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Appendix:

Proof of Lemma 1. :

A civilian is about to betray the leader for sure regardless his type x and group size L, then

no rebellion can succeed. Therefore each civilian has no incentive to deviate given other

civilians’ strategies. Given the civilians’ strategies, it is obvious the best response for the

leader is to choose L = 0.

In the rest of this appendix, in the first step, I will prove the theoretical results under

one-cutoff strategy Proposition 2 and Proposition 4. It is because these results are easier to

establish and can also be used to prove the results of the two-cutoff strategy and Proposition

3.

Equation (6) can be rewritten as uR(x, L)|x=k−uB(x, L)|x=x∗ = 0, then define û(x∗,M) ≡

(1−Φ(Ax∗−M(L,mθ)))((αR−αB)x∗+βR−βB+γR−γB)−(γR−γB), where A = (1−λ)/σ,

M =
σεΦ−1(1− R̄

L
)+(1−λ)mθ
σ

when L ≤ B̄+ R̄ and M =
σεΦ−1( B̄

L
)+(1−λ)mθ
σ

when L > B̄+ R̄. Since

(1− Φ(Ax∗ −M(L,mθ)))((αR − αB)x∗ + βR − βB + γR − γB)− (γR − γB) = 0, (A.1)

is the equilibrium condition. The following lemma studies the shape of û(x∗).
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Lemma A.1. For all parameter values:

1. For a given M , û(x∗,M) is single peaked of x∗; lim
x∗→+∞

û(x∗,M) = −(γR − γB); and

lim
x∗→−∞

û(x∗,M) = −∞.

2. For a given x∗, û(x∗,M) increases in M when x∗ ≥ −(βR − βB + γR − γB)/(αR − αB),

and decreases in M otherwise.

Proof of Lemma A.1. :

1. Let f ≡ Ax∗ −M , and T ≡ βR−βB+γR−γB
αR−αB

û(x∗,M) is increasing in x∗ if and only if

1−Φ(f)
φ(f)

is greater than the finite positive constant A(x∗ + T ). Since f is increasing in x∗ and

1−Φ(f)
φ(f)

is decreasing monotonically in x∗ by the monotone hazard rate property of the normal

density function. It implies that 1−Φ(f)
φ(f)(x∗+T )

is decreasing monotonically in x∗ for x∗ > −T .

Thus we need to show that 1−Φ(f)
φ(f)(x∗+T )

passes through A. First we have lim
x∗→−T

1−Φ(f)
φ(f)(x∗+T )

= +∞,

it is because 1−Φ(f)
φ(f)

is finite when x∗ = −T .

lim
x∗→+∞

1− Φ(f)

φ(f)(x∗ + T )

= lim
x∗→+∞

−φ(f)fk
φ(f)− φ(f)ffk(x∗ + T )

= lim
x∗→+∞

fk
ffk(k + T )− 1

= 0

The first equality is due to l’Hopital’s rule and the fact that φ′(x) = −xφ(x), the second

equality is algebra, and the last equality uses the fact that fk = A and f is increasing in x∗.

Therefore, û is single peaked,

When x∗ approaches +∞, 1 − Φ(f) goes to 0, therefore, lim
x∗→+∞

û(x∗.M) = −(γR − γB).

Similarly x∗ goes to −∞, 1− Φ(f) approaches 1, Therefore lim
x∗→−∞

û(x∗.M) = −∞.

2. It is straightforward when take derivative with respect to M .

Proof of Proposition 2. : Still define T ≡ βR−βB+γR−γB
αR−αB

. When x∗ < −T , û is always less

than −(γR − γB). Since û is single peaked and increases in M when x∗ ≥ −T , therefore
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there exists unique Mmin, such that the peak of û tangent to zero, i.e max
x∗

(1 − Φ(Ax∗ −

Mmin))((αR − αB)x∗ + βR − βB + γR − γB)− (γR − γB) = 0.

1. If L ≤ B̄ + R̄, M =
σεΦ−1(1− R̄

L
)+(1−λ)mθ
σ

and increases with L. Therefore, when

mθ < σ
1−λ(Mmin − σε

σ
Φ−1( B̄

B̄+R̄
)), no matter what L is chosen, M cannot exceed Mmin.

If L > B̄ + R̄, M =
σεΦ−1( B̄

L
)+(1−λ)mθ
σ

and decreases with L. Consequently when mθ <

σ
1−λ(Mmin − σε

σ
Φ−1( B̄

B̄+R̄
)), M cannot exceed Mmin either. In summary, when mθ < m′min ≡

σ
1−λ(Mmin − σε

σ
Φ−1( B̄

B̄+R̄
)), no finite x∗ can be solved from Equation (6).

2. For a given mθ > m′min, when L ≤ B̄ + R̄, M =
σεΦ−1(1− R̄

L
)+(1−λ)mθ
σ

and increases

with L. Then let Ll
′ ≡ R̄/(1−Φ(M

minσ−(1−λ)mθ
σε

)). When L > B̄ + R̄, M =
σεΦ−1( B̄

L
)+(1−λ)mθ
σ

and decreases with L. Then let Lh
′ ≡ B̄/Φ(M

minσ−(1−λ)mθ
σε

). It is easy to show that when

Ll
′ ≤ L ≤ Lh

′
, we have M > Mmin. Next we need to show that the existence of the

equilibrium cutoff x∗ for such L.

