Appendix

Lemma 0.1. In every sequentially rational strategy profile,

- 1. the second-period strategy of officeholder $j \in \{I, C\}$ specifies that j uses skill if $s_j > x_2$ and chooses the default if $x_2 > s_j$;
- 2. the voter's continuation value of electing the challenger is

$$V(C) = \int_0^1 \left[\int_0^{s_C} s_C dG(x_2) + \int_{s_C}^1 x_2 dG(x_2) \right] dF(s_C), \tag{1}$$

and $V(C) \in (0,1)$;

3. if the incumbent uses skill in the first period, the voter's continuation value of electing the incumbent is

$$V(I|s_I) = \int_0^{s_I} s_I dG(x_2) + \int_{s_I}^1 x_2 dG(x_2); \tag{2}$$

4. the voter elects the candidate that provides the greater continuation value.

Proof. Let σ be a sequentially rational strategy profile.

- 1. Consider second-period officeholder $j \in \{I, C\}$. Fix $x_2 \in [0, 1]$ and $s_j \in [0, 1]$. Sequential rationality implies j maximizes his second-period payoff. It is immediate that j strictly prefers to use skill if $s_j > x_2$ and strictly prefers the default if $x_2 > s_j$.
- 2. Part 1 pins down C's strategy in σ outside of the probability zero case $s_C = x_2$. Because R's beliefs about x_2 are represented by G and R's beliefs about s_C are represented by F, Part 1 implies that R's continuation value of electing C under σ is

$$V(C) = \int_0^1 \left[\int_0^{s_C} s_C dG(x_2) + \int_{s_C}^1 x_2 dG(x_2) \right] dF(s_C).$$

Together, the assumptions that g and f are strictly positive over [0,1] imply $V(C) \in (0,1)$.

3. Part 1 pins down I's strategy in σ outside of the probability zero case $s_I = x_2$. Given s_I and R's beliefs about x_2 , G, Part 1 implies that R's continuation value of electing I under σ is

$$V(I|s_I) = \int_0^{s_I} s_I dG(x_2) + \int_{s_I}^1 x_2 dG(x_2).$$

4. Follows from definition of sequential rationality.

Lemma 1. There exists a unique $\bar{s} \in (0,1)$ such that in every sequentially rational strategy profile, $V(I|s_I) > V(C)$ if and only if $s_I > \bar{s}$.

Proof. Let σ be a sequentially rational strategy profile. By Lemma 0.1, $V(C) \in (0,1)$. Also, both V(C) and $V(I|s_I)$ are constant across sequentially rational strategy profiles. Notice that V(C) is independent of s_I because F and G are both independent of all other features of the game. Also, $V(I|s_I)$ is continuous and strictly increasing in s_I . Furthermore, $V(I|s_I=0) < V(C) < V(I|s_I=1)$ because f is strictly positive over [0,1]. It follows that there is a unique $\bar{s} \in (0,1)$ such that $V(I|\bar{s}) = V(C)$, $V(I|s_I) < V(C)$ for $s_I < \bar{s}$, and $V(I|s_I) > V(C)$ for $s_I > \bar{s}$.

Proposition 1. For all $x_1 \in [0,1]$, every SPE of the complete information model has the following features:

- 1. If $s_I > \bar{s}$ then the voter re-elects the incumbent and if $s_I < \bar{s}$ then the voter elects the challenger.
- 2. Assume $s_I \neq \bar{s}$. If $s_I > x_1$ then the incumbent uses skill, and if $s_I < x_1$ then the incumbent uses the default.

Proof. Fix $x_1 \in [0, 1]$ and let σ be a SPE.

- 1. Assume $s_I < \bar{s}$. The definition of \bar{s} implies $V(C) > V(I|s_I)$. Sequential rationality of σ requires that R elects C. A symmetric argument implies that R elects I for $s_I > \bar{s}$.
- 2. Assume $s_I \neq \bar{s}$. First, consider $s_I < x_1$. There are two subcases.

First, assume $s_I < \min\{\bar{s}, x_1\}$. Part 1 implies that R elects C under σ . Sequential rationality requires that I uses skill only if

$$s_I + \beta + \delta V(C) \ge x_1 + \beta + \delta V(C)$$

 $s_I \ge x_1,$

a contradiction.

Second, assume $s_I \in (\bar{s}, x_1)$. Part 1 implies that R re-elects I under σ . Sequential rationality requires that I uses skill only if

$$s_I + \beta + \delta[V(I|s_I) + \beta] \ge x_1 + \beta + \delta[V(I|s_I) + \beta]$$

$$s_I \ge x_1,$$

a contradiction.

