
Online Appendix for Protest Puzzles

Uncorrelated Signals

The di�culties in ensuring the existence of monotone equilibria in our setting raise the ques-
tion of why we do not consider a setting with uncorrelated private signals, where we know
that the best response to a monotone strategy is monotone. One answer is that such a
setting is unnatural because costs must re�ect some common factor, in which case a citizen's
cost realization contains some information about the costs of others. Moreover, as we will
see, this setting o�ers a less natural resolution of the Tullock's Paradox.

Our setting is the same as before except that now, ci ∼ iid F , where F (·) has full support
on R. The best response to a monotone strategy is clearly monotone: Higher ci only reduces
i's incentive to revolt without changing his beliefs about others' behavior. The equilibria are
characterized by the indi�erence condition:

u(N)

(
N

qN

)
F (c∗)qN (1− F (c∗))(1−q)N = c∗. (1)

It is bene�cial to do a change of variables z∗ = F (c∗), so that (1) becomes:

u(N)

(
N

qN

)
[z∗]qN [1− z∗](1−q)N = F−1(z∗), with z∗ ∈ [0, 1]. (2)

A key simple observation is that as N increases, the maximum of [z∗]qN [1−z∗](1−q)N becomes
very sharp, even though the whole expression approaches zero. In fact, using the Stirling
approximation, one can identify the rate of convergence as N →∞:(

N

qN

)
zqN (1− z)(1−q)N ≈ 1√

πN

1√
2q(1− q)

(
z

q

)qN (
1− z
1− q

)(1−q)N

. (3)

Because Stirling approximation is close even when N is small, (3) provides a good approx-
imation even for small N . The maximum of the estimated probability of pivotality (the left
hand side of the indi�erence condition (2)), which happens at z = q, approaches:

lim
N→∞

max

{(
N

qN

)
zqN (1− z)(1−q)N

}
= lim

N→∞

1√
N

1√
2πq(1− q)

. (4)

If u(N) does not depend on N or grows with N at a rate smaller than N1/2, then in the
limit, there is a unique equilibrium with limN→∞ c

∗(N) = 0. Moreover, if u(N) grows with
N at the rate N , then in the limit, there are three equilibria: There is an equilibrium, in
which limN→∞ c

∗(N) = 0, and there are two equilibria in which limN→∞ F (c
∗(N)) = q, one

from below and one from above. These observations follow from equations (2) to (4). Our
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Figure 1: The unidomal curve is the left hand side of the indi�erence equation (1), and the
increasing curve is its right hand side. The dashed line is (4). Parameters: ci ∼ N(0, σ),
q = 0.75, b1 = 2, b0 = 0, N and σ are shown on the graph.

simulations with Normal distribution suggest that when limN→∞ F (c
∗(N)) = q+, the like-

lihood of success approaches 1, and when limN→∞ F (c
∗(N)) = q−, the likelihood of success

approaches 0. Next, suppose u(N) increases at the rate N1/2. From (3),

u(N) = b0 + b1
√
N ⇒ lim

N→∞
u(N)

(
N

qN

)
[z∗]qN [1− z∗](1−q)N =


b1√

2πq(1−q)
; z∗ = q

0 ; z∗ 6= q

Figure 1 illustrates the left and right hand sides of equation (1) for a few cases of N , when
q = 0.75, and F is the Normal distribution. Clearly, as long as N is moderately large, there
is always an equilibrium with c∗ ≈ 0. In addition, because u(N)

(
N
qN

)
[z∗]qN [1 − z∗](1−q)N

remains single-peaked, when σ is not too large, there are two equilibria, in which F (c∗(N))
approaches q as N grows. When σ is larger, for large N , any equilibrium with c∗ > 0
disappears, and we are left with c∗ ≈ 0.
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Alternative Models of Revolution

Another class of games used in the literature on revolutions contains uncertainty about the
revolution payo� that is received when there is a regime change (Bueno de Mesquita 2010;
Shadmehr and Bernhardt 2011).

Common Value Payo�s. Consider the game in Figure 2 with a continuum of players,
indexed by i ∈ [0, 1]. The revolution succeeds whenever the fraction of revolters exceeds a
threshold q ∈ (0, 1). The status quo payo� is 0. If the revolution succeeds, everyone gets θ,
and those who participated in a successful revolution, get an additional αθ, with α ∈ (0, 1).
As before, a citizen i receives private signals xi = θ+ σ εi, where θ and εis are independent.
Citizens share an improper prior that θ is distributed uniformly on R, and εi ∼ F with
full support on R. There is always an equilibrium in which no one revolts. We focus on
�nite-cuto� strategies, where i revolts if and only if xi > x∗. Then, the regime collapses if
and only if θ > θ∗, where

Pr(xi > x∗|θ∗) = 1− F
(
x∗ − θ∗

σ

)
= q, so that x∗ = θ∗ + σ F−1(1− q). (5)

citizen i

outcome
n > q n ≤ q

revolt (1 + α)θ − c −c

no revolt θ 0

Figure 2: A common value version of the revolution model of Bueno de Mesquita (2010).

