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Abstract

Social context theory suggests that an important driver of political participation
is the behavior of family, friends, co-workers and neighbors. How do social ties
between individuals shape equilibrium behavior in larger populations? Despite
theoretical inroads into this question, direct empirical tests remain scarce due to
data limitations. We fill this gap using full social network data from 15 villages
in rural Uganda, where village-level turnout is the outcome of interest. We find
that levels of participation predicted by structural features of village networks are
strongly associated with actual village-level turnout in low-salience local elections,
and weakly associated in high-salience presidential elections. We also find that
these features predict other forms of political participation, including attending
village meetings and contributing to village projects. In addition to demonstrating
that networks help explain political participation, we provide evidence that the
mechanism of influence is that proposed by social context theory rather than al-
ternative mechanisms like the presence of central brokers or the ability of networks
to diffuse information.
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When do voting and other forms of political participation go viral? Individuals’ voting

behavior can often be traced to that of their peers, and voting behavior is sensitive to

social pressure (Ioannides, 2013; Gerber, Green and Larimer, 2008). When does voting

spread across entire social networks, resulting in high voter turnout, and when does it die

out? While our social ties define who is likely to directly influence our behavior, scholars

have suggested that it is the structure of whole networks that determines how changes

in individuals’ behavior interact to shape equilibrium behavior in broader populations

(Siegel, 2009; Sinclair, 2012; Rolfe, 2012; Fowler, 2005; Larson et al., 2019).

Social context theory posits that an individual’s likelihood of political participation is

determined by two components: a personal disposition to participate and the level of

participation among one’s peers (Fowler, 2005; Siegel, 2009; Rolfe, 2012). The distribution

of personal dispositions, the network location of those with a high disposition toward

participation, and the structure of the network as a whole, all affect whether a few social

entrepreneurs can generate high levels of participation within the network. Due to data

constraints, however, the implications of this theory are rarely tested in real-world (as

compared to fully simulated) settings.

In this paper we use complete network data from 15 rural villages in Uganda to examine

whether structural features of social networks can explain when voting goes viral. We find

that they can. Predicted levels of participation based on network properties are associated

with real-life voter turnout within the network. This relationship holds strongly for low-

salience local elections, and weakly for high-salience presidential elections. This latter

finding suggests that peer influence and structural features of social networks will not

always matter equally for voter turnout. Rather, features of social networks are likely

to matter most in low salience elections where many voters may lack motivation to vote

in the absence of prompting from politically inclined peers. We find suggestive evidence

that is consistent with the idea that the role social networks are playing is in supporting

social norms about voting (Rosenzweig, 2019) rather than coordinating voting behavior

around a particular candidate. Like earlier work by Gerber, Green and Larimer (2008),

this suggests a role for extrinsic motivations for voting, especially in low salience elections
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where intrinsic motivations may be weaker or voters may have weaker preferences over

candidates.

Specifically, we build on simulation methods from Siegel (2009) and Rolfe (2012) to

estimate the Theoretically-predicted level of Political Participation (TPP) that these

networks should generate if social context theory is correct. We then test whether these

predicted levels of participation correspond with actual voter turnout, and consistent with

social context theory, we find they are strongly positively correlated. We then present

a set of analyses designed to go beyond the observation that “networks matter,” and

explicitly test whether the specific mechanism of network influence that social context

theorists describe are indeed at work.

First, we draw upon the rich data collected alongside our network data to validate our

results. We show that villages with high TPP also have substantially higher attendance

at village meetings, and have somewhat higher contributions to village projects (in time,

cash, or labor), providing two more data points in support of social context theory. Using

lab-in-the-field behavioral games, we rule out the possibility that network structure and

political participation are both being driven by individual-level other-regarding prefer-

ences. And consistent with social context theory, we find that social networks appear to

be substantially more important in the lower-salience elections for district chairperson,

where news media is unlikely to provide information on the behavior of others, than in the

high-salience presidential election, where information about the participation decisions

of fellow citizens comes not only from peer-to-peer networks but also from news, rallies,

and the like.