Next, assume $s_I > x_1$. There are two subcases.

First, consider $s_I \in (x_1, \bar{s})$. Part 1 implies that R elects C under σ . Sequential rationality requires that I chooses the default only if

$$x_1 + \beta + \delta V(C) \ge s_I + \beta + \delta V(C)$$

 $x_1 \ge s_I$,

a contradiction.

Second, consider $s_I > \max\{\bar{s}, x_1\}$. Part 1 implies that R re-elects I under σ . Sequential rationality requires that I chooses the default only if

$$x_1 + \beta + \delta[V(I|s_I) + \beta] \ge s_I + \beta + \delta[V(I|s_I) + \beta]$$
$$x_1 \ge s_I,$$

a contradiction. \Box

Proposition 2. (Low-quality default) If $x_1 \in [0, \bar{s}]$ then there exists an equilibrium that is first-best.

Proof. There are two cases, $x_1 = 0$ and $x_1 \in (0, \bar{s}]$.

Case 1: $x_1 = 0$

Let $\alpha = (\sigma, \mu)$ be the assessment such that $\mu(s_I; x_1 = 0)$ puts probability one on $s_I = 0$, σ_I^2 and σ_C satisfy Lemma 0.1,

$$\sigma_I^1(s_I; x_1) = \begin{cases} skill & \text{if } s_I > 0\\ default & \text{if } s_I = 0, \end{cases}$$

and

$$\sigma_R(a_I^1; s_I) = \begin{cases} I & \text{if } s_I > \bar{s} \& a_I^1 = skill \\ C & \text{else.} \end{cases}$$

The default is observed with probability zero because I uses the default only if $s_I = 0$. Thus, the equilibrium concept places no restrictions on μ if I uses the default in the first period. Because σ_I^2 and σ_C satisfy Lemma 0.1, they satisfy the equilibrium conditions. I now verify that there are no profitable deviations from σ_I^1 and σ_R . First, consider $s_I > \bar{s}$. Using the default is a profitable deviation for I only if

$$x_1 + \beta + \delta V(C) > s_I + \beta + \delta [V(I|s_I) + \beta] \tag{3}$$

$$V(C) - V(I|s_I) - \beta > s_I - x_1, \tag{4}$$

The definition of \bar{s} implies $V(I|s_I) > V(C)$ for this case. Because $\beta \geq 0$ and $x_1 = 0$, (4) requires $s_I < 0 < \bar{s}$, a contradiction.

Next, consider $s_I \in (0, \bar{s}]$. Using the default is a profitable deviation for I only if

$$x_1 + \beta + \delta V(C) > s_I + \beta + \delta V(C) \tag{5}$$

$$0 > s_I - x_1, \tag{6}$$

a contradiction because $x_1 = 0$ in this case.

Finally, consider $s_I = 0$. Using skill is a profitable deviation for I only if

$$s_I + \beta + \delta V(C) > x_1 + \beta + \delta V(C) \tag{7}$$

$$s_I - x_1 > 0, \tag{8}$$

a contradiction because $x_1 = 0$ in this case.

Together, the three subcases show that I does not have a profitable deviation from σ_I^1 .

It follows from Lemma 0.1 that R does not have a profitable deviation from σ_R if I uses skill. If I uses the default, μ places probability one on $s_I = 0 < \bar{s}$. Therefore $V(C) > V(I|\mu)$, and re-electing I is not a profitable deviation. This shows that R does not have a profitable deviation, as desired.

To see that this equilibrium is first-best, notice that I uses skill if $s_I > x_1$ and chooses the default if $s_I < x_1$, and R re-elects I for all $s_I > \bar{s}$ and elects C for all $s_I < \bar{s}$.

Case 2:
$$x_1 \in (0, \bar{s}]$$

Let $\alpha = (\sigma, \mu)$ be the assessment such that σ_I^2 and σ_C satisfy Lemma 0.1,

$$\sigma_I^1(s_I; x_1) = \begin{cases} skill & \text{if } s_I > x_1 \\ default & \text{if } s_I \le x_1, \end{cases}$$

$$\sigma_R(a_I^1; s_I) = \begin{cases} I & \text{if } s_I > \bar{s} \& a_I^1 = skill \\ C & \text{else,} \end{cases}$$

and

$$\mu(s_I; x_1) = \begin{cases} \frac{F(s_I)}{F(x_1)} & \text{for } s_I \in [0, x_1] \\ 1 & \text{for } s_I \in (x_1, 1]. \end{cases}$$

It is straightforward to verify that μ is consistent with σ . Because σ_I^2 and σ_C satisfy Lemma 0.1, they satisfy the equilibrium conditions. I now verify that there are no profitable deviations from σ_I^1 and σ_R .

