + (y −Xβ)′(y −Xβ)

]}]
.

From the right-hand-side above, it is easy to see that the conditional posterior p(σ2|β,y) is of
the form (A.6).

To see (A.5), note that

(β − µβ)
′V −1

β (β − µβ) + (y −Xβ)′(y −Xβ) = β′V −1
β β − 2β′V −1

β µβ + µ′
βV

−1
β µβ

+ y′y − 2β′X ′y + β′X ′Xβ

= β′
[
V −1

β +XX
]
β − 2β′

[
V −1

β µβ +X ′y
]
+
[
µβV

−1
β µβ + y′y

]
= (β − µ∗)

′V −1
∗ (β − µ∗)− µ′

∗V
−1
∗ µ∗ +

[
µ′

βV
−1
β µβ + y′y

]
,
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where we used the identity

u′Au− 2α′u = (u−A−1α)′A(u−A−1α)−α′A−1α,

in the last equality with u = β,A = V −1
β +XX, and α = V −1

β µβ +X ′y and defined

µ∗ = A−1α =
[
V −1
β +XX

]−1 [
V −1
β µβ +X ′y

]
,

V ∗ = A−1 =
[
V −1
β +XX

]−1
.

Hence the posterior is

p(β, σ2|y) ∝
(

1

σ2

)a∗+1

exp

[
− 1

σ2

{
b∗ +

1

2
(β − µ∗)

′V −1
∗ (β − µ∗)

}]
,

where a∗ = a + n/2 + p/2 and b∗ = b + 1
2

[
µ′
βV

−1
β µβ + y′y − µ′

∗V
−1
∗ µ∗

]
. Therefore, the

conditional posterior for β is of the form (A.5).

A.2 Independent prior

In this case, β and σ2 are a priori independent.

β ∼ Np

(
µβ,V β

)
, (A.7)

The conditional posteriors are of the form

β | • ∼ Np

(
V ×

[
X ′y/σ2 + V −1

β µβ

]
,V
)
, (A.8)

σ2 | • ∼ Inv −Gamma

(
a+

n

2
, b+

1

2
(y −Xβ)′ (y −Xβ)

)
, (A.9)

where V = (X ′X/σ2 + V −1
β )−1.

Derivation

The joint prior is

p(β, σ2) = (2π)−p/2|V β|−1/2exp

[
−1

2
(β − µβ)

′V −1
β (β − µβ)

]
ba

Γ(a)

(
1

σ2

)a+1

exp

(
− b

σ2

)
∝
(

1

σ2

)a+1

exp

[
− 1

σ2

{
b+

1

2
(β − µβ)

′(V β/σ
2)−1(β − µβ)

}]
.
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The posterior is

p(β, σ2|y) ∝ p(y|β, σ2)p(β, σ2)

∝
(

1

σ2

)a+n
2
+1

exp

[
− 1

σ2

{
b+

1

2

[
(β − µβ)

′(V β/σ
2)−1(β − µβ) + (y −Xβ)′(y −Xβ)

]}]
.

To see (B.106), note that

p(σ2|β,y) ∝
(

1

σ2

)a+n
2
+1

exp

[
− 1

σ2

{
b+

1

2
(y −Xβ)′(y −Xβ)

}]
.

To see (B.105), note that

(β − µβ)
′(V β/σ

2)−1(β − µβ) + (y −Xβ)′(y −Xβ)

= β′(V β/σ
2)−1β − 2β′(V β/σ

2)−1µβ + µ′
β(V β/σ

2)−1µβ + y′y − 2β′X ′y + β′X ′Xβ

= β′ [(V β/σ
2)−1 +XX

]
β − 2β′ [(V β/σ

2)−1µβ +X ′y
]
+
[
µβ(V β/σ

2)−1µβ + y′y
]

= (β − µ∗)
′V −1

∗ (β − µ∗)− µ′
∗V

−1
∗ µ∗ +

[
µ′
β(V β/σ

2)−1µβ + y′y
]
,

where

µ∗ =
[
(V β/σ

2)−1 +XX
]−1 [

(V β/σ
2)−1µβ +X ′y

]
=
[
V −1
β +XX/σ2

]−1 [
V −1
β µβ +X ′y/σ2

]
,

V ∗ =
[
(V β/σ

2)−1 +XX
]−1

= σ2
[
V −1
β +XX/σ2

]−1
.

Hence the posterior is

p(β, σ2|y) ∝
(

1

σ2

)a∗+1

exp

[
− 1

σ2

{
b∗ +

1

2
(β − µ∗)

′V −1
∗ (β − µ∗)

}]
,

where a∗ = a+ n/2 and b∗ = b+ 1
2

[
µ′
β(V β/σ

2)−1µβ + y′y − µ′
∗V

−1
∗ µ∗

]
.
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B MCMC inference in linear regression model with

hierarchical priors

We use the simple linear regression model of the form

yi = xiβ + εi, εi ∼ N(0, σ2), i = 1, ..., n, (B.1)

where β is a p × 1 vector. We define y = (y1, ..., yn)
′, X = (x′1, ..., x

′
n)

′ and ε = (ε1, ..., εn)
′,

such that the stacked form of the regression model is

y = Xβ + ε, (B.2)

where ε ∼ Nn(0n×1, σ
2In).

B.1 Normal-Jeffreys

The normal-Jeffreys hierarchical prior takes the form

β|{τ2j }
p
j=1, σ

2 ∼ Np(0, σ
2D), (B.3)

τ2j ∼ 1

τ2i
, for j = 1, ..., p, (B.4)

σ2 ∼ 1

σ2
, (B.5)

where D = diag(τ21 , ..., τ
2
p ).

The conditional posteriors are of the form

β | • ∼ Np

(
V ×X ′y, σ2V

)
, (B.6)

τ2j | • ∼ Inv −Gamma

(
1

2
,
β2j
2σ2

)
, for j = 1, ..., p, (B.7)

σ2 | • ∼ Inv −Gamma

(
n+ 2

2
,
Ψ+ β′D−1β

2

)
, (B.8)

where V =
(
X ′X +D−1

)−1
and Ψ = (y −Xβ)′(y −Xβ).

B.2 Student-t shrinkage

The normal-inverse gamma prior is the scale mixture of normals representation of the fat-tailed

Student-t distribution. This hierarchical prior, which is also called “sparse Bayesian Learning”
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prior in signal processing, takes the form

β|{τ2j }
p
j=1, σ

2 ∼ Np(0, σ
2D), (B.9)

τ2j ∼ Inv −Gamma (ρ, ξ) , for j = 1, ..., p, (B.10)

σ2 ∼ 1

σ2
, (B.11)

where D = diag(τ21 , ..., τ
2
p ).

The conditional posteriors are of the form

β | • ∼ Np

(
V ×X ′y, σ2V

)
, (B.12)

τ2j | • ∼ Inv −Gamma

(
ρ+

1

2
, ξ +

β2j
2σ2

)
, for j = 1, ..., p, (B.13)

σ2 | • ∼ Inv −Gamma

(
n+ p

2
,
Ψ+ β′D−1β

2

)
, (B.14)

where V =
(
X ′X +D−1

)−1
and Ψ = (y −Xβ)′(y −Xβ).