Second, we test whether our results may be driven by other mechanisms than those

suggested by social context theory. We do so by measuring various features of network

structure that would shape political participation if network influence was operating

through a channel other than that proposed by social context theory. For example,

one common theory for network influence is that networks diffuse information that drive

participation, by either increasing awareness of elections and candidates (McClurg, 2003),
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or by applying social pressure (Eubank and Kronick, 2019; Larson, 2017). As we show,

however, information diffusion simulations generate different predictions about which

networks should support high political participation than do social context models, and

our social context measures continue to predict turnout even when controlling for the

efficiency with which a network spreads information. Similarly, theories of brokers suggest

that network influence works through the presence of high-centrality individuals (Rojo,

Jha and Wibbels, 2014). However, we show that our social-context-derived measure is not

just proxying for the presence of high-centrality individuals by re-running our estimates

without the highest degree nodes, a subsetting which only strengthens our results.

Through these exercises, we are able to provide novel, consistent evidence in support

of the idea that the mechanism of network influence is that described by social context

theory.

1 Social Context Theory

Our analysis focuses on the “social context” model of social influence, which posits that

an individual’s likelihood of political participation is determined by two components: a

personal disposition to participate, perhaps correlated with factors such as income, gen-

der and education (Wolfinger and Rosenstone, 1980), and the level of participation among

one’s peers (Fowler, 2005; Siegel, 2009; Rolfe, 2012). According to this model, while some

people will always be inclined to participate politically—individuals labeled “uncondi-

tional” decision makers by Rolfe (2012) and “rabble-rousers” by Siegel (2009)—others

will only participate if they observe sufficient levels of participation among their peers.

The influence of social context has been documented in psychology experiments (Ross

and Nisbett, 2011). In some cases, mirroring behavior may be the result of Bayesian

updating by rational agents about the desirability of a behavior or strategic social con-

formity (Goyal, 2012), but research also suggests this dynamic may not be fully con-

scious (Cialdini, 2015).

While this mechanism of influence has been well-documented among individuals, the
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dynamics of diffusion to larger populations has received less empirical attention. This

is due to the fact that social context models assume fundamental interdependencies in

behavior that require the use of complete network analysis for studying macro social

influence processes. If we wish to understand how the behavior of a few rabble-rousers

may or may not propagate across a population, it is not enough to just look at individuals

and their immediate peers. Rather, we must work with full networks so we can examine

how the higher-order topological features of network structure shape not only who we

interact with directly, but also how our influence may potentially spread beyond our

immediate contacts to the broader network.

One core theoretical result is that there are no easy answers when it comes to predicting

how social influence may spread through a network (Centola and Macy, 2007; Jackson

and Yariv, 2010). Simple measures like average number of connections or average shortest

paths cannot explain whether the actions of a few people in a network will have larger

effects. Rather, influence dynamics are shaped by numerous topological features of social

networks (Centola, 2015), and simulation remains the primary method of determining

how a given network will support diffusion processes.

To date, however, it has been difficult to corroborate the results of theory-driven sim-

ulations due to the paucity of real-world network data. Because social context theories

make predictions about equilibrium behavior in groups, testing them requires not only

data on one full network, but data on the full networks of multiple communities along with

community-level measures of political participation to allow for cross-sectional analysis.

Such data is rare [but see, Cruz, Labonne and Querubin (2017)].

We fill this gap in the literature by estimating the Theoretically-predicted level of Political

Participation (TPP) based only on the structure of village networks using the theoretical

insights of Siegel (2009) and Rolfe (2012). These values of TPP are then correlated with

actual turnout for two types of elections that took place in Uganda in 2016.
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2 Data

This analysis relies on two primary sources of data: network data collected as part of

an original survey, and precinct-level data on turnout in Uganda’s 2016 Presidential

elections and in elections for the chief executive (chairperson) of the district government,

the highest subnational tier of government in Uganda below the central government.

2.1 Network Data

We collect data from 16 Ugandan villages that took part in a multi-year program called

Governance, Accountability, Participation, and Performance (GAPP), which was imple-

mented by RTI International and funded by the United States Agency for International

Development (USAID).1 Using individual-level network surveys targeting all village resi-

dents, we are able to construct 16 independent “whole” networks (although as discussed

below only 15 proved comparable in scale and thus usable) by using a simple name gen-

erator technique (Knoke and Yang, 2008), eliciting information on respondents’ familial

and friendship ties, as well as ties to village money lenders and more generally, local

‘problem solvers’. Comparing household roster data with network surveys, we believe we

reached over 80% of village residents. Following standard practice, individuals who did

not complete a network survey were dropped from the analysis. See Appendix A and

Ferrali et al. (2019) for full survey details.