First, consider $s_I > \bar{s}$. Using the default is a profitable deviation for I only if

$$x_1 + \beta + \delta V(C) > s_I + \beta + \delta [V(I|s_I) + \beta] \tag{9}$$

$$x_1 + V(C) - V(I|s_I) - \beta > s_I,$$
 (10)

The definition of \bar{s} implies $V(I|s_I) > V(C)$ for this case. Because $\beta \geq 0$, (10) requires $s_I < x_1$, which contradicts $x_1 \leq \bar{s} < s_I$.

Next, consider $s_I \in (x_1, \bar{s}]$. Using the default is a profitable deviation for I only if

$$x_1 + \beta + \delta V(C) > s_I + \beta + \delta V(C) \tag{11}$$

$$x_1 > s_I, \tag{12}$$

a contradiction.

Finally, consider $s_I \leq x_1$. Using skill is a profitable deviation for I only if

$$s_I + \beta + \delta V(C) > x_1 + \beta + \delta V(C) \tag{13}$$

$$s_I > x_1, \tag{14}$$

a contradiction.

Altogether, the three subcases show that I does not have a profitable deviation from σ_I^1 .

By Lemma 0.1, R does not have a profitable deviation from σ_R if I uses skill. To

see that R does not have a profitable deviation from σ_R if I uses the default, notice that $x_1 \leq \bar{s} < 1$ implies $F(x_1) < 1$ because f is strictly positive over [0,1]. Therefore $\mu(s_I; x_1) = \frac{F(s_I)}{F(x_1)} > F(s_I)$ for all $s_I \in [0, x_1)$. Because $\mu(s_I; x_1) = 1$ for $s_I \geq x_1$ it follows that $\mu(s_I; x_1) \geq F(s_I)$ for $s_I \geq x_1$. Therefore μ is first order stochastically dominated by F. Thus, R strictly prefers to elect C after observing x_1 . This shows that R does not have a profitable deviation.

To see that this equilibrium is first-best, notice that I uses skill if $s_I > x_1$ and chooses the default if $s_I < x_1$, and R re-elects I for all $s_I > \bar{s}$ and elects C for all $s_I < \bar{s}$.

Proposition 3. There exists \underline{x} such that if $x_1 \in (\underline{x}, \overline{s})$ then every equilibrium is first-best. Additionally, \underline{x} is strictly decreasing in β and there exists $\overline{\beta} > 0$ such that if $\beta > \overline{\beta}$ then every equilibrium is first-best for all $x_1 \in [0, \overline{s}]$.

Proof. Define $\underline{x} = \delta[V(C) - V(I|s_I = 0) - \beta]$, and consider $x_1 \in (\underline{x}, \overline{s}]$. Clearly, \underline{x} is strictly decreasing in β . Let $\alpha = (\sigma, \mu)$ denote an equilibrium. Because $x_1 \leq \overline{s}$, σ specifies that I uses skill if $s_I > \overline{s}$.

The proof proceeds in two parts. In the first part, I show that if $x_1 \in (\underline{x}, \overline{s}]$ then α specifies that R elects C with probability one if I chooses the default. Using part one, the second part shows that α is first-best.

Part 1: I first show that R must elect C in equilibrium if I chooses the default. To show a contradiction, assume R re-elects I with probability $\eta \in (0,1]$ if I chooses the default. By Lemma 1, I loses re-election after using skill if $s_I < \bar{s}$. Thus, I strictly prefers to choose the default at $s_I < \bar{s}$ if and only if

$$x_1 + \beta + \delta[(1 - \eta)V(C) + \eta(V(I|s_I) + \beta)] > s_I + \beta + \delta V(C).$$
 (15)

There are two cases: $\underline{x} \ge 0$ and $\underline{x} < 0$.

First, consider $\underline{x} \geq 0$. Notice that

$$x_{1} + \beta + \delta[(1 - \eta)V(C) + \eta(V(I|s_{I} = 0) + \beta)] > \underline{x} + \beta + \delta[(1 - \eta)V(C) + \eta(V(I|s_{I} = 0) + \beta)]$$

$$(16)$$

$$\geq \eta \underline{x} + \beta + \delta[(1 - \eta)V(C) + \eta(V(I|s_{I} = 0) + \beta)],$$

$$(17)$$

where $x_1 > \underline{x}$ implies (16), and (17) follows from $\eta \in (0,1]$ for $\underline{x} \geq 0$. Using the definition

of \underline{x} and simplifying,

$$\eta \underline{x} + \beta + \delta[(1 - \eta)V(C) + \eta(V(I|s_I = 0) + \beta)] = \beta + \delta V(C). \tag{18}$$