B.3 Bayesian LASSO

As noted first by Tibshirani (1996), the LASSO estimator

β̂ = argmin
β

(y −Xβ)′ (y −Xβ) + λ1

p∑
j=1

|βj |, (B.15)

is equivalent to the posterior mode under the Laplace prior

β|σ ∼
p∏
j=1

λ

2
√
σ2
e−λ|βj |/

√
σ2
, (B.16)

which can be written as the following normal-exponential mixture

β|σ ∼
p∏
j=1

∫ ∞

0

1√
2πσ2sj

e

(
−

β2j

2σ2sj

)
λ2

2
e
− λ

2sj dsj . (B.17)

This is the mixture prior analyzed by Park and Casella (2008), which is by far the most popular

form for the Bayesian LASSO. Hans (2009) provides an alternative formulation by means of

the orthant-truncated normal distribution. A third possible formulation of the Laplace prior

is the scale mixture of uniform distributions proposed by Mallick and Yi (2014). A related

representation is that of a mixture of truncated normal distributions (see Alhamzawi and Ali,

2020).
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B.3.1 Park and Casella (2008) algorithm

The Park and Casella (2008) Laplace prior takes the form

β|{τ2j }
p
j=1, σ

2 ∼ Np(0, σ
2D), (B.18)

τ2j |λ2 ∼ Exponential

(
λ2

2

)
, for j = 1, ..., p, (B.19)

λ2 ∼ Gamma(r, δ), (B.20)

σ2 ∼ 1

σ2
, (B.21)

where D = diag(τ21 , ..., τ
2
p ).

The conditional posteriors are of the form

β | • ∼ Np

(
V ×X ′y, σ2V

)
, (B.22)

1

τ2j
| • ∼ IG

(√
λ2σ2

β2j
, λ2

)
, for j = 1, ..., p, (B.23)

λ2 | • ∼ Gamma

(
r + p,

∑p
j=1 τ

2
j

2
+ δ

)
, (B.24)

σ2 | • ∼ Inv −Gamma

(
n+ p

2
,
Ψ+ β′D−1β

2

)
, (B.25)

where V =
(
X ′X +D−1

)−1
, D = diag(τ21 , ..., τ

2
p ), and Ψ = (y −Xβ)′(y −Xβ).

B.3.2 Hans (2009) algorithm

Before we proceed we need to define the notion of the normal orthant distribution, following

Hans (2009). Let Z= {−1, 1}p represent the set of all 2p possible vectors of length p whose

elements are ±1. For any realization z ∈ Z define the orthant Oz ⊂ IRp. If β ∈ Oz, then βj ≥ 0

if z = 1 and βj < 0 if z = −1. Then β follows the normal-orthant distribution with mean m

and covariance S, which is of the form

β ∼ N [z] (m,S) ≡ Φ (m,S)Np (m,S) I (∈ Oz) . (B.26)

The Hans (2009) prior takes the form

β|λ, σ ∼
(

λ

2
√
σ2

)p
exp

−λ
p∑
j=1

|βj |/
√
σ2

 , (B.27)

λ ∼ Gamma(r, δ), (B.28)

σ2 ∼ 1

σ2
, (B.29)

where the prior for β is an equivalent representation of the Laplace density in Equation (B.16).
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The conditional posteriors are of the form

βj |β−j , λ, σ2,y ∼ ϕjN
[+]
(
µ+j , ω

−1
jj

)
+ (1− ϕj)N

[−]
(
µ−j , ω

−1
jj

)
, (B.30)

λ|y ∼ Gamma

(
p+ r,

∑p
j=1 |β|√
σ2

+ δ

)
, (B.31)

σ|β,y ∝ (σ2)−(n+p
2

+1) exp

(
Ψ

2σ2
−
λ
∑p

j=1 |β|√
σ2

)
, (B.32)

where:

� N [−] and N [+] correspond to the N [z] distribution for z = −1 and z = 1, respectively,

� µ+j = β̂OLSj +
{∑p

i=1,i ̸=j

(
β̂OLSi − βi

)
(ωij/ωjj)

}
+
(
− λ√

σ2ωjj

)
,

� ωij is the ij element of the matrix Ω = Σ−1 =
(
σ2(X ′X)−1

)−1
,

� ϕj =
Φ

(
µ+
j√
ωjj

)
/N(0|µ+j ,ω

−1
jj )

Φ

(
µ+
j√
ωjj

)
/N(0|µ+j ,ω

−1
jj )+Φ

(
−

µ−
j√
ωjj

)
/N(0|µ−j ,ω

−1
jj )

, and

� Ψ = (y −Xβ)′(y −Xβ).

Notice that the conditional posterior of σ2 does not belong to a standard form we can sample

from. Hans (2009) proposes a simple accept/reject algorithm in order to obtain samples from

σ2. The posterior of σ2 simplifies to the standard Inv-Gamma form, if we consider a Laplace

prior for β that is independent of σ, i.e. the prior β|λ ∼
(
λ
2

)p
exp

(
−λ
∑p

j=1 |βj |
)
. Finally,

notice that sampling of βj conditional on β−j (i.e. all elements of the vector β other than

the j-th) becomes very inefficient when predictors X are correlated. Hans (2009) proposes

to use an alternative Gibbs sampler algorithm that orthogonalizes predictors, which comes at

the cost of increased computational complexity (due to the rotations of data and parameters

involved when orthogonalizing the predictors).

B.3.3 Mallick and Yi (2014) algorithm

The Mallick and Yi (2014) Laplace prior takes the form

β|{τ2j }
p
j=1, σ

2 ∼
p∏
j=1

Uniform
(
−
√
σ2τj ,

√
σ2τj

)
, (B.33)

τj |λ ∼ Gamma (2, λ) , for j = 1, ..., p, (B.34)

λ ∼ Gamma (r, δ) , (B.35)

σ2 ∼ 1

σ2
. (B.36)
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The conditional posteriors are of the form

β | • ∼ Np

(
β̂OLS , σ

2
(
X ′X

)−1
) p∏
j=1

I
(
|βj | <

√
σ2τj

)
, (B.37)

τj | • ∼ Exponential (λ) I

(
τj >

|βj |√
σ2

)
, for j = 1, ..., p, (B.38)

λ ∼ Gamma

r + 2p, δ +

p∑
j=1

|βj |

 , (B.39)

1

σ2

∣∣∣∣ • ∼ Gamma

(
n− 1 + p

2
,
Ψ

2

)
I

σ2 < 1

maxj

(
β2j /τ

2
j

)
 , (B.40)

where I(•) is the indicator function and Ψ = (y −Xβ)′(y −Xβ). Because of the truncation

of the conditional posteriors, Mallick and Yi (2014) suggest the following sampling steps:

1. Generate first τj from the truncated Exponential distribution in Equation (B.38): Sample

a τ⋆j ∼ Exponential(λ), and then set τj = τ⋆j +
|βj |√
σ2
.