Sufficiency: When L ≤ B̄+R̄, M =
σεΦ−1(1− R̄

L
)+(1−λ)mθ
σ

, then whenMmin ≤ σεΦ−1(1− R̄
L

)+(1−λ)mθ
σ

,

we have max
x∗

û ≥ 0. i.e. there exist finite x∗ satisfying Equation (6). Similarly, when

L > B̄ + R̄, M =
σεΦ−1( B̄

L
)+(1−λ)mθ
σ

, then when we have Mmin ≤ σεΦ−1( B̄
L

)+(1−λ)mθ
σ

. Therefore

there exist finite x∗ satisfying Equation (6).

Necessity: When the finite x∗ satisfying Equation (6) exists, then we must have max
x∗

û ≥ 0. When L ≤ B̄ + R̄, M =
σεΦ−1(1− R̄

L
)+(1−λ)mθ
σ

, then we must have
σεΦ−1(1− R̄

L
)+(1−λ)mθ
σ

≥

Mmin. Similarly, when L > B̄ + R̄, we must have
σεΦ−1( B̄

L
)+(1−λ)mθ
σ

≥Mmin.

Finally, because the payoffs satisfy the increasing return condition, we know for any type

x, remain neutral is a weakly dominated strategy. Therefore Inequality (7) is held when

x = x∗.

To prove Proposition 4, we need the following lemma:

Lemma A.2. When the finite cutoff can be solved from Equation (6), and let x∗ denote the

cutoff with smaller value when there are two solutions for Equation (6), then 1. ∂x∗(L,mθ)
∂L

< 0

when L < B̄ + R̄, ∂x∗(L,mθ)
∂L

> 0 when L ≥ B̄ + R̄. 2. ∂x∗(L,mθ)
∂mθ

< 0.
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û(x∗,Mmin)
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Figure 1: û represents the utility difference between joining the rebellion and turning in the leader. The

cutoff which is consistent with the equilibrium is solved from û(x∗,M) = 0. Solid curve-û(x∗,M) represents

the case when there exist two cutoffs xl and xh. For a given x∗, û(x∗,M) is decreasing with M. The dashed

curve û(x∗,Mmin), û(x∗,M ′) represent cases when there are one cutoff and no cutoff respectively, with

M ′ < Mmin < M .

Proof of Lemma A.2. : Since x∗ is the smaller cutoff threshold, it means when other

parameters are fixed, x∗ is less than or equal to xmax, where xmax is the maximal point of û.

For any x∗ ∈ (−∞, xmax), ∂û/∂x∗ > 0

Define

θ̄ ≡ max

{
x∗ − σεΦ−1

(
1− R̄

L

)
, x∗ − σεΦ−1

(
B̄

L

)}
.

1. By implicit function theory,

∂x∗

∂L
= −

∂û
∂L
∂û
∂x∗

=

−
φ̃σε
σ

(Φ−1
R̄

)′ R̄
L2 ((αR−αB)x∗+βR−βB+γR−γB)

−φ̃A((αR−αB)x∗+βR−βB+γR−γB)+(1−Φ̃)(αR−αB)
< 0, if L ≤ B̄ + R̄,

φ̃σε
σ

(Φ−1
B̄

)′ B̄
L2 ((αR−αB)x∗+βR−βB+γR−γB)

−φ̃A((αR−αB)x∗+βR−βB+γR−γB)+(1−Φ̃)(αR−αB)
> 0, if L > B̄ + R̄,

where Φ−1
R̄

= Φ−1(1− R̄
L

), Φ−1
B̄

= Φ−1( B̄
L

), φ̃ = φ( θ̄−λx−(1−λ)mθ
σ

), Φ̃ = Φ( θ̄−λx−(1−λ)mθ
σ

).

2.

∂x∗

∂mθ

= −
∂û
∂mθ
∂û
∂x∗

= −
φ̃1−λ

σ
((αR − αB)x∗ + βR − βB + γR − γB)

−φ̃A((αR − αB)x∗ + βR − βB + γR − γB) + (1− Φ̃)(αR − αB)
< 0.

Proof of Proposition 4. Let’s proof the second part first.

4



2.

∂u0

∂L
=

−
(V+γR)
σθ

(∂x
∗

∂L
− σε(Φ−1

R̄
)′ R̄
L2 )φ( θ̂−mθ

σθ
) > 0 if L ≤ B̄ + R̄

− (V+γR)
σθ

(∂x
∗

∂L
+ σε(Φ

−1
B̄

)′ B̄
L2 )φ( θ̂−mθ

σθ
) < 0 if L > B̄ + R̄

By, Lemma A.2, u0 is increasing with L when L ≤ B̄ + R̄, and decreasing with L when

L > B̄ + R̄. Therefore L = B̄ + R̄ can let u0 achieve the maximal value for any given mθ.

1. Furthermore u0 increases with mθ because ∂u0(mθ,B̄+R̄)
∂mθ

= −φ(∂x
∗(mθ,B̄+R̄)
∂mθ

− 1) 1
σθ
> 0.

When mθ → −γ, we have u0(mθ, B̄+R̄)→ −∞; and when mθ → +∞, u0(mθ, B̄+R̄)→ V >

0. Therefore there exists unique m∗θ, such that u0(mmin, B̄ + R̄) = 0. Moreover m∗θ > mmin,

because u(mmin, B̄ + R̄) = −γR.

Next we begin to proof the results for the two-cutoff strategy.