These network surveys are used to compute empirical networks: the Friends and Family

network, which consists of all connections listed as “friends” or “family”, and the Union

Network, which consists of the friends and family network plus ties reported as people the

respondent “would go to if they had to borrow money” and people he or she “would go

to in order to solve a problem regarding public services in the village.” All networks are

undirected (i.e., do not require reciprocity of ties), and are unweighted. Results are also

consistent, and in fact stronger, when limiting attention to reciprocated ties, although we

argue that allowing for non-reciprocated ties generates more meaningful networks (See
1The number of villages was determined by resource constraints.
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Appendix H for further discussion).

Throughout this analysis, attention is restricted to 15 of the 16 villages originally in-

cluded in the survey. This is because the 16th village is substantially smaller than any

other village under consideration. While the 15 core villages have between 160 and 283

residents, the omitted village network has only 30 people. Summary statistics for the 15

empirical networks in our primary analyses are presented in Table 1. Results with the

inclusion of the 16th village can be found in Appendix G.

Table 1: Network Summary Statistics

Union Friends Family Lender Solver

Average Size 210.3 210.3 210.3 210.3 210.3
Average Num Connections 1,693.9 520.4 810.9 403.3 450.2
Average Degree 15.9 4.9 7.7 3.8 4.2
Min Size 160.0 160.0 160.0 160.0 160.0
Max Size 283.0 283.0 283.0 283.0 283.0

2.2 Turnout Data

Data on turnout comes from precinct-level electoral returns and the official voter register

as compiled by the Electoral Commission of Uganda. Because precincts, or polling sta-

tions, do not correspond precisely to Ugandan villages, we extrapolate turnout using the

voter registration data, which provides information on the precinct at which residents of

each village are registered. In particular, our analysis relies on the assumption that votes

cast at each precinct were cast by residents of villages in proportion to each village’s share

of voters registered at the precinct. For more details of interpolation, see Appendix B.

Average turnout for the Presidential election in our data was 60% (compared to 68%

nationally); average turnout for the district chairperson was 25% (compared to 31%

nationally). Turnout across the elections is correlated at 0.61%, suggesting the elections

are distinct but that villages with high turnout tend to have high turnout independent

of election type.
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2.3 Simulating Social Context Dynamics

Social context theory is premised on the assumption that individuals are more likely

to participate politically if their peers do so. To understand the dynamics of how this

assumption shapes behavior on different types of networks, we use a slightly modified

version of the simulation model of Siegel (2009), which is substantively analogous to

Rolfe (2012). Details of our small technical modification to Siegel (2009) can be found in

Appendix C.

The starting point of the simulation is that vertices v P V in a network choose whether or

not to participate in a political activity. Initially, the simulation begins with all vertices

endowed with some individual proclivity to participate. All vertices are assumed to begin

in a state of non-participation at t “ 0, but in the first stage, vertices (or nodes) with very

high individual proclivities begin to participate. In each state of the simulation, vertices

observe the behavior of only their peers and then decide whether to participate. A vertex

decision to participate is increasing in the share of her peers that are participating. The

simulation then continues this cycle of vertices observing their peers, updating their own

behavior, then observing their peers once more until the network converges to a stable

configuration in which behavior no longer changes between stages. More specifically, the

simulation proceeds as follows:

Stage 1: Model Initialization

• Vertices are randomly assigned an individual propensity to participate βv „ Normalpβmean, βsdq.

Once assigned, these values are fixed for the duration of the simulation.

• All vertices begin in a state of non-participation (participationv,0 “ 0 @v P V)

Stage 2: Social Influence Simulation

• At each step of the simulation t P T , each vertex v P V calculates a local participa-

tion rate (lprv,t) which is equal to the share of the people connected to v at time t in

the network who also plan to participate. These two factors can then be combined

using a very simple decision rule: participationv,t`1 “ 1 if βv ´ p1 ´ lprv,tq ą 0.
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• Calculate overall “Theoretically Predicted Participation