2. Sample β from the truncated normal distribution in Equation (B.37).

3. Sample λ from the Gamma distribution in Equation (B.39).

4. Generate σ2 from the right truncated Gamma distribution in Equation (B.40): Use simple

accept/reject sampling, that is, sample 1
σ2⋆ from Gamma

(
n−1+p

2 , Ψ2

)
until the condition

σ2⋆ < 1
maxj(β2

j /τ
2
j )

is met. If it is, set σ = 1
σ2⋆ .

B.4 Bayesian Adaptive LASSO

Fan and Li (2001) showed that the LASSO can perform automatic variable selection but

it produces biased estimates for the larger coefficients. Thus, they argued that the oracle

properties do not hold for the LASSO. To obtain the oracle property, Zou (2006) introduced

the adaptive LASSO estimator as

β̂ = argmin
β

(y −Xβ)′ (y −Xβ) +

p∑
j=1

λj |βj |, (B.41)

with the weight vector λj = λ|β̂j |−r for j = 1, ..., p where β̂j is a
√
n consistent estimator such

as the least squares estimator. The adaptive LASSO enjoys the oracle property and it leads

to a near-minimax-optimal estimator.

Alhamzawi and Ali (2018) proposed Bayesian adaptive LASSO. They show that a Laplace
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density can be written as a exponential scale mixture of truncated normal distribution i.e.

λj

2
√
σ2
e−λ|βj |/

√
σ2

=

∫ ∞

0

∫
uj>

√
λ2j/σ

2|βj |

1√
2πσ2sj

e

(
−

β2j

2σ2sj

)
e

(
−

uj
2

)
λ2j
8
e

(
−

λ2j sj

8

)
dujdsj

=

∫ ∞

0

∫
uj>

√
λ2j/σ

2|βj |
N(βj ; 0, σ

2sj)Exponential

(
uj ;

1

2

)
Exponential

(
sj ;

λ2j
8

)
dujdsj .

Based on this fact, they propose the following conditional prior for Bayesian adaptive LASSO

βj |σ2, λ2j , sj ∼ N(0, σ2sj)I
(
|βj | <

√
σ2/λ2juj

)
j = 1, ..., p, (B.42)

sj |λ2j ∼ Exponential

(
λ2j
8

)
j = 1, ..., p, (B.43)

uj ∼ Exponential

(
1

2

)
j = 1, ..., p, (B.44)

λ2j ∼ Gamma(a, b) j = 1, ..., p, (B.45)

σ2 ∼ σ−2dσ2. (B.46)

The conditional posteriors are of the form

β | • ∼ Np

(
V ×Xy, σ2V

) p∏
j=1

I
(
|βj | <

√
σ2/λ2juj

)
, (B.47)

σ2 | • ∼ Inv −Gamma (a∗, b∗) I

(
σ2 > maxj

{
λ2jβ

2
j

u2j

})
, (B.48)

s−1
j | • ∼ IG

(√
σ2λ2j
4β2j

,
λ2j
4

)
j = 1, ..., p, (B.49)

p(uj | • ) ∝ Exponential

(
1

2

)
I

uj >
√
λ2j
σ2

|βj |

 j = 1, ..., p, (B.50)

p(λ2j | • ) ∝ Gamma
(
a+ p, b+

sj
8

)
I

(
λ2j <

σ2u2j
β2j

)
j = 1, ..., p, (B.51)

where V = (X ′X + S−1)−1 with S = diag(s1, ..., sp), a∗ = n−1+p
2 , and b∗ =

1
2

[
(y −Xβ)′ (y −Xβ) +

∑p
j=1

β2
j

sj

]
.

B.5 Bayesian Fused LASSO

In some applications, there might be a meaningful order among the covariates (e.g. time). The

original LASSO ignores such ordering. To compensate the ordering limitations of the LASSO,

the fused LASSO was introduced. It penalizes the L1-norm of both the coefficients and their

10



differences:

β̂ = argmin
β

(y −Xβ)′ (y −Xβ) + λ1

p∑
j=1

|βj |+ λ2

p∑
j=2

|βj − βj−1|. (B.52)

Kyung et al. (2010) proposed Bayesian group LASSO with the following conditional prior.

p
(
β|σ2

)
∝ exp

−λ1
σ

p∑
j=1

|βj | −
λ2
σ

p∑
j=2

|βj − βj−1|

 , (B.53)

σ2 ∼ σ−2dσ2. (B.54)

where the conditional prior is equivalent to the following gamma mixture of normals prior.

β|{τ2j }
p
j=1, {ω

2
j }
p−1
j=1, σ

2 ∼ Np(0, σ
2Σβ), (B.55)

τ2j ∼ λ21
2
e−λ1τ

2
j /2dτ2j for , j = 1, ..., p, (B.56)

ω2
j ∼ λ22

2
e−λ2ω

2
j /2dω2

j for , j = 1, ..., p− 1, (B.57)

where τ21 , ..., τ
2
p and ω2

1, ..., ω
2
p−1 are mutually independent, and Σβ is a tridiagonal matrix with

Main diagonal =

{
1

τ2i
+

1

ω2
i−1

+
1

ω2
i

, i = 1, ..., p

}
, (B.58)

Off diagonals =

{
− 1

ω2
i

, i = 1, ..., p− 1

}
, (B.59)

where 1/ω2
0 = 1/ω2

p = 0.

The conditional posteriors are of the form

β | • ∼ Np

(
V ×Xy, σ2V

)
, (B.60)

1/τ2j | • ∼ IG

(λ21σ2
β2j

)1/2

, λ21

 1(1/τ2j > 0), j = 1, ..., p, (B.61)

1/ω2
j | • ∼ IG

((
λ22σ

2

(βj+1 − βj)2

)1/2

, λ22

)
1(1/ω2

j > 0), j = 1, ..., p− 1, (B.62)

σ2 | • ∼ Inv −Gamma (a∗, b∗) , (B.63)

where V = (X ′X +Σ−1
β )−1, a∗ = n−1+p

2 , and b∗ = 1
2

[
(y −Xβ)′ (y −Xβ) + βΣ−1

β β
]
.
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When we place Gamma(r, δ) priors on λ1 and λ2, the conditional posteriors are

λ21 | • ∼ Gamma

p+ r,
1

2

p∑
j=1

τ2j + δ

 , (B.64)

λ22 | • ∼ Gamma

p− 1 + r,
1

2

p−1∑
j=1

ω2
j + δ

 . (B.65)

B.6 Bayesian Group LASSO

If there is a group of covariates among which the pairwise correlation is high (e.g. dummy

variables), the LASSO tends to select only individual variables from the group. The group

LASSO takes such group structure into account:

β̂ = argmin
β

(
y −

K∑
k=1

Xkβk

)′(
y −

K∑
k=1

Xkβk

)
+ λ

K∑
j=k

||βk||Gk
, (B.66)

where K is the number of groups, βk is the vector of β’s in the group k, and ||β||Gk
=(

β′Gkβ
)1/2

with positive definite matrices Gk’s. Typically, Gk = Imk
wheremk is the number

of variables in group k.

Kyung et al. (2010) proposed Bayesian group LASSO with the following conditional prior.

p
(
β|σ2

)
∝ exp

−λ
σ

K∑
j=k

||βk||Gk

 , (B.67)

σ2 ∼ σ−2dσ2, (B.68)

where the conditional prior is equivalent to the following gamma mixture of normals prior.