Proof of Lemma 2. Since the equilibrium condition only involve one equation: Equation

(4). It is straightforward to prove this Lemma by following the proof of Proposition 2. Let

the minimal mθ needed to solve the cutoff as mmin
1

Proof of Lemma 3. Same proof as Proposition 2. Let the minimal mθ needed to solve the

cutoff as mmin
2

Define the following notations:

ur(x,M) ≡ (1− Φ(Ax−M))(αRx+ βR + γR)− γR,

un(x,M) ≡ (1− Φ(Ax−M))(αNx+ βN + γN)− γN ,

ub(x,M) ≡ (1− Φ(Ax−M))(αBx+ βB + γB)− γB,

∆urn(x,M) ≡ ur − un = (1− Φ(Ax−M))((αR − αN)x+ βR − βN + γR − γN)− (γR − γN),

∆unb(x,M) ≡ un − ub = (1− Φ(Ax−M))((αN − αB)x+ βN − βB + γN − γB)− (γN − γB).

Proof of Proposition 1. :

First, we prove some properties for the notations defined above. Similar as Lemma A.1, urn

is also single peaked, and increases with M when x > −(βR−βN +γR−γN)/(αR−αN). Then
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there exists a Mmin
1 such that ∆urn(x,Mmin

1 ) = 0 has one finite root. For any M > Mmin
1 ,

∆urn(x,M) = 0 has two roots. For any M < Mmin
1 , ∆urn(x,M) = 0 has no finite root.

We use xl and xh to denote the small and large root respectively, for ∆urn(x) = 0, when

they exist. Since we only care about small root xl, I only focus on xl, and xh has the similar

properties. By the Implicate Function Theory, it is easy to show xl is a decreasing function

of M .

Next, we will show ∂un(xl,M)
∂M

< 0. It is because ∂un(xl,M)
∂M

= φ(αNx
l + βN + γN)[(−A +

1−Φ
φ

αN
αNxl+βN+γN

) ∂x
l

∂M
− 1]. We have ∂xl

∂M
< 0. (αNx

l + βN + γN) > 0 because xl > −βN+γN
αN

(actually xl > 0). Similar as the proof in Lemma A.1, we have −A+ 1−Φ
φ

αN
αNxl+βN+γN

> 0, it

is because un(x,M) is an increasing function of x before its peak. Therefore ∂un(xl,M)
∂M

< 0,

and ∂ur(xl,M)
∂M

< 0 because xl is the solution of ur − un = 0.

Similarly there exists a Mmin
2 such that ∆unb(x,M

min
2 ) = 0 has finite roots. For any

M > Mmin
2 , ∆unb(x

∗,M) = 0 has two roots. For any M < Mmin
2 , ∆unb(x,M) = 0 has no

finite root. We use x
′l to denote the small root for ∆unb(x) = 0, if it exists. It is easy to

show that x
′l is a decreasing function of M and ur(x

′l(M),M) is decreasing with M . Due

to the decreasing return condition, we have x
′l(M) < xl(M)

If there exists a pair (x∗N , x
∗
R) which is consistent with the equilibrium for given (mθ, L),

it must satisfies:

(1−Φ(Ax∗R −M(mθ, L)))((αR − αN)x∗R + βR − βN + γR − γN)− (γR − γN) = 0, (A.2)

(1−Φ(
1

σ
x∗R −

λ

σ
x∗N −M(mθ, L)))((αN − αB)x∗N + βN − βB + γN − γB)− (γN − γB) = 0,

(A.3)

x∗R − σεΦ−1(1− R̄

L
) ≥ x∗N − σεΦ−1(

B̄

L
), (A.4)

x∗R ≥ x∗N , (A.5)

where M = σε
σ

Φ−1(1− R̄
L

) + 1−λ
σ
mθ, or
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(1−Φ(
1

σ
x∗N −

λ

σ
x∗R −M(mθ, L)))((αR − αN)x∗R + βR − βN + γR − γN)− (γR − γN) = 0,

(A.6)

(1−Φ(Ax∗N −M(mθ, L)))((αN − αB)x∗N + βN − βB + γN − γB)− (γN − γB) = 0, (A.7)

x∗R − σεΦ−1(1− R̄

L
) < x∗N − σεΦ−1(

B̄

L
), (A.8)

x∗R ≥ x∗N , (A.9)

where M = σε
σ

Φ−1( B̄
L

) + 1−λ
σ
mθ.

Next we need to prove the following lemma

Lemma A.3. For any given mθ and L, two cutoff thresholds (x∗N(mθ, L), x∗R(mθ, L)) exist,

which is consistent with the equilibrium, if and only if Mmin
1 ≤ σε

σ
Φ−1(1 − R̄

L
) + 1−λ

σ
mθ and

Mmin
2 ≤ σε

σ
Φ−1( B̄

L
) + 1−λ

σ
mθ.

Proof of Lemma A.3.

Sufficiency: For any (mθ, L) with σε
σ

Φ−1(1− R̄
L

) + 1−λ
σ
mθ > Mmin

1 and σε
σ

Φ−1( B̄
L

) + 1−λ
σ
mθ >

Mmin
2 , let x∗R(mθ, L) and x∗N(mθ, L) be the solutions for equation (A.2) and (A.7) respectively.

For this fixed mθ, if x∗R − σεΦ−1(1− R̄
L

) > x∗N − σεΦ−1( B̄
L

), then when we choose a larger

L, the solution x∗N(mθ, L) will increase and x∗R(mθ, L) will decrease, therefore the left hand

side of this inequality will decrease and the right hand side of this inequality will increase.