Using (18), (17) implies

$$x_1 + \beta + \delta[(1 - \eta)V(C) + \eta(V(I|s_I = 0) + \beta)] > s_I + \beta + \delta V(C), \tag{19}$$

for $s_I = 0$. Because both sides of (19) are continuous in s_I , there exists $\underline{s} \in (0, \overline{s})$ such that

$$x_1 + \beta + \delta[(1 - \eta)V(C) + \eta(V(I|s_I) + \beta)] > s_I + \beta + \delta V(C)$$
 (20)

for all $s_I \in [0, \underline{s})$.

Second, consider $\underline{x} < 0$. Notice that $x_1 \ge 0 > \underline{x}$ and $\eta \in (0,1]$ imply

$$x_{1} + \beta + \delta[(1 - \eta)V(C) + \eta(V(I|s_{I} = 0) + \beta)] \ge 0 + \beta + \delta[(1 - \eta)V(C) + \eta(V(I|s_{I} = 0) + \beta)]$$

$$(21)$$

$$> \eta \underline{x} + \beta + \delta[(1 - \eta)V(C) + \eta(V(I|s_{I} = 0) + \beta)].$$

$$(22)$$

An argument analogous to the first case then establishes the existence of $\underline{s} \in (0, \overline{s})$ such that (19) holds for all $s_I \in [0, \underline{s})$.

We have shown α must specify that I chooses the default for all $s_I \in [0, \underline{s})$. Thus, μ is well defined and places positive probability on $[0,\underline{s})$. Because $x_1 < \overline{s}$, we know I uses skill if $s_I > \overline{s}$. Thus, μ places probability zero on s_I such that $V(I|s_I) > V(C)$ and positive probability on s_I such that $V(I|s_I) < V(C)$. It follows that $V(I|\mu) < V(C)$ if I chooses the default under α . Therefore α specifies that I elects C with probability one if I chooses the default, a contradiction.

Part 2: The preceding argument establishes that R elects C with probability one in every equilibrium if $x_1 \in (\underline{x}, \overline{s}]$. I now show that this implies every equilibrium is first-best.

We know σ specifies that I use skill if $s_I > \bar{s}$. Consider $s_I < \bar{s}$. The condition for I to strictly prefer to use skill under α is

$$s_I + \beta + \delta V(C) > x_1 + \beta + \delta V(C) \tag{23}$$

$$s_I > x_1. (24)$$

It follows that I strictly prefers to use skill for all $s_I \in (x_1, \bar{s})$ and strictly prefers to choose the default for all $s_I \in [0, x_1)$.

Finally consider $s_I = \bar{s}$ and again let η be the probability that R re-elects I after observing $s_I = \bar{s}$. The condition for I to strictly prefer to use skill under α is

$$\bar{s} + \beta + \delta[(1 - \eta)V(C) + \eta(V(I|s_I = \bar{s}) + \beta)] > x_1 + \beta + \delta V(C),$$
 (25)

which is equivalent to

$$\bar{s} + \delta \eta [V(I|s_I = \bar{s}) - V(C) + \beta] > \bar{s} + \delta \eta \beta \tag{26}$$

$$\geq x_1,$$
 (27)

where (26) follows from $V(I|s_I = \bar{s}) = V(C)$ and (27) follows from $\delta \eta \beta \geq 0$. Thus, I strictly prefers to use skill in this case if $x_1 < \bar{s}$.

Altogether, we have shown that I uses skill if $s_I > x_1$ and chooses default if $s_I < x_1$ under α . Thus, α is such that R re-elects I for all s_I such that $V(I|s_I) > V(C)$ and elects C for all s_I such that $V(I|s_I) < V(C)$. This establishes that α is first-best, as desired. \square

Proposition 4. If $x_1 \in [0, \overline{s}]$ then ex ante there is zero probability that the voter re-elects the incumbent for choosing the default in equilibrium.

Proof. Consider $x_1 \in [0, \bar{s}]$. Let $\alpha = (\sigma, \mu)$ denote an equilibrium. Because $x_1 \leq \bar{s}$, α specifies that I use skill if $s_I > \bar{s}$. Therefore I must choose the default with probability zero under α in order for R to re-elect I with positive probability after observing x_1 . It follows that ex ante there is zero probability of observing I win re-election after choosing the default under α .