βGk
|τ2k , σ2 ∼ Nmk

(0, σ2τ2kImk
), (B.69)

τ2k |σ2 ∼ Gamma

(
mk + 1

2
,
λ2

2

)
for k = 1, ...,K. (B.70)

The conditional posteriors are of the form

βGk
|β−Gk

, σ2, τ21 , ..., τ
2
K , λ,y ∼ Np

V k ×X ′
k

y − 1

2

∑
k′ ̸=k

Xk′βGk′

 , σ2V k

 , (B.71)

1/τ2k | • ∼ IG

((
λ2σ2

||βGk
||2

)1/2

, λ2

)
1(1/τ2k > 0), for k = 1, ...,K, (B.72)

σ2 | • ∼ Inv −Gamma

n− 1 + p

2
,
1

2
||y −Xβ||2 + 1

2

K∑
j=k

1

τ2k
||βGk

||2
 , (B.73)

12



where β−Gk
=
(
βG1

, ...,βGk−1
,βGk+1

, ...,βGK

)
and V k = (X ′

kXk + τ−2
k Imk

)−1.

When we place a Gamma(r, δ) prior on λ, the posterior conditional on λ is

λ2 | • ∼ Gamma

(
p+K

2
+ r,

1

2

K∑
k=1

τ2k + δ

)
. (B.74)

B.7 Bayesian Elastic Net

Here again we have various alternative algorithms. We look into the algorithm of Kyung et al.

(2010) and the algorithm of Li and Lin (2010), but we can also mention here the algorithm

of Hans (2011) that is based on the algorithm of Hans (2009) we examined for the Bayesian

LASSO.

The elastic net combines the benefits of ridge regression (l2 penalization) and the LASSO

(l1 penalization). The Bayesian prior that provides the solution to the elastic net estimation

problem is of the form

β|σ2 ∼ exp

− 1

2σ2

λ1 p∑
j=1

|βj |+ λ2

p∑
j=1

β2j

 . (B.75)

Li and Lin (2010) start from this prior and derive a mixture approximation and a Gibbs sampler

that has the minor disadvantage that requires an accept-reject algorithm for obtaining samples

from the conditional posterior of σ2 (similar to the sampler of Hans (2009) for the LASSO).

The formulation of the elastic net prior in Kyung et al. (2010) is slightly different to the one

above, but they manage to derive a slightly different mixture representation and a slightly

more straightforward Gibbs sampler.

B.7.1 Li and Lin (2010) algorithm

The Li and Lin (2010) prior takes the form

β|{τ2j }
p
j=1, λ2, σ

2 ∼ Np

(
0,
σ2

λ2
Dτ

)
, (B.76)

τ2j |σ2 ∼ TG(1,∞)

(
1

2
,
8λ2σ

2

λ21

)
, for j = 1, ..., p, (B.77)

σ2 ∼ 1

σ2
, (B.78)

where TG(1,∞) is the Gamma distribution truncated to the support (1,∞), and Dτ =

diag
(
τ21−1

τ21
, ...,

τ2p−1

τ2p

)
. Notice that λ1, λ2 do not have their own prior distributions, that is,

they are not considered to be random variables in this algorithm. Instead, Li and Lin (2010)

suggest to use empirical Bayes methods to calibrate these two parameters.
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The conditional posteriors are of the form

β | • ∼ Np

(
V ×X ′y, σ2V

)
, (B.79)

τ2j − 1 | • ∼ GIG

(
1

2
,

λ1
4λ2σ2

,
λ2β

2
j

σ2

)
, for j = 1, ..., p, (B.80)

p(σ2| • ) ∝
(

1

σ2

)n
2
+p+1{

ΓU

(
1

2
,

λ21
8λ2σ2

)}
(B.81)

exp

− 1

2σ2

Ψ+ λ2

p∑
j=1

τ2j
τ2j − 1

β2j +
λ21
4λ2

p∑
j=1

τ2j


 , (B.82)

where V =
(
X ′X + λ2D

−1
τ

)−1
, D−1

τ = diag
(

τ21
τ21−1

, ...,
τ2p
τ2p−1

)
, and Ψ = (y −Xβ)′(y −Xβ).

ΓU (•) is the upper incomplete gamma function. GIG is the three parameter Generalized

Inverse Gaussian distribution.2 The conditional posterior distribution of σ2 does not belong

to a known density we can sample from. Therefore, for each Monte Carlo iteration we sample

the first two parameters directly from their conditional posteriors but we sample σ2 indirectly

from its conditional posterior using an accept/reject step.

B.7.2 Kyung et al. (2010) algorithm

The Kyung et al. (2010) prior takes the form

β|{τ2j }
p
j=1, λ2, σ

2 ∼ Np(0, σ
2Dτ,λ2), (B.83)

τ2j |λ2 ∼ Exponential

(
λ21
2

)
, for j = 1, ..., p, (B.84)

λ21 ∼ Gamma(r1, δ1), (B.85)

λ2 ∼ Gamma(r2, δ2), (B.86)

σ2 ∼ 1

σ2
, (B.87)

where Dτ,λ2 = diag((τ−2
1 + λ2)

−1, ..., (τ−2
p + λ2))

−1).

2CRAN has several implementations in R of random number generators that allow sampling from the GIG
distribution. As of the time of writing of this document, Mathworks does not provide a built-in function for
MATLAB that allows to generate from this distribution, but external contributions do exist.
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The conditional posteriors are of the form

β | • ∼ Np

(
V ×X ′y, σ2V

)
, (B.88)

1

τ2j
| • ∼ IG

(√
λ21σ

2

β2j
, λ21

)
I(1/τ2j > 0), for j = 1, ..., p, (B.89)

λ21 | • ∼ Gamma

(
r1 + p,

∑p
j=1 τ

2
j

2
+ δ1

)
, (B.90)

λ2 | • ∼ Gamma

(
r2 +

p

2
,

∑p
j=1 β

2
j

2σ2
+ δ2

)
, (B.91)

σ2 | • ∼ Inv −Gamma

(
n− 1 + p

2
,
Ψ+ β′D−1

τ,λ2
β

2

)
, (B.92)

where V =
(
X ′X +D−1

τ,λ2

)−1
, D−1

τ,λ2
= diag((τ−2

1 + λ2), ..., (τ
−2
p + λ2))), and Ψ = (y −

Xβ)′(y −Xβ).

B.8 Generalized Double Pareto

Armagan et al. (2013) propose the following Generalized Double Pareto (GDP) prior on β

β|σ ∼
p∏
j=1

1

2σδ/r

(
1 +

1

r

|βj |
σδ/r

)−(r+1)

. (B.93)

This distribution can be represented using the familiar, from the Bayesian LASSO, normal-

exponential-gamma mixture, see subsubsection B.3.1. The only difference is that, while the

exponential component has the same rate parameter for all j = 1, ..., p, in the representation

of the GDP mixture this parameter is adaptive.