We continuously increase L until L = L′ such that x∗R − σεΦ−1(1 − R̄
L′

) = x∗N − σεΦ−1( B̄
L′

).

That L′ exists because Φ−1(1− R̄
L

) approaches +∞ and Φ−1( B̄
L

) approaches −∞, and both

x∗R(mθ, L) and x∗N(mθ, L) exists with finite value when L is sufficiently large.

Similarly, when x∗R − σεΦ
−1(1 − R̄

L
) < x∗N − σεΦ

−1( B̄
L

), we can decrease L to get the

equality, and let L′′ be the solution to hold the equality.

We must have L′(mθ) = L
′′
(mθ), it is because any x∗R(mθ, L) satisfying (A.2) is monotonously

decreasing with L, and x∗N(mθ, L) satisfying (A.7) is monotonously increasing with L, there-

fore (x∗R(mθ, L), x∗N(mθ, L)) satisfying (A.2), (A.7) and x∗R−σεΦ−1(1− R̄
L

) = x∗N −σεΦ−1( B̄
L

)

is unique for a given mθ.
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For a given mθ and L, first, we focus on the case when Mmin
1 < σε

σ
Φ−1(1 − R̄

L
) + 1−λ

σ
mθ

and L < L′(mθ).

Claim 1. For given (mθ, L) When Mmin
1 < σε

σ
Φ−1(1− R̄

L
)+1−λ

σ
mθ and the pair (x∗R(mθ, L), x∗N(mθ, L))

satisfies (A.2)-(A.4), it must satisfy (A.5).

Proof of Claim 1: When Mmin
1 < σε

σ
Φ−1(1− R̄

L
) + 1−λ

σ
mθ. Let x∗R be the solution solved

from (A.2). For a given x∗R solved from (A.2), let x∗N be the solution solved from (A.3).

When (x∗R, x
∗
N) satisfies x∗R − σεΦ−1(1− R̄

L
) ≥ x∗N − σεΦ−1( B̄

L
), we have

(1− Φ(
x∗R − λx∗R

σ
− σε
σ

Φ−1(1− R̄

L
)− 1− λ

σ
mθ))(αNx

∗
R + βN + γN)− γN

= un(x∗R)

> ub(x
∗
R)

= (1− Φ(
x∗R − λx∗R

σ
− σε
σ

Φ−1(1− R̄

L
)− 1− λ

σ
mθ)))(αBx

∗
R + βB + γB)− γB.(A.10)

The first equality comes from that x∗R is solved from (A.2) and the definition of un. The

second inequality comes from that M = σε
σ

Φ−1(1 − R̄
L

) + 1−λ
σ
mθ and x∗R is the indifference

point between participation and remain neutral, at this point, the utility from betraying the

leader is less than that from participation. The last equality is the definition of ub. Since

(1− Φ(
x∗R − λx∗N

σ
− σε
σ

Φ−1(1− R̄

L
)− 1− λ

σ
mθ))((αN − αB)x∗N + βN − βB + γN − γB).

is an increasing function of x∗N , and we have

(1−Φ(
x∗R − λx∗R

σ
−σε
σ

Φ−1(1−R̄
L

)−1− λ
σ

mθ))((αN−αB)x∗R+βN−βB+γN−γB)−(γN−γB) > 0.

Therefore we have x∗N solved from (A.3) is less than x∗R solved from (A.2). �,

Next, define mmin
θ satisfies Mmin

1 = σε
σ

Φ−1(1 − R̄
L

) + 1−λ
σ
mmin
θ = Mmin

2 = σε
σ

Φ−1( B̄
L

) +

1−λ
σ
mmin
θ . For any (mθ, L), when mmin

θ < mθ, we have the following claim:

Claim 2. For any (mθ, L), when Mmin
1 < σε

σ
Φ−1(1− R̄

L
)+ 1−λ

σ
mθ, m

min
θ < mθ, and x∗R(mθ, L),

x∗N(mθ, L) satisfying (A.2) and (A.3), then we have x∗R − σεΦ−1(1− R̄
L

) > x∗N − σεΦ−1( B̄
L

).
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Proof of Claim 2: For the given mθ with mmin
θ < mθ, we know there exists a L′(mθ)

such that (x∗N(mθ, L
′(mθ)), x

∗
R(mθ, L

′(mθ))) satisfy (A.2) and (A.7) with x∗R(mθ, L
′(mθ)) −

σεΦ
−1(1− R̄

L′(mθ)
) = x∗N(mθ, L

′(mθ))− σεΦ−1( B̄
L′(mθ)

).

x∗R − σεΦ−1(1− R̄
L

) = x∗N − σεΦ−1( B̄
L

) is not possible, because L < L′(mθ) and L′(mθ) is

the unique L satisfying satisfy (A.2) and (A.7) with x∗R(mθ, L
′(mθ)) − σεΦ−1(1 − R̄

L′(mθ)
) =

x∗N(mθ, L
′(mθ))− σεΦ−1( B̄

L′(mθ)
).

Now assume x∗R − σεΦ−1(1 − R̄
L

) < x∗N − σεΦ−1( B̄
L

). By the continuity of the solution,

we can choose a Lc with L′ − Lc < εc such that the solution x∗R(mθ, L
c) and x∗N(mθ, L

c)

solved from (A.2) and (A.3) has the following property that x∗R(mθ, L
c)− x∗R(mθ, L

′(mθ)) >

x∗N(mθ, L
c) − x∗N(mθ, L

′(mθ)). It means that we choose Lc smaller than but close enough

to L′(mθ) such that the increase of x∗R is larger than the increase of x∗N . Then we have

x∗R(mθ, L
c)− σεΦ−1(1− R̄

Lc
) > x∗N(mθ, L

c)− σεΦ−1( B̄
Lc

).