Proposition 5. If $x_1 \in (\bar{s}, 1)$ then every equilibrium of the incomplete information model has the following features:

- 1. If the incumbent chooses the default, or if $s_I < \bar{s}$ and the incumbent uses skill, then the voter elects the challenger. If $s_I > \bar{s}$ and the incumbent uses skill, then the voter re-elects the incumbent.
- 2. There exists $s_{\beta} \in [\bar{s}, x_1)$ such that the incumbent uses skill if $s_I > s_{\beta}$, and chooses the default if $s_I < s_{\beta}$.

Proof. Fix $x_1 \in (\bar{s}, 1)$ and let $\alpha = (\sigma, \mu)$ be an equilibrium.

1. Because σ is sequentially rational, Lemma 0.1 implies that σ_R must specify that R elects I if $s_I > \bar{s}$ and I uses skill and elects C if $s_I < \bar{s}$ and I uses skill.

I now prove that α must specify that R elects C after observing the default. To show a contradiction, assume that α specifies that R elects I after observing the default. Because α is an equilibrium, I's strategy must be sequentially rational. I now show that this implies that I uses skill if $s_I > x_1$ and uses the default if $s_I < x_1$.

First, consider $s_I > x_1$. Sequential rationality requires that I chooses the default only if

$$x_1 + \beta + \delta[V(I|s_I) + \beta] \ge s_I + \beta + \delta[V(I|s_I) + \beta]$$
$$x_1 \ge s_I,$$

a contradiction. Thus, α specifies that I uses skill.

Next, consider $s_I \in (\bar{s}, x_1)$. Sequential rationality requires that I uses skill only if

$$s_I + \beta + \delta[V(I|s_I) + \beta] \ge x_1 + \beta + \delta[V(I|s_I) + \beta]$$

$$s_I \ge x_1,$$

a contradiction. Thus, α specifies that I chooses the default.

Consider $s_I = \bar{s}$. By definition, $V(I|\bar{s}) = V(C)$. Sequential rationality requires that I uses skill only if

$$\bar{s} + \beta + \delta V(C) \ge x_1 + \beta + \delta [V(I|\bar{s}) + \beta].$$
 (28)

By $x_1 > \bar{s}$ and $\beta \geq 0$,

$$x_1 + \beta + \delta[V(I|\bar{s}) + \beta] > \bar{s} + \beta + \delta[V(I|\bar{s}) + \beta] \tag{29}$$

$$\geq \bar{s} + \beta + \delta V(C),\tag{30}$$

which contradicts (28). Thus, α specifies that I chooses the default.

Finally, consider $s_I \in [0, \bar{s})$. By (29) and (30),

$$x_1 + \beta + \delta[V(I|\bar{s}) + \beta] > \bar{s} + \beta + \delta V(C)$$

$$x_1 > \bar{s} + \delta[V(C) - V(I|\bar{s}) - \beta]$$
(31)

is satisfied for \bar{s} . To show that (31) is satisfied for s_I , I prove that the right hand side

(RHS) of (31) is strictly increasing in s_I . By Lemma 0.1,

$$V(I|s_I) = \int_0^{s_I} s_I dG(x_2) + \int_{s_I}^1 x_2 dG(x_2).$$
 (32)

Define $\tilde{G}(a) = \int_0^a G(x_2) dx_2$. Applying integration by parts to (32) yields

$$\int_0^{s_I} s_I dG(x_2) + \int_{s_I}^1 x_2 dG(x_2) = s_I G(s_I) - s_I G(s_I) + G(1) - \int_{s_I}^1 G(x_2) dx_2$$
$$= G(1) - \tilde{G}(1) + \tilde{G}(s_I).$$

Thus, the RHS of (31) is equivalent to

$$s_I + \delta[V(C) - G(1) + \tilde{G}(1) - \tilde{G}(s_I) - \beta].$$
 (33)

Applying the Fundamental Theorem of Calculus to $\tilde{G}(s_I)$, the partial derivative of (33) with respect to s_I is $1 - \delta G(s_I)$. Together, $\delta \in (0,1]$ and g strictly positive over [0,1] imply $1 - \delta G(s_I) > 0$ for $s_I < 1$, so (33) is strictly increasing in s_I . Because $s_I = \bar{s}$ satisfies (31), all $s_I \in [0, \bar{s})$ satisfy (31). Therefore, I chooses the default if $s_I \in [0, \bar{s})$.