The Generalized Double Pareto prior takes the form

β|{τj}pj=1, σ
2 ∼ Np

(
0, σ2D

)
, (B.94)

τ2j |λj ∼ Exponential

(
λ2j
2

)
, for j = 1, ..., p, (B.95)

λj ∼ Gamma(r, δ), for j = 1, ..., p, (B.96)

σ2 ∼ 1

σ2
, (B.97)

where D = diag(τ21 , ..., τ
2
p ).
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The conditional posteriors are of the form

β | • ∼ Np

(
V ×X ′y, σ2V

)
, (B.98)

1

τ2j

∣∣∣∣ • ∼ IG

(√
λ2jσ

2

β2j
, λ2

)
, for j = 1, ..., p, (B.99)

λ2j | • ∼ Gamma

r + 1,

√
β2j
σ2

+ δ

 , (B.100)

σ2 | • ∼ Inv −Gamma

(
n− 1 + p

2
,
Ψ+ β′D−1β

2

)
, (B.101)

where V =
(
X ′X +D−1

)−1
, D = diag(τ21 , ..., τ

2
p ), and Ψ = (y −Xβ)′(y −Xβ).

B.9 Normal-Gamma

The normal-gamma prior of Griffin and Brown (2010) takes the form

β|{τj}pj=1 ∼ N (0,D) , (B.102)

τ |λ, γ2 ∼ Gamma

(
λ,

1

2γ2

)
, (B.103)

σ2 ∼ 1

σ2
, (B.104)

where D = diag(τ21 , ..., τ
2
p ).

The conditional posteriors β and σ2 are of the usual form

β | • ∼ Np

(
V ×X ′y/σ2,V

)
, (B.105)

σ2 | • ∼ Inv −Gamma

(
n

2
,
1

2
(y −Xβ)′ (y −Xβ)

)
, (B.106)

where V = (X ′X/σ2 +D−1)−1.

The parameters τ1, ..., τp can be updated in a block since the full conditional distributions

of τ1, ..., τp are independent. The full conditional distribution of τj follows a generalized inverse

Gaussian distribution

τj | • ∼ GIG(λ− 0.5, 1/γ2, β2j ), j = 1, ..., p. (B.107)

B.10 Multiplicative Gamma process

Suppose we have the factor model

Xt = ΛF t + ϵt, (B.108)

ϵt ∼ Nn(0,Σ), t = 1, ..., T, (B.109)
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where Xt is a n × 1 vector, Λ is a n × k matrix of factor loadings, F t is a k × 1 vector, and

Σ = diag(Σ11, ...,Σnn).

Bhattacharya and Dunson (2011) proposed a novel multiplicative gamma process prior on

the factor loadings that shrinks more aggressively columns of Λ that correspond to a higher

number of factors. They call their approach the sparse infinite factor model, as it allows to

specify a maximum number of factors and the prior is able to determine zero and non-zero

loadings, as well as the number of factors. The gamma process prior for the loadings matrix

is of the following “global-local shrinkage” form

Λij |ϕij , τj ∼ N(0, ϕ−1
ij τ

−1
j ), (B.110)

ϕij ∼ Gamma(v/2, v/2), (B.111)

τj =

j∏
l=1

δl, j = 1, ..., k, (B.112)

δ1 ∼ Gamma(a1, 1), (B.113)

δl ∼ Gamma(a2, 1), l ≥ 2, (B.114)

Σii ∼ Inv −Gamma(a0, b0), i = 1, ..., n. (B.115)

While the local shrinkage parameter is the same for each element of Λ, the global shrinkage

parameter τj is shrinking more aggressively as the index j increases, where j = 1, ..., k indexes

the number of factors. This is because τj is a j-dimensional product of gamma distributions.

Let X(i) be the ith column of the n× k matrix X Λ′
i be the ith row of Λ. The conditional

posterior distributions are

Λi | • ∼ Nk

(
V Li

(
F ′Σ−1

ii X(i)
)
,V Li

)
i = 1, ..., n, (B.116)

F t | • ∼ Nk

(
V F

(
Λ′Σ−1Xt

)
,V F

)
t = 1, ..., T, (B.117)

ϕij | • ∼ Gamma

(
v + 1

2
,
v + τjΛ

2
ij

2

)
i = 1, ..., n, j = 1, ..., k, (B.118)

τ
(j)
ℓ =

ℓ∏
t=1,t̸=j

δt j = 1, ..., k, (B.119)

δ1 | • ∼ Gamma

(
a1 + 0.5nk, 1 + 0.5

k∑
ℓ=1

τ
(1)
ℓ

n∑
i=1

ϕiℓΛ
2
iℓ

)
, (B.120)

δj | • ∼ Gamma

a2 + 0.5n(k − j + 1), 1 + 0.5

k∑
ℓ=j

τ
(j)
ℓ

n∑
i=1

ϕiℓΛ
2
iℓ

 , j ≥ 2,(B.121)

Σii | • ∼ Inv −Gamma (a0 + n/2, b0 + SSEi) , i = 1, ..., n, (B.122)

where V Li = (D−1
i + Σ−1

ii F ′F )−1, D−1
i = diag(ϕi1τ1, ..., ϕikτk), V F = (I +Λ′Σ−1Λ)−1, and

SSEi = (X(i) − FΛi)
′(X(i) − FΛi).
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B.11 Dirichlet-Laplace

The Dirichlet-Laplace prior of Bhattacharya et al. (2015), as analyzed in Zhang and Bondell

(2018), takes the form

β|{τj}pj=1, {ψj}
p
j=1, λ, σ

2 ∼ Np

(
0, σ2Dλ,τ,ψ

)
, (B.123)

τ2j ∼ Exponential(1/2), for j = 1, ..., p, (B.124)

ψj ∼ Dirichlet(α), for j = 1, ..., p, (B.125)

λ ∼ Gamma(nα, 1/2), (B.126)

σ2 ∼ 1

σ2
, (B.127)

where Dλ,τ,ψ = diag(λ2τ21ψ
2
1, ..., λ

2τ2pψ
2
p).

The conditional posteriors are of the form

β | • ∼ Np

(
V ×X ′y, σ2V

)
, (B.128)

1

τ2j

∣∣∣∣ • ∼ IG

(√
λ2ψ2

jσ
2

β2j
, 1

)
, for j = 1, ..., p, (B.129)

λ | • ∼ GIG

(
2

∑p
j=1 |βj |
ψjσ

, 1, p(α− 1)

)
, (B.130)

Tj | • ∼ GIG

2

√
β2j
σ2
, 1, α− 1

 , for j = 1, ..., p, (B.131)

ψj =
Tj∑p
j=1 Tj

, for j = 1, ..., p, (B.132)

σ2 | • ∼ Inv −Gamma

(
n+ p

2
,
Ψ+ β′D−1

τ,λ,ψβ

2

)
, (B.133)

where V =
(
X ′X +D−1

τ,λ,ψ

)−1
, Dτ,λ,ψ = diag(λ2τ21ψ

2
1, ..., λ

2τ2pψ
2
p), and Ψ = (y −Xβ)′(y −

Xβ).