Next, we need to show that this Lc can be found. We have

∂x∗N(mθ, L)

∂L
=

1−Φ̂

φ̂

1

x∗R+
βR−βN+γR−γN

αR−αN

+ (1−λ)
σ

1−Φ̃
φ̃

1

x∗N+
βN−βB+γN−γB

αN−αB

+ (1−λ)
σ

∂x∗R(mθ, L)

∂L

where Φ̂ = Φ(1−λ
σ
x∗R− σε

σ
Φ−1(1− R̄

La
)− 1−λ

σ
mθ), φ̂ is Φ̂’s density function and Φ̃ = Φ(

x∗N−λx
∗
R

σ
−

σε
σ

Φ−1(1− R̄
L

)− 1−λ
σ
mθ) and Φ̃’s density function.

At mθ, L
′(mθ), Φ̂ = Φ̃ and φ̂ = φ̃. Because x∗R(mθ, L

′(mθ)) > x∗N(mθ, L
′(mθ)) and

decreasing return condition, we have x∗R(mθ, L
′(mθ)) + βR−βN+γR−γN

αR−αN
> x∗N(mθ, L

′(mθ)) +

βN−βB+γN−γB
αN−αB

> 0. Therefore |∂x
∗
N (mθ,L)

∂L
| < |∂x

∗
R(mθ,L)

∂L
| at (mθ, L

′(mθ)), furthermore, it means

there exists an εc such that any L satisfies 0 < L′(mθ)− L < εc can be our Lc.

After that, since x∗R(mθ, L
c)−σεΦ−1(1− R̄

Lc
) > x∗N(mθ, L

c)−σεΦ−1( B̄
Lc

) and x∗R(mθ, L)−

σεΦ
−1(1 − R̄

L
) < x∗N(mθ, L

c) − σεΦ
−1( B̄

L
), by the continuity, we must have a Ld such that

x∗N(mθ, L
d) and x∗R(mθ, L

d) satisfy (A.2) and (A.3) with x∗R(mθ, L
d) − σεΦ

−1(1 − R̄
Ld

) =

x∗N(mθ, L
d)− σεΦ−1( B̄

Ld
). It is a contradiction with the uniqueness of L′(mθ).

Therefore we have x∗R(mθ, L)− σεΦ−1(1− R̄
L

) > x∗N(mθ, L)− σεΦ−1( B̄
L

). �

So far, we prove that when Mmin
1 < σε

σ
Φ−1(1− R̄

L
) + 1−λ

σ
mθ and L ≤ L′(mθ), there exist

(x∗N(mθ, L), x∗R(mθ, L)), which is consistent with the cutoff equilibrium.
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The case that when Mmin
2 < σε

σ
Φ−1( B̄

L
) + 1−λ

σ
mθ and L > L′(mθ) is similar with the

discussion above.

Necessity: Suppose two-cutoff thresholds (x∗N(mθ, L), x∗R(mθ, L)) exist,

For any mθ and L with Mmin
1 < σε

σ
Φ−1(1− R̄

L
)+ 1−λ

σ
mθ but Mmin

2 > σε
σ

Φ−1(1− R̄
L

)+ 1−λ
σ
mθ,

then x∗R and x∗N can only be solved from (A.2) and (A.3), however, these solutions cannot

satisfy (A.4) by Claim 2. Similarly, for any mθ and L with Mmin
2 < σε

σ
Φ−1( B̄

L
) + 1−λ

σ
mθ

but Mmin
1 > σε

σ
Φ−1( B̄

L
) + 1−λ

σ
mθ, then x∗R and x∗N can only be solved from (A.6) and (A.7),

however, these solutions cannot satisfy (A.8). Finally, when Mmin
1 > σε

σ
Φ−1(1− R̄

L
) + 1−λ

σ
mθ

and Mmin
2 > σε

σ
Φ−1( B̄

L
) + 1−λ

σ
mθ, then no finite x∗R and x∗N can be solved.

Now we have finished the proof of Lemma A.3 �

From the above proof, let mmin ≡ mmin
θ , then we prove the first part of the proposition.

For any given mθ, let Ll be the solution of L such that Mmin
1 = σε

σ
Φ−1(1− R̄

L
) + 1−λ

σ
mθ,

and let Lh be the solution of L such that Mmin
2 = σε

σ
Φ−1( B̄

L
) + 1−λ

σ
mθ

Then we prove the second part of the proposition.

Define some notations:

Φ1 = Φ(Ax∗R − τΦ−1(1− R̄

L
)−D),

and φ1 is Φ1’s density function. A = (1− λ)/σ, D = (1− λ)mθ/σ and τ = σε/σ.

Φ2 = Φ(Ax∗N − τΦ−1(
B̄

L
)−D),

and φ2 is Φ2’s density function.

Φ3 = Φ(Ax∗ − τΦ−1(1− R̄

L
)−D),

and φ3 is Φ3’s density function.