The indi�erence condition is:

c

α
= Pr(θ > θ∗|xi = x∗)E[θ|xi = x∗, θ > θ∗]

=

∫ ∞
θ∗

θ pdf(θ|x∗) dθ

=

∫ ∞
θ∗

θ
1

σ
f

(
x∗ − θ
σ

)
dθ (because the prior is uniform)

=

∫ z∗≡z(θ=θ∗)

−∞
(x∗ − σ z) f(z) dz, z =

x∗ − θ
σ

=

∫ F−1(1−q)

−∞
(x∗ − σ z) f(z) dz (from equation (5))

= x∗ F (F−1(1− q))− σ F (F−1(1− q)) E[εi|εi < F−1(1− q)]

= (1− q) (x∗ − σ E[εi|εi < F−1(1− q)]).
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Thus,

x∗ =
c

α

1

(1− q)
+ σ E[εi|εi < F−1(1− q)].

(6)

θ∗ =
c

α

1

(1− q)
+ σ {E[εi|εi < F−1(1− q)]− F−1(1− q)}.

The term σ E[εi|εi < F−1(1 − q)] is decreasing in q, indicating a force that increases the
citizens' incentives to revolt when the regime is stronger. This force stems from learning-
in-equilibrium incentives generated by common value payo�s: When the regime becomes
stronger so that citizens become more hesitant to revolt, the information content of their
actions is a better news of θ, and hence the expected revolution payo� conditional on regime
change is higher. However, when F is logconcave (An 1998, p. 357), the curly bracket in
θ∗ is increasing in q.1 Thus, as the regime becomes stronger (q increases), θ∗ increases. The
analysis is far simpler in a private value setting, where a citizen's payo� is his signal xi rather
than the uncertain fundamental θ. Then, the indi�erence condition is:

c = Pr(θ > θ∗|xi = x∗) α x∗

= [1− Pr(xi > x∗|θ∗)] α x∗

= (1− q) α x∗. (from equation (5))

Thus,

x∗ =
c

α

1

1− q
and θ∗ = x∗ − σF−1(1− q) = c

α

1

1− q
− σF−1(1− q) (7)

Proposition 1 The equilibria in �nite-cuto� strategies are characterized by (x∗, θ∗), so that
a citizen revolts whenever his signal is above x∗ and the regime collapses whenever θ > θ∗.
When the prior is uniform or the noise in private signals approaches zero, the equilibrium is
unique and is given by (6) for the common value and by (7) for the private value setting. In
both settings, as the regime becomes stronger (q increases), the revolution is less likely.2

Pivotality. Now, consider the setting with N + 1 players, which features the logic of piv-
otality. We show that for large N , with strictly unimodal distributions like Normal, the
best response to a �nite-cuto� strategy is not a �nite-cuto� strategy. Because revolting is
costly, i only revolts if he is pivotal, i.e., only if the number of revolters is qN . Thus, i's net
expected payo� from revolting versus not revolting is:

Pr(piv|xi) E[u(θ,N)|xi, piv]− c =
∫ ∞
θ=−∞

Pr(piv|θ) u(θ,N) pdf(θ|xi) dθ − c,

1An, Mark Yuying. 1998. �Logconcavity versus Logconvexity: A Complete Characterization.� Journal

of Economic Theory 80: 350-69.
2In the common value setting, when the prior is uniform, but the noise is not vanishingly small, we also

require that F be logconcave as a su�cient condition.
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where piv denotes the event of i being pivotal. We focus on symmetric monotone strategies,
so that a citizen revolts if and only of his signal exceeds a threshold: xi > x∗. If the best
response to a monotone strategy was also a monotone strategy, then the equilibrium would
be characterized by the indi�erence condition of the marginal player whose signal is the exact
cuto�:

Pr(piv|xi = x∗) · E[u(θ,N)|piv, xi = x∗] =

∫ ∞
θ=−∞

Pr(piv|θ) u(θ,N) pdf(θ|xi = x∗) dθ = c.

Pr(piv|θ) =

(
N

qN

) [
1− F

(
x∗ − θ
σ

)]qN [
F

(
x∗ − θ
σ

)](1−q)N
.