B.12 Horseshoe

The horseshoe prior on a regression coefficient β takes the following hierarchical form

β|{λj}pj=1, τ ∼ N
(
0, σ2τ2Λ

)
, (B.134)

λj |τ ∼ C+(0, 1), for j = 1, ..., p, (B.135)

τ ∼ C+(0, 1), (B.136)
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where Λ = diag(λ21, ..., λ
2
p), and C

+(0, α) is the half-Cauchy distribution on the positive reals

with scale parameter α. That is, λj has conditional prior density

λj |τ =
2

πτ (1 + (λj/τ)2)
. (B.137)

B.12.1 Makalic and Schmidt (2016) algorithm

Makalic and Schmidt (2016) note that the half-Cauchy distribution can be written as a mixture

of inverse-Gamma distributions. In particular, if

x2|z ∼ Inv −Gamma(1/2, 1/z), z ∼ Inv −Gamma(1/2, 1/α2), (B.138)

then x ∼ C+(0, α). Therefore, the Makalic and Schmidt (2016) prior takes the form

β|{λj}pj=1, τ, σ
2 ∼ N

(
0, σ2τ2Λ

)
, (B.139)

λ2j |vj ∼ Inv −Gamma(1/2, 1/vj), for j = 1, ..., p, (B.140)

vj ∼ Inv −Gamma(1/2, 1), for j = 1, ..., p, (B.141)

τ2|ξ ∼ Inv −Gamma(1/2, 1/ξ), (B.142)

ξ ∼ Inv −Gamma(1/2, 1), (B.143)

σ2 ∼ 1

σ2
, (B.144)

where Λ = diag(λ21, ..., λ
2
p).

The conditional posteriors are of the form

β | • ∼ Np

(
V ×X ′y, σ2V

)
, (B.145)

λ2j | • ∼ Inv −Gamma

(
1,

1

vj
+

β2j
2τ2σ2

)
, for j = 1, ..., p, (B.146)

vj | • ∼ Inv −Gamma

(
1, 1 +

1

λ2j

)
, for j = 1, ..., p, (B.147)

τ2 | • ∼ Inv −Gamma

p+ 1

2
,
1

ξ
+

1

2σ2

p∑
j=1

β2j
λ2j

 , (B.148)

ξ | • ∼ Inv −Gamma

(
1, 1 +

1

τ2

)
, (B.149)

σ2 | • ∼ Inv −Gamma

(
n+ p

2
,
Ψ+ β′D−1β

2

)
, (B.150)

where V =
(
X ′X +D−1

)−1
, D = diag(τ2λ21, ..., τ

2λ2p) = τ2Λ, and Ψ = (y −Xβ)′(y −Xβ).
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B.12.2 Slice sampler

Under the hosrshoe prior, we have

β|{λj}pj=1, τ, σ
2 ∼ N

(
0, σ2τ2diag(λ21, ..., λ

2
p)
)
, (B.151)

λj ∼ C+(0, 1), for j = 1, ..., p, (B.152)

τ ∼ C+(0, 1), (B.153)

σ2 ∼ 1

σ2
. (B.154)

The conditional posteriors are of the form

β | • ∼ Np

(
V ×X

′
y, σ2V

)
, (B.155)

σ2 | • ∼ Inv −Gamma

(
n

2
+
p

2
,
1

2

[
(y −Xβ)′ (y −Xβ) + β′D−1β

])
, (B.156)

p(λj | • ) ∝

(
1

λ2j

)1/2

exp

[
− βj
2σ2τ2

1

λ2j

]
1

1 + λ2j
dλj , for j = 1, ..., p, (B.157)

p(τ | • ) ∝
(

1

τ2

)p/2
exp

− 1

2σ2

p∑
j=1

β2j
λ2j

1

τ2

 1

1 + τ2
dτ, (B.158)

where V = (X ′X +D−1)−1 with D = diag(τ2λ21, ..., τ
2λ2p).

With a change of variable ηj =
1
λ2j
, it can be seen that

ηj |β, τ2, σ2 ∝ exp (−µjηj)
1

1 + ηj
dηj , (B.159)

where µj =
βj

2σ2τ2
. The λj ’s are updated with a slice sampler:

1. Sample uj ∼ Unif
[
0, 1

1+ηj

]
.

2. Sample ηj |uj ∼ exp (−µjηj) I
(
ηj <

1−uj
uj

)
3.

3. Set λj = η
−1/2
j .

Similarly, with a change of variable η = 1
τ2
, we have

η|β, {λj}pj=1, σ
2,y ∝ η

p+1
2

−1 exp (−µη) 1

1 + η
dη, (B.160)

where µ = 1
2σ2

∑p
j=1

β2
j

λ2j
. The τ can be updated in a similar fashion:

1. Sample u ∼ Unif
[
0, 1

1+η

]
.

3This is an exponential density with parameter µ−1
j truncated on

(
0,

1−uj

uj

)
.
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2. Sample η|u ∼ η
p+1
2

−1 exp (−µη) I
(
η < 1−u

u

)
4.

3. Set τ = η−1/2.

B.12.3 Johndrow et al. (2020) algorithm

The horseshoe prior in Johndrow et al. (2020) has its original form

β|{λj}pj=1, τ, σ
2 ∼ N

(
0, σ2τ2Λ

)
, (B.161)

λj |τ ∼ C+(0, 1), for j = 1, ..., p, (B.162)

τ ∼ C+(0, 1), (B.163)

σ2 ∼ 1

σ2
. (B.164)

In order to improve the mixing of the global parameter τ2, they propose a blocked

Metropolis-within-Gibbs sampler where (β, τ2, σ) are updated in one block. The conditional

posterior of τ2 given λ = (λ21, ..., λ
2
p) is

p(τ2|λ,y) ∝ |M |−1/2

(
1

2
y′M−1y

)−n
2

× τ

1 + 1
τ2

, (B.165)

where M = In +XDX ′. Their Metropolis-within-Gibbs algorithm is as follows

p(λ2j |τ2,β, σ2) ∝
λ2j

λ2j + 1
exp

(
− βj
2σ2τ2

1

λ2j

)
, for j = 1, ..., p, (B.166)

log(τ−2∗) ∼ N
(
log(τ−2), s

)
, accept τ2∗ w.p.

p(τ2∗|λ,y)τ2∗

p(τ2|λ,y)τ2
, (B.167)

σ2 |τ2,λ2 ∼ Inv −Gamma

(
n

2
,
y′M−1y

2

)
, (B.168)

β |τ2,λ2, σ2 ∼ Np

(
V ×X ′y, σ2V

)
, (B.169)

where V =
(
X ′X +D−1

)−1
and D = diag(τ2λ21, ..., τ

2λ2p).

The λ2j can be updated via a slice sampler:

1. Sample u ∼ Unif

[
0,

λ2j
λ2j+1

]
.

2. Sample λ2j |u ∼ exp

(
− βj

2σ2τ2
1
λ2j

)
I

(
1−u
u > 1

λ2j

)
.