On the equilibrium path, x∗R is solved from

(1− Φ(Ax∗R − τΦ−1(1− R̄

L
)−D))((αR − αN)x∗R + βR − βN + γR − γN) = γR − γN

10



mθ

L = R̄
L

L = 1

L = R̄ + B̄

Mmin
1 = σε

σ
Φ−1(1− R̄

L
) + 1−λ

σ
mθ Mmin

2 = σε
σ

Φ−1( B̄
L

) + 1−λ
σ
mθ

L∗

mmin

Figure 2: 1. Any point (L,mθ) between Mmin
1 and Mmin

2 represents the finite cutoff pair (x∗R, x
∗
N ) existing,

which is consistent with the equilibrium. 3. Curve Mmin
1 and Mmin

2 represent the influence thresholds

separating the two-cutoff strategy and no finite cutoff case when the participation condition is the dominant

condition and when the maintaining secrecy condition is the dominant condition respectively. 4. mmin
θ

represents the lowest level of mθ by which the leader can motivate positive participants. 6. L∗ represents

the balance points for the participation and maintaining secrecy conditions.

By Implicit Function Theorem,

∂x∗R
∂mθ

= − 1
1−Φ1

φ1

1

x∗R+
βR−βN+γR−γN

αR−αN

− A
(τΦ′−1

c

R̄

L2

∂L

∂mθ

+
1− λ
σ

)

≡ − 1

B1

(τΦ′−1
c

R̄

L2

∂L

∂mθ

+
1− λ
σ

)

where B1 ≡ 1−Φ1

φ1

1

x∗R+
βR−βN+γR−γN

αR−αN

− A

x∗N is solved from

(1− Φ(Ax∗N − τΦ−1(
B̄

L
)−D))((αN − αB)x∗N + βN − βB + γN − γB) = γN − γB

By Implicit Function Theorem,

∂x∗N
∂mθ

= − 1
1−Φ2

φ2

1

x∗N+
βN−βB+γN−γB

αN−αB

− A
(−τΦ′−1

B̄

B̄

L2

∂L

∂mθ

+
1− λ
σ

)

≡ − 1

B2

(−τΦ′−1
B̄

B̄

L2

∂L

∂mθ

+
1− λ
σ

)
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where B2 ≡ 1−Φ2

φ2

1

x∗N+
βN−βB+γN−γB

αN−αB

− A

x∗ is solved from

(1− Φ(Ax∗ − τΦ−1(1− R̄

L
)−D))((αR − αB)x∗ + βR − βB + γR − γB) = γR − γB

By Implicit Function Theorem,

∂x∗

∂mθ

= − 1
1−Φ3

φ3

1

x∗+
βR−βB+γR−γB

αR−αB

− A
(τΦ′−1

c

R̄

L2

∂L

∂mθ

+
1− λ
σ

)

≡ − 1

B3

(
σε
σ

Φ′−1
c

R̄

L2

∂L

∂mθ

+
1− λ
σ

)

where B3 ≡ 1−Φ3

φ3

1

x∗+
βR−βB+γR−γB

αR−αB

− A.

Proof of Proposition 3. We begin with the second part of this proposition. If leader

starts a rebellion, he will choose l to minimize θ∗. From the proof of Proposition ??, we

know for any given mθ, there exist L′(mθ) such that xR − σεΦ−1(1− R̄
L

) = xN − σεΦ−1( B̄
L

),

where xR is solved from (A.2) and xN is solved from (A.6). Then if L < L′, we have

x∗R − σεΦ−1(1− R̄
L

) > x∗N − σεΦ−1( B̄
L

). Similar as the proof of Lemma A.2, we have x∗R is a

decreasing function of L and x∗R−σεΦ−1(1− R̄
L

) is a decreasing function of L too. If L > L′,

we have x∗R − σεΦ−1(1 − R̄
L

) < x∗N − σεΦ−1( B̄
L

), and x∗N is an increasing function of L and

x∗N − σεΦ−1( B̄
L

) is an increasing function of L too.

Therefore, the optimal group size under two-cutoff case is L such that x∗R(mθ, L) −

σε(Φ
−1(1− R̄

L
)) = x∗N(mθ, L(mθ))−σεΦ−1( B̄

L
), through which θ̄(L,mθ) can reach the minimal

point and the leader’s utility achieves the maximal point.

Next we will show that L∗ is a decreasing function of mθ. If any given mθ,
∂L∗

∂mθ
> 0. Let

x∗N and x∗R are solved from Equation (A.6) and (A.7). Then we have

∂x∗N(mθ, L)

∂mθ

=

1−Φ̂

φ̂

1

x∗R+
βR−βN+γR−γN

αR−αN

+ λ
σ

1−Φ̃
φ̃

1

x∗N+
βN−βB+γN−γB

αN−αB

+ λ
σ

∂x∗R(mθ, L)

∂mθ

where Φ̂ = Φ(
x∗N−λx

∗
R

σ
− σε

σ
Φ−1( B̄

La
)− 1−λ

σ
mθ), φ̂ is Φ̂’s density function and Φ̃ = Φ(

(1−λ)x∗N
σ
−

σε
σ

Φ−1( B̄
L

)− 1−λ
σ
mθ) and φ̃ is Φ̃’s density function.
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At any L∗(mθ) and mθ, Φ̂ = Φ̃ and φ̂ = φ̃, so we have |x
∗
N (mθ,L)

∂mθ
| < |x

∗
R(mθ,L)

∂mθ
|, and we also

know both of these derivatives are less than zero. By the continuity, for anotherm′θ that is less

than but every close to mθ, for the same L∗(θ), we have x∗R−σεΦ−1(1− R̄
L∗

) > x∗N−σεΦ−1( B̄
L∗

).