Thus, focusing on u(θ,N) = (b0 + b1N)θ to match the standard games of the literature, the
indi�erence condition that characterizes the equilibrium cuto�s is:

c =

∫ ∞
θ=−∞

u(θ,N)

(
N

qN

) [
1− F

(
x∗ − θ
σ

)]qN [
F

(
x∗ − θ
σ

)](1−q)N
1

σ
f

(
x∗ − θ
σ

)
dθ

=

∫ 1

z=0

u(x∗ − σ F−1(1− z), N)

(
N

qN

)
zqN (1− z)(1−q)N dz

= (b0 + b1N)

∫ 1

z=0

(x∗ − σ F−1(1− z))
(
N

qN

)
zqN (1− z)(1−q)N dz

large N︷︸︸︷
= b1 (x∗ − σ F−1(1− q)) (from Chamberlain and Rothschild (1981)).

Thus,

x∗ =
c

b1
+ σ F−1(1− q).

Ignoring the directs costs of revolting, the net expected payo�s from revolting versus not
revolting for a citizen i with signal xi is:∫ ∞

θ=−∞
u(θ,N)

(
N

qN

) [
1− F

(
x∗ − θ
σ

)]qN [
F

(
x∗ − θ
σ

)](1−q)N 1

σ
f

(
xi − θ
σ

)
dθ

=

∫ 1

z=0
u(x∗ − σ F−1(1− z), N)

(
N

qN

)
zqN (1− z)(1−q)N

f
(
xi−x∗
σ + F−1(1− z)

)
f(F−1(1− z))

dz

= (b0 + b1N)

∫ 1

z=0
(x∗ − σ F−1(1− z))

(
N

qN

)
zqN (1− z)(1−q)N

f
(
xi−x∗
σ + F−1(1− z)

)
f(F−1(1− z))

dz

large N︷︸︸︷
= b1 (x∗ − σ F−1(1− q))

f
(
xi−x∗
σ + F−1(1− q)

)
f(F−1(1− q))

.

in equilibrium︷︸︸︷
= c

f
(
xi−c/b1

σ

)
f(F−1(1− q))

.

5



In sum, we have established that if the best response to a cuto� strategy is indeed a cuto�
strategy, then there is a unique equilibrium with x∗ given above. Now, given this x∗ that
characterizes the strategies of other citizens, the net expected payo� from revolting versus
not revolting for a citizen i with signal xi is:

c×

 f
(
xi−c/α

σ

)
f(F−1(1− q))

− 1

 ,

implying that i revolts if and only if

f

(
xi − c/α

σ

)
> f(F−1(1− q)).

When f is strictly unimodal (e.g., Normal distribution), this expression does not have a
single-crossing property: Either there is no crossing and i never revolts, or it has two cross-
ings and i's best response is non-monotone.

Private Value Payo�s. Now, consider a private value payo� structure, so that a citizen
with signal xi receives u(xi, N). Then, mirroring the calculations for the common value case,
we have:

x∗ =
c

b1
and θ∗ = x∗ − σ F−1(1− q) = c

b1
− σ F−1(1− q), (8)

where we recognize that, similar to our setting in the text, the fraction of citizens who par-
ticipate in a revolution does not change with the regime's strength. Again, mirroring the
calculations for the common value case, we have:

B(xi;x
∗) =

∫ ∞
θ=−∞

u(xi, N)

(
N

qN

)[
1− F

(
x∗ − θ
σ

)]qN [
F

(
x∗ − θ
σ

)](1−q)N 1

σ
f

(
xi − θ
σ

)
dθ

=

∫ 1

z=0
u(xi, N)

(
N

qN

)
zqN (1− z)(1−q)N

f
(
xi−x∗
σ + F−1(1− z)

)
f(F−1(1− z))

dz

= (b0 + b1N)

∫ 1

z=0
xi

(
N

qN

)
zqN (1− z)(1−q)N

f
(
xi−x∗
σ + F−1(1− z)

)
f(F−1(1− z))

dz

large N︷︸︸︷
= b1 xi

f
(
xi−x∗
σ + F−1(1− q)

)
f(F−1(1− q))

.

= b1 xi
f
(
xi−c/b1

σ + F−1(1− q)
)

f(F−1(1− q))
(in equilibrium, from (8)).

Recall that given other citizens' cuto� strategy with associated cuto� x∗, citizen i with signal
xi revolts if and only if B(xi;x

∗) > c. Next, observe that B(0;x∗) = limxi→∞B(xi;x
∗) = 0.

Thus, the best response to a �nite-cuto� strategy is not a �nite-cuto� strategy.
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