4This is a gamma density with the shape parameter p+1
2

and the scale parameter µ−1 truncated on
(
0, 1−u

u

)
.
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B.13 Generalized Beta mixtures of Gaussians

In their paper, Armagan et al. (2011) motivate the use of a three-parameter beta (TPB)

distribution as a flexible class of shrinkage priors. The TPB distribution takes the form

p(x|a, b, φ) = Γ (a+ b)

Γ (a) Γ (b)
φbxb−1(1− x)a−1 [1 + (φ− 1)x]−(a+b) , (B.170)

for 0 < x < 1, a, b, φ > 0. Proposition 1 in Armagan et al. (2011) shows that this distribution

can either be written as normal-inverted beta mixture, or a normal-gamma-gamma mixture.

The second choice gives a very straightforward Gibbs sampler scheme so we present an

algorithm based on the normal-gamma-gamma representation of TPB.

The generalized beta mixtures of Gaussians prior takes the form

β|{τ2j }
p
j=1, σ

2 ∼ Np

(
0, σ2Dτ

)
, (B.171)

τ2j |λj ∼ Gamma (a, λj) , for j = 1, ..., p, (B.172)

λj |φ ∼ Gamma(b, φ), for j = 1, ..., p, (B.173)

φ ∼ Gamma

(
1

2
, ω

)
, (B.174)

ω ∼ Gamma

(
1

2
, 1

)
, (B.175)

σ2 ∼ 1

σ2
, (B.176)

where Dτ = diag(τ21 , ..., τ
2
p ). Note that setting a = b = 1/2 we can obtain the horseshoe prior

of Carvalho et al. (2010). For other choices we can recover popular cases of shrinkage priors.

The conditional posteriors are of the form

β | • ∼ Np

(
V ×X ′y, σ2V

)
, (B.177)

τ2j | • ∼ GIG

(
a− 1

2
, 2λj ,

β2j
σ2

)
, for j = 1, ..., p, (B.178)

λj | • ∼ Gamma(a+ b, τ2j + φ), for j = 1, ..., p, (B.179)

φ | • ∼ Gamma

pb+ 1

2
,

p∑
j=1

λj + ω

 , (B.180)

ω | • ∼ Gamma(1, φ+ 1), (B.181)

σ2 | • ∼ Gamma

(
n+ p

2
,
Ψ+ β′D−1

τ β

2

)
, (B.182)

where V =
(
X ′X +D−1

τ

)−1
, Dτ = diag(τ21 , ..., τ

2
p ), and Ψ = (y −Xβ)′(y −Xβ).
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B.14 Spike and slab

B.14.1 Kuo and Mallick (1998) algorithm

Kuo and Mallick (1998) consider the following modified formulation of the regression problem.

y|β,γ, σ2 ∼ Np

(
Xθ, σ2I

)
, (B.183)

where X = (x1, . . . ,xp) and θ = (β1γ1, . . . , βpγp)
′ with γj = 1 if xj is included in the model

and 0 otherwise.

The authors consider the following independent prior.

β ∼ Np (0,D) , (B.184)

γj ∼ Bernoulli(pj), for j = 1, . . . , p, (B.185)

σ2 ∼ Inv −Gamma (a, b) . (B.186)

With X∗ = (γ1x1, ..., γpxp), the conditional posteriors can be written as follows.

β | • ∼ Np

(
V ×X∗′y/σ2,V

)
, (B.187)

σ2 | • ∼ Inv −Gamma

(
a+

n

2
, b+

1

2
(y −X∗β)′ (y −X∗β)

)
, (B.188)

γj | • ∼ Bernoulli

(
cj

cj + dj

)
, (B.189)

where γ−j = (γ1, . . . , γj−1, γj+1, . . . , γp) and V =
(
X∗′X∗/σ2 +D−1

)−1
and

cj = pj exp

[
− 1

2σ2
(
y −Xθ∗

j

)′ (
y −Xθ∗

j

)]
, (B.190)

dj = (1− pj) exp

[
− 1

2σ2
(
y −Xθ∗∗

j

)′ (
y −Xθ∗∗

j

)]
, (B.191)

where θ∗
j is θ with the j-component replaced by βj and θ∗∗

j is θ with the j-component replaced

by 0. Note that the conditional posterior of γj depends on γ−j . In order to facilitate the mixing,

it is preferred to update γj for j = 1, . . . , p in random order.

Note that although the formulation above holds for a generic prior variance V β, but an

important special case is when it is a diagonal matrix V β = diag
(
τ21 , . . . , τ

2
p

)
. This is equivalent

to assume a spike and slab prior on θj , which is a mixture of a point mass at 0 with probability

1− pj and a normal density N
(
µβ,j , τ

2
j

)
with probability pj .
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B.15 Stochastic search variable selection

Consider the following stochastic search variable selection prior with fixed values of the prior

variances.

βj |σ2, γj = 0 ∼ N
(
0, σ2τ20j

)
, (B.192)

βj |σ2, γj = 1 ∼ N
(
0, σ2τ21j

)
, (B.193)

P (γj = 1) = θ for j = 1, . . . , p, (B.194)

θ ∼ Beta(c, d), (B.195)

σ2 ∼ Inv −Gamma(a, b). (B.196)

George and McCulloch (1993) use non-conjugate prior in (B.192) and (B.193).

(B.192) and (B.193) can be equivalently written as

β|σ2,γ, {τ20j , τ21j}
p
j=1 ∼ Np

(
0, σ2D

)
, (B.197)

where D is a diagonal matrix with diagonal elements with {(1− γj)τ
2
0j + γjτ

2
1j}

p
j=1

The conditional posteriors are of the form

β | • ∼ Np

(
V ×X ′y, σ2V

)
, where V = (X

′
X +D−1)−1, (B.198)

σ2 | • ∼ Inv −Gamma

(
a+

n

2
+
p

2
, b+

1

2

[
(y −Xβ)′ (y −Xβ) + β′D−1β

])
,(B.199)

γj | • ∼ Bernoulli

 ϕ
(
βj |0, σ2τ21j

)
θ

ϕ
(
βj |0, σ2τ21j

)
θ + ϕ

(
βj |0, σ2τ20j

)
(1− θ)

 , for j = 1, ..., p,(B.200)

θ| • ∼ Beta

c+ p∑
j=1

γj , d+

p∑
j=1

(1− γj)

 , for j = 1, ..., p, (B.201)

where ϕ(x|m, v) is the normal density with mean m and variance v.

Narisetty et al. (2018) propose to fix the value of the prior variance parameters as τ20j =
σ̂2

10n

and τ21j = σ̂2max
(
p2.1

100n , log(n)
)

where σ̂2 is the sample variance of yi. The prior inclusion

probability θ is chosen so that Pr
(∑p

j=1 γj > K
)
= 0.1 for K = max (10, log(n)).

B.16 Spike and slab LASSO

Consider the generic SSVS prior (B.192)-(B.196). Instead of fixing the prior variances τ0j and

τ1j , one could place priors on them. A hierarchical Bayes version of the spike and slab LASSO

prior in Ročková and George (2014) and Bai et al. (2021)5 would correspond to placing two

5They propose an EM algorithm for estimation.
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separate Laplace densities on the components i.e.

τ20j |λ20 ∼ Exponential

(
λ20
2

)
, for j = 1, ..., p, (B.202)

τ21j |λ21 ∼ Exponential

(
λ21
2

)
, for j = 1, ..., p, (B.203)

with λ0 ≫ λ1 so that the density for N(0, σ2τ20j) is the “spike” and N(0, σ2τ21j) is the “slab”.