However, since ∂L∗

∂mθ
> 0, for any (L∗(mθ),m

′) with m′θ < mθ, we muse solve x∗R and

x∗N from Equation (A.6)-(A.9). It means x∗R − σεΦ
−1(1 − R̄

L∗
) < x∗N − σεΦ

−1( B̄
L∗

). It is a

contradiction.

If ∂L∗

∂mθ
= 0, take derivative on x∗R − σεΦ−1(1− R̄

L
) = x∗N − σεΦ−1( B̄

L
) with respect to mθ,

then we have
x∗N (mθ,L)

∂mθ
=

x∗R(mθ,L)

∂mθ
. It is a contradiction with |x

∗
N (mθ,L)

∂mθ
| < |x

∗
R(mθ,L)

∂mθ
|.

So we conclude that ∂L∗

∂mθ
< 0,

On the equilibrium path, x∗R is solved from Equation (A.2) and x∗N is solved from Equation

(A.6). When mθ goes to positive infinity, both x∗R and x∗N approach zero, so L∗(θ) goes to

B̄ + R̄.

Since the leader’s utility function is an increasing function of mθ on the equilibrium path,

and when mθ < mmin, his payoff is negative. When mθ goes to infinity, his payoff is positive.

So there exist a m∗θ such that leader will initiate a rebellion iff mθ ≥ m∗θ.

Proof of Corollary 1. When γR = γN , αR−αN
γR−γN

= ∞ > αN−αB
γN−γB

, which satisfies the increas-

ing return condition. The rest of the proof just follow the proof for one-cutoff strategy.

The leader would select L∗(mθ) to stage a rebellion and the threshold for the civilians

would be x∗N(L∗(mθ),mθ) and x∗R(L∗(mθ),mθ) on the equilibrium path. The thresholds

satisfy the following equations:

(1−Φ(Ax∗R(L∗)− τΦ−1(1− R̄

L∗
)−B))((αR − αN)x∗R(L∗) + βR − βN + γR − γN) = γR − γN ,

(A.11)

(1−Φ(Ax∗N(L∗)− τΦ−1(
B̄

L∗
)−B))((αN − αB)x∗N(L∗) + βN − βB + γN − γB) = γN − γB,

(A.12)

x∗R(L∗)− σεΦ−1(1− R̄

L∗
) = x∗N(L∗)− σεΦ−1(

B̄

L∗
). (A.13)
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Under collective punishment, the leader chooses L∗ = B̄ + R̄ and we have x∗R(L∗) =

x∗N(L∗). cutoff threshold for the civilians satisfies the following equation.

(1−Φ(Ax∗(L∗)−τΦ−1(1− R̄

L∗
)−B))[(αR−αB)x∗(L∗)+βR−βB+γR−γB] = γR−γB), (A.14)

we have x∗R(B̄ + R̄,mmed) = xC(B̄ + R̄,mmed) = x∗(B̄ + R̄,mmed).

Proof of Proposition 5. First, since when mθ goes to infinity, both x∗R and x∗B approach

x∗. So we pick a very large mθ and denote it as mmed such that x∗R = x∗B = x∗ (They are

not exactly the same, but very very close).

Since αR − αN is finite, we assume it is less a constant g, and αN is greater than a

constant v̂. On the equilibrium path, since αR > αN , we use a constant d to denote the

distance between αR and αN , i.e. αR − αN = d and bounded by 0 and g, for any given ε0,

there exist a v1 such that when αN > v1, then −σε
σ

Φ( B̄
L

)′−1 B̄
(B̄+R̄)2

∂L
∂mθ

> ε0 > 0. It is because

for given αR and αN , ∂L
∂mθ

< 0 at mθ < mmed. And when αN increases x∗N decreases, and

x∗R − x∗N increases, therefore ∂L
∂mθ

is an increasing function of αN on the equilibrium path

when mθ < mmed.

When αN > v1, we have

1

B2

(−σε
σ

Φ′−1
B̄

B̄

L2

∂L

∂mθ

+
1− λ
σ

)− 1

B3

1− λ
σ

;

>
1

B2

(ε0 +
1− λ
σ

)− 1

B3

1− λ
σ

;

=
1

B2

ε0 + (
1

B2

− 1

B3

)
1− λ
σ

; (A.15)

There exists a v2 such that when v > v2 we have 0 < ( 1
B3
− 1

B2
) < ε and 1

B2
ε0 + ( 1

B2
−

1
B3

)1−λ
σ
> 1

B2
ε0 − ε1−λ

σ
> 0

Therefore when αN > v̄ ≡ max{v1, v2}, we have that
∂x∗N
∂mθ

< ∂x∗

∂mθ
< 0 at mmed. By the

continuity, we have x∗N > x∗ at least in a small interval (mmed − ε′,mmed].

Start from any mθ < mmed with x∗N(L∗,mθ) > x∗(B̄ + R̄), we have x∗N(L∗,mθ) −

σΦ−1( B̄
L∗

) > x∗(B̄+R̄)−σΦ−1( B̄
B̄+R̄

) and Ax∗N(L∗)−τΦ−1( B̄
L∗

)−D > Ax∗−τΦ−1( B̄
B̄+R̄

)−D.

Therefore 1−Φ2

φ2
< 1−Φ3

φ3
and B2 < B3 (under the condition αN > v2 and αR − αN = d > 0).
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As a results
∂x∗N
∂mθ

< ∂x∗

∂mθ
. It means once mθ < mmed, x∗N > x∗ always. Furthermore

θ̄TP = x∗N(L∗) − σΦ−1( B̄
L∗

) > θ∗CP = x∗(B̄ + R̄) − σΦ−1( B̄
B̄+R̄

). Therefore, TP has higher

survival probability.