I have shown that if R elects I after observing the default, then α must specify that I uses skill if $s_I \in (x_1, 1]$ and chooses the default if $s_I \in [0, x_1)$. Consistency of α requires that R's beliefs about s_I after observing the default are $\mu(s_I; x_1) = \frac{F(s_I)}{F(x_1)} > F(s_I)$ for all $s_I \in [0, x_1)$, where the inequality follows from $F(x_1) < 1$ because $x_1 < 1$ and f is strictly positive over [0, 1]. Because $\mu(s_I; x_1) = 1$ for $s_I \geq x_1$ it follows that $\mu(s_I; x_1) \geq F(s_I)$ for $s_I \geq x_1$. Thus, μ is first order stochastically dominated by F. It follows that R has a profitable deviation to elect C after observing x_1 , a contradiction.

2. Define \hat{s}_{β} to be the unique $s \in \mathbb{R}$ that solves

$$s + \delta V(I|s) = x_1 + \delta [V(C) - \beta]. \tag{34}$$

To see that \hat{s}_{β} exists, notice that the left hand side of (34) is continuous and strictly increasing in s and the right hand side is constant in s. Notice that (34) is equivalent to

$$s = x_1 + \delta[V(C) - V(I|s) - \beta].$$
 (35)

It follows that

$$s < x_1 + \delta[V(C) - V(I|s) - \beta] \tag{36}$$

if and only if $s < \hat{s}_{\beta}$ and

$$s > x_1 + \delta[V(C) - V(I|s) - \beta] \tag{37}$$

if and only if $s > \hat{s}_{\beta}$. Finally, inspection of (35) shows that $\hat{s}_{\beta} < x_1$ because $x_1 > \bar{s}$, $\delta > 0$, $\beta \geq 0$, and V(I|s) > V(C) for $s > \bar{s}$.

Let $s_{\beta} = \max\{\bar{s}, \hat{s}_{\beta}\}$. Clearly, $s_{\beta} \geq \bar{s}$ by definition. Also, properties of \hat{s}_{β} imply $s_{\beta} < x_1$. Thus, $s_{\beta} \in [\bar{s}, x_1)$

Consider $s_I > s_{\beta}$. Sequential rationality requires that I uses skill at s_I if

$$s_I + \beta + \delta[V(I|s_I) + \beta] > x_1 + \beta + \delta V(C)$$

$$s_I > x_1 + \delta[V(C) - V(I|s_I) - \beta],$$
(38)

which is equivalent to $s_I > \hat{s}_{\beta}$ by (37). Because $s_I > s_{\beta} \geq \hat{s}_{\beta}$, (38) is satisfied.

Next, assume $s_I < s_{\beta}$. There are three subcases.

First, consider $s_I \in (\bar{s}, s_{\beta})$. Sequential rationality requires that I uses the default at s_I if

$$s_I + \beta + \delta[V(I|s_I) + \beta] < x_1 + \beta + \delta V(C)$$
(39)

$$s_I < x_1 + \delta[V(C) - V(I|s_I) - \beta],$$
 (40)

which is equivalent to $s_I < \hat{s}_{\beta}$ by (36). By definition, $s_{\beta} > \bar{s}$ requires $s_{\beta} = \hat{s}_{\beta}$, so (40) is equivalent to $s_I < s_{\beta}$, which holds.

Next, consider $s_I = \bar{s} < s_{\beta}$. Notice that $\beta \geq 0$ and the definition of \bar{s} imply

$$s_I + \beta + \delta[V(I|s_I) + \beta] \ge s_I + \beta + \delta V(C). \tag{41}$$

Therefore I weakly prefers to win re-election after using skill if $s_I = \bar{s}$. Thus, sequential rationality requires that I uses the default at s_I if

$$s_I + \beta + \delta[V(I|s_I) + \beta] < x_1 + \beta + \delta V(C). \tag{42}$$

Notice that (42) is equivalent to (39). Because $s_I = \bar{s} < s_\beta$, (36) implies that (42) holds.

Thus, α must specify that I uses the default at s_I .

Finally, consider $s_I < \bar{s}$. Sequential rationality requires that I uses the default at s_I if

$$s_I + \beta + \delta V(C) < x_1 + \beta + \delta V(C)$$

$$s_I < x_1,$$

which holds because $s_I < \bar{s} \le s_\beta < x_1$.

Altogether, the three cases establish that α must specify that I uses the default if $s_I < s_{\beta}$, as desired.

Lemma 2. If $x_1 \in (\bar{s}, 1)$ then there exists $s_0 \in [s_\beta, x_1)$ such that in every equilibrium efficient showing off occurs if $s_I \in [s_0, x_1)$ and inefficient showing off occurs if $s_I \in (s_\beta, s_0)$.

Proof. Let $\alpha = (\sigma, \mu)$ be an equilibrium.

As in Proposition 5, define $s_{\beta} = \max\{\bar{s}, \hat{s}_{\beta}\}$, where \hat{s}_{β} is the unique $s \in \mathbb{R}$ that solves

$$s + \delta V(I|s) = x_1 + \delta [V(C) - \beta]. \tag{43}$$

The right hand side of (43) is strictly decreasing in β and constant in s, while the left hand side of (43) is strictly increasing in s and constant in β . Therefore, \hat{s}_{β} is strictly decreasing in β .

Because $x_1 > \bar{s}$ and $\delta > 0$, (43) implies $\hat{s}_0 > \bar{s}$, where \hat{s}_0 is $\hat{s}_{\beta=0}$. It follows that $s_0 = \hat{s}_0$. By Proposition 5, $s_0 < x_1$ and I shows off at $s_I \in (s_\beta, x_1)$ under α . If $s_I \in [s_0, x_1)$ then $s_I + \delta V(I|s_I) \geq x_1 + \delta V(C)$, so I using skill and winning re-election is second-best. Thus, showing off is efficient in this case. On the other hand, if $s_I \in (s_\beta, s_0)$ then $s_I + \delta V(I|s_I) < x_1 + \delta V(C)$, so I using skill and winning re-election is not second best, and showing off is inefficient.

Proposition 6. Assume $x_1 \in (\bar{s}, 1)$. If $\beta \in [0, \frac{x_1 - \bar{s}}{\delta})$ then in every equilibrium the occurrence of inefficient showing off is strictly increasing in β . If $\beta \geq \frac{x_1 - \bar{s}}{\delta}$ then in every equilibrium the incumbent uses skill in the first period for all $s_I \in (\bar{s}, 1]$.

Proof. Fix $x_1 \in (\bar{s}, 1)$. Let $\alpha = (\sigma, \mu)$ be an equilibrium. Define \hat{s}_{β} as in Proposition 5 and let $s_{\beta} = \max\{\bar{s}, \hat{s}_{\beta}\}.$

I first show that s_{β} is strictly decreasing in β for $\beta \in [0, \frac{x_1 - \bar{s}}{\delta})$. Recall that $\hat{s}_0 > \bar{s}$, \hat{s}_{β} is continuous and strictly decreasing in β , and \bar{s} is constant in β . Thus, there exists

 $\bar{\beta} > 0$ such that $s_{\beta} = \hat{s}_{\beta} > \bar{s}$ if $\beta \in [0, \bar{\beta})$ and $s_{\beta} = \bar{s}$ if $\beta \geq \bar{\beta}$. In particular,

$$\bar{s} + \bar{\beta} + \delta[V(I|\bar{s}) + \bar{\beta}] = x_1 + \beta + \delta V(C) \tag{44}$$

$$\bar{\beta} = \frac{x_1 - \bar{s}}{\delta} + V(C) - V(I|\bar{s}) \tag{45}$$

$$\bar{\beta} = \frac{x_1 - \bar{s}}{\delta},\tag{46}$$

where (46) follows from (45) because $V(C) = V(I|\bar{s})$ by definition of \bar{s} .

Assume $\beta \in [0, \bar{\beta})$. Then $s_{\beta} = \hat{s}_{\beta}$ and it follows that s_{β} is strictly decreasing in β . By Lemma 2, inefficient showing off occurs at $s_I \in (s_{\beta}, s_0)$. Because $s_{\beta} = \hat{s}_{\beta} > \bar{s}$, s_{β} is strictly decreasing in β . Recall that s_0 is constant in β . Therefore the occurrence of inefficient showing off is strictly increasing in β .

To see that I uses skill at all $s_I \in (\bar{s}, 1]$ if $\beta \geq \bar{\beta}$, notice that (46) implies $s_{\beta} = \bar{s}$ for such β . By Proposition 5, I uses skill if $s_I > s_{\beta} = \bar{s}$, as desired.

Proposition 7. There exists $s^* \in [\bar{s}, 1)$ such that if $x_1 \in (s^*, 1)$ then showing off occurs in every equilibrium.

Proof. Let $\alpha = (\sigma, \mu)$ denote an equilibrium. Define $s^* = \max\{\bar{s}, \frac{1+\delta V_I(C|H)}{1+\delta}\}$. Notice that V(C|H) < 1 because f is strictly positive over $s_C \in [0, 1]$ and H is not degenerate on $x_2 = 1$. Thus, $\frac{1+\delta V_I(C|H)}{1+\delta} < 1$ and $\bar{s} < 1$, so $s^* < 1$. Consider $x_1 \in (s^*, 1)$. Because $s^* \geq \bar{s}$, we know that I uses skill if $s_I > x_1$.

Assume that showing off does not occur under α . Consistency of μ requires that R's beliefs about s_I after observing the default under α are $\mu(s_I; x_1) = \frac{F(s_I)}{F(x_1)} > F(s_I)$ for all $s_I \in [0, x_1)$, where the inequality follows from $F(x_1) < 1$ because $x_1 < 1$ and f is strictly positive over [0, 1]. Because $\mu(s_I; x_1) = 1$ for $s_I \geq x_1$ it follows that $\mu(s_I; x_1) \geq F(s_I)$ for $s_I \geq x_1$. Thus, μ is first order stochastically dominated by F, so α must specify that R elects C if I chooses the default.

Consider $s_I \in (s^*, x_1)$. Because $s_I \geq \bar{s}$, R re-elects I if I uses skill. Notice that

$$|s_I + \beta + \delta[V(I|s_I, x_1, a_I^1 = s_I) + \beta] \ge s_I + \beta + \delta(s_I + \beta)$$
 (47)

$$= (1+\delta)(s_I + \beta) \tag{48}$$

$$> x_1 + \beta + \delta V(C|s_I, x_1, a_I^1 = x_1),$$
 (50)

where (47) follows from $s_I \leq V(I|s_I, x_1, a_I^1 = s_I)$, (49) from $s_I > \frac{1+\delta V(C|H)}{1+\delta}$ and $\beta \geq 0$, and (50) from $V(C|H) > V(C|s_I, x_1, a_I^1)$ for all s_I, x_1 , and a_I^1 . This establishes that I

has a profitable deviation to use skill at s_I , contradicting the assumption that α is an equilibrium.

Proposition 8. If $x_1 \in int(S^W)$ then there does not exist an equilibrium that is first-best.

Proof. Let $\alpha = (\sigma, \mu)$ be an equilibrium that is first-best. Consider $x_1 \in \text{int}(S^W)$. Define $\hat{a}(s_I, x_1) \in [0, 1]^N$ to be the N-dimensional vector such that $\hat{a}_n(s_I, x_1) = \max\{s_I^n, x_1^n\}$ for each $n \in N$.

Because α is first-best, $\sigma_I^1 = \hat{a}(s_I, x_1)$ under α . If I chooses the default on every issue, consistency of μ and independence of F_n across n imply

$$\mu_n(s_I^n; x_1^n) = \begin{cases} \frac{F_n(s_I^n)}{F_n(x_1^n)} & \text{for } s_I^n \in [0, x_1^n) \\ 1 & \text{for } s_I^n \in [x_1^n, 1], \end{cases}$$
(51)

for all $n \in N$. It follows that $\mu_n(s_I^n; x_I^n) > F_n(s_I^n)$ for $s_I^n \in [0, x_I^n)$ because $x_1 \in \text{int}(S^W)$ implies $x_1^n < 1$ and f_n is strictly positive over [0, 1], so $F_n(x_1^n) < 1$. Additionally, $\mu_n(s_I^n; x_1^n) = 1$ for $s_I^n \geq x_1^n$. Thus, $\mu_n(s_I^n; x_1^n) \geq F_n(s_I^n)$ for $s_I^n \geq x_1^n$. It follows that μ_n is first order stochastically dominated by F_n for all $n \in N$. Therefore, if I chooses the default on every policy issue then R strictly prefers C on every dimension and strictly prefers to elect C. By sequential rationality, α must specify that R elects C if I chooses default policy on every issue, i.e. $\hat{a}(s_I, x_1) = x_1$.

By $x_1 \in \text{int}(S^W)$, there exist $s_I \in S^W$ such that $s_I^n < x_1^n$ for all $n \in N$. Consider such s_I . Because α is first-best, $\hat{a}_n(s_I, x_1) = x_n^1$. By $s_I \in S^W$, I wins re-election by using skill on every dimension. Note that $s_I^n < x_1^n$ for all $n \in N$ implies that s_I is the worst possible policy that guarantees I re-election. Deviating to s_I is profitable for I if and only if

$$\omega \cdot s_I + \beta + \delta[V(I|s_I) + \beta] > \omega \cdot x_1 + \beta + \delta V(C)$$

$$\omega \cdot (s_I - x_1) > \delta[V(C) - V(I|s_I) - \beta]. \tag{52}$$

Because $s_I \in S^W$, $V(I|s_I) > V(C)$, which implies that the right hand side of (52) is strictly negative because $\delta > 0$ and $\beta \geq 0$. Because $x_1 \in \text{int}(S^W)$ there exist s_I for which (52) is satisfied, a contradiction.