The prior variances are updated according to

1/τ20j | • ∼ IG
(√

λ20σ
2/β2j , λ

2
0

)
, for j = 1, ..., p, (B.204)

1/τ21j | • ∼ IG
(√

λ21σ
2/β2j , λ

2
1

)
, for j = 1, ..., p. (B.205)

B.17 Semiparametric spike and slab

Dunson et al. (2008) allows for simultaneous selection of important predictors and soft

clustering of predictors having similar impact on the variable of interest. This prior is a

generalization of the typical “spike and slab” priors used for Bayesian variable selection and

model averaging in the statistics literature. The coefficient β admit a prior of the form

βj ∼ πδ0(β) + (1− π)G,

G ∼ DP (αG0),

G0 ∼ N(0, τ2).

G is a nonparametric density which follows a Dirichlet process with base measure G0 and

concentration parameter α. In this case the base measure G0 is Gaussian with zero mean

and variance τ2, which is the typical conjugate prior distribution used on linear regression

coefficients. Hence, this prior implies that each coefficient βj will either be restricted to 0 with

probability π, or with probability 1 − π will come from a mixture of Gaussian densities. If it

comes from a mixture of Gaussian densities, then due to a property of the Dirichlet process,

βj ’s in the same mixture component will share the same mean and the variance.

As an example, consider coefficients βj , j = 1, ..., 6 with (β1, β3) ∼ N(0, 106), (β2, β4) ∼
N(0, 0.1), and (β5, β6) ∼ δ0. In this case, (β1, β3) are clustered together and have a Gaussian

prior with variance 106 which means that their posterior mean/median will be close to the

least squares estimator. The second cluster consists of (β2, β4) which have prior variance 0.1,

hence their posterior median will be equivalent to a ridge regression estimator. Finally, (β5, β6)

are restricted to be zero.

Inference using the Gibbs sampler is straightforward, once we write the Dirichlet process

prior using its stick-breaking representation, that is, an infinite sum of point mass functions.
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The general form of the semiparametric spike and slab prior we use is of the form

βj ∼ πδ0 (β) + (1− π)G, (B.206)

G ∼ DP (αG0) , (B.207)

G0 ∼ N
(
µ, τ2

)
, (B.208)

τ2 ∼ Inv −Gamma (a1, a2) , (B.209)

α ∼ Gamma
(
ρ
1
, ρ

2

)
, (B.210)

π ∼ Beta (c, d) , (B.211)

σ2 ∼ 1

σ2
, (B.212)

where µ, a1, a2, ρ1, ρ2, c, d are parameters to be chosen by the researcher. The usual stick

breaking representation for βj conditional on β−j and marginalized over G is of the form

(
βj |β−j

)
∼ α (1− π)

α+K − pβ1 − 1
N
(
µ, τ2

)
+ πδ0 (β) +

kβ∑
l=2

pβl (1− π)

α+K − pβ1 − 1
δβl (β) , (B.213)

where kβ is the number of atoms in the above equation (number of mixture components plus

the δβ (0) component), and pβn is the number of elements of the vector β which which are equal

to δβl (β), n = 1, 2, ..., kβ, where it holds that δβ1 (β) = δ0 (β). Additionally, for notational

convenience define the prior weights as

w0 =
α (1− π)

α+K − pβ1 − 1
,

w1 = π,

wl =
pβl (1− π)

α+K − pβ1 − 1
, l = 2, ..., kβ.

Gibbs sampling from the conditional posterior:

� Given kβ number of mixture components, sample θ =
(
θ1, ...,θkβ

)
from

(θ|−) ∼ N (Eθ,V θ) ,

with Eθ = V θ

(
D−1M + σ−2X ′

πy
)
and V β =

(
D−1 + σ−2X ′

πXπ

)−1
, where D =

τ2Ikβ and M = µ1kβ . Here X ′
π denotes the matrix X with the columns corresponding

to coefficients belonging to θ1 being replaced with zeros (or equivalently, with these

columns removed). Hence the remaining columns correspond to unrestricted coefficients

which belong to one of the remaining kβ − 1 mixture components.
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� Sample βj conditional on β−j , data, and other model parameters for j = 1, ...,K from

(
βj |β−j ,−

)
∼ w0N (Eβ, Vβ) +

kβ∑
l=1

wlθl,

so that with probability wl we assign βj equal to the atom of mixture component l (i.e.

βj = θl), while with probability w0 we assign βj to a new N (Eβ, Vβ) component. In the

expression above it holds that

Eβ = Vβ
(
τ−2µ+ σ−2X ′y

)
,

Vβ =
(
τ−2 + σ−2X ′X

)−1
,

and that

w0 ∝
w0N

(
0;µ, τ2

)∏n
i=1N

(
ỹi; 0, σ

2
)

N (0;Eβ, Vβ)
,

wl ∝ wlN
(
0;µ, τ2

)∏n

i=1
N
(
ỹi;Xi,lθl, σ

2
)
, l = 1, ..., kβ,

where ỹi = yi−
∑

j′ ̸=j Xi,j′βj′ = yi−(Xπ)i θ+Xj′,iβj′ for j, j′ = 1, ...,K, (Xπ)i is the i-th

observation of the matrix Xπ constructed in step 1, and N (a; b, c) denotes the normal

density with mean b and variance c, evaluated at observation a.

� Introduce an indicator variable Sβ = l if the coefficient βj belongs to cluster l, where

j = 1, ...,K and l = 1, ..., kβ, in which case it holds that βj = θl. In addition, set Sβ = 0

if βj ̸= θl, that is when βj does not belong to a preassigned cluster and a new cluster is

introduced for this coefficient. Then the conditional posterior of Sβ is

(Sβ|−) ∼Multinomial
(
0, 1, ..., kβ;w0, w1, ..., wkβ

)
.

� Sample the restriction probability π from the coniditional distribution

(π|−) ∼ Beta

(
c+

∑K

j=1
I (Sβ = 1) , d+

∑K

j=1
I (Sβ ̸= 1)

)
.

� Sample the latent variable η from the posterior conditional

(η|−) ∼ Beta

(
a+ 1,K −

∑K

j=1
I (Sβ = 1)

)
.

� Sample the Dirichlet process precision coefficient α from the conditional posterior

(α|−) ∼ πηGamma
(
ρ
1
+ kβ − nSβ=1, ρ2 − log η

)
+

(1− πη)Gamma
(
ρ
1
+ kβ − nSβ=1 − 1, ρ

2
− log η

)
,
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where the weight πη is given by

πη
1− πη

=
ρ
1
+ kβ − nSβ=1 − 1(

K −
∑K

j=1 I (Sβ = 1)
)(

ρ
2
− log η

) ,
and nSβ=1 = 1 if

∑K
j=1 I (Sβ = 1) > 0, and it is 0 otherwise (i.e. when no coefficient βj

is restricted).

� Sample the variance τ2 coefficient from the conditional density

(
τ2|−

)
∼ iGamma

a1 + 1

2
(kβ − 1) , a−1

2 +
1

2

kβ∑
l=2

(
θl − µ1

)2 .
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