Proof of Proposition 6. Since γN−γB
αN−αB

= h is finite, we denote its upper bound as h, and

αN − αB is less than a constant v′. The proof is similar as the proof of Proposition 5,

we just give a sketch as follow. Let γN − γB and αN − αB smaller enough to guarantee

1
B1
− 1

B3
smaller enough, then since σε

σ
Φ′−1
R̄

R̄
L2

∂L
∂mθ

+ 1−λ
σ

< 1−λ
σ

. Then we have
∂x∗R
∂mθ

< ∂x∗

∂mθ

at mmed. Since γN−γB
αN−αB

= h is finite, we denote its upper bound as h, which can guarantee

∂L
∂mθ

has a uniform low bound which is greater than 0, when γN − γB and αN − αB are

smaller enough. By the continuity, we have x∗R < x∗ at least in a small interval (mmed −

ε′′,mmed]. Start from any mθ < mmed with x∗R(mθ, L
∗(mθ)) < x∗(mθ, B̄ + R̄), we have

x∗R(mθ, L
∗(mθ))−σΦ−1(1− R̄

L(mθ)
) < x∗(mθ, B̄+R̄)−σΦ−1(1− R̄

B̄+R̄
) and Ax∗R(mθ, L

∗(mθ))−
σε
σ

Φ−1(1− R̄
L∗(mθ)

)− 1−λ
σ
mθ < Ax∗ − σε

σ
Φ−1(1− R̄

B̄+R̄
)− 1−λ

σ
mθ. Therefore 1−Φ1

φ1
> 1−Φ3

φ3
and

B1 > B3. As a results
∂x∗R
∂mθ

< ∂x∗

∂mθ
. It means once mθ < mmed, x∗R < x∗ always. Furthermore

θ̂TP = x∗R(mθ, L
∗(mθ)) − σΦ−1(1 − R̄

L∗(mθ)
) < θ̄CP = x∗(mθ, B̄ + R̄) − σΦ−1(1 − R̄

B̄+R̄
).

Consequently, the leader has a higher starting point in CP i.e. mmin
CP > mmin

TP . Therefore, CP

has higher survival probability in this case.

Proof of Corollary 2. For a given mθ, using Equation (1) and (2), when ω = 0, x∗R and

x∗N can be solved from

αR − αN
γR − γN

· x∗R =
1− P
P

+ ξ. (A.16)

αN − αB
γN − γB

· x∗N =
1− P
P

+ ξ. (A.17)

We x∗R > x∗N . By adding ω into the first equation, we have

αR − αN
γR − γN

· x∗R +
ω

γR − γN
=

1− P
P

+ ξ. (A.18)
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. Then we can always find ω large enough to to let the x∗R solved from this equation less

than x∗N from Equation (A.17). It means there is no two-cutoff strategy, only the one-cutoff

strategy exists under targeted punishment, then two punishment rules have the same survival

probability.

Proof of Corollary 3. :

Assume B̄1 is the government’s optimal choice under collective punishment. Since the

parameters α and β satisfy the conditions of Proposition 5, we have

R · P TP
sur (θ, B̄1)− C(B̄1, N) ≥ R · PCP

sur (θ, B̄1)− C(B̄1, N).

By the continuity, there exists a B̄2 ≤ B̄1 such that C(B̄2, N) ≤ C(B̄1, N) and

R · P TP
sur (θ, B̄2)− C(B̄2, N) ≥ R · PCP

sur (θ, B̄1)− C(B̄1, N).

Therefore, under targeted punishment, the government can achieve no worse than the optimal

expected payoff under collective punishment by choosing a weakly smaller B̄.

Proof of Corollary 4. : Similar as the proof of Corollary 3.

Proof of Lemma 4. In this case, the type x civilian’s expected payoffs for remaining neu-

tral under TP is

(1− Φ(
θ̄TP (mθ, L)− λx− (1− λ)mθ

σ
))(αNx+ βN + γN − γ̄) + γN .

The equilibrium strategy for the supporters can be calculated using the same way as before.

Let x∗N3
(mθ, L) and x∗R3

(mθ, L) be the two thresholds which are consistent with the cutoff

equilibrium for the two-cutoff strategy. For a given mθ on the equilibrium path, x∗N3
(mθ, L),

x∗R3
(mθ, L) and the optimal L3(mθ) chosen by the leader must satisfy the following equations:
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(1− Φ(Ax∗R3
− σε
σ

Φ−1(1− R̄

L
)− 1− λ

σ
mθ))((αR − αN)x∗R3

+ βR − βN + γR − γN − γ̄)− (γR − γN) = 0

(A.19)

(1− Φ(Ax∗N3
− σε
σ

Φ−1(
B̄

L
)− 1− λ

σ
mθ))((αN − αB)x∗N3

+ βN − βB + γN − γB − γ̄)− (γN − γB) = 0

(A.20)

x∗R3
(mθ, L)− σεΦ−1(1− R̄

L
) = x∗N3

(mθ, L)− σεΦ−1(
B̄

L
). (A.21)

It is easy to see when γ̄ is very large, then no solution can be found from this system

of equations, so there is no two-cutoff strategy. But the one-cutoff strategy always exists

because γ̄ is not involved into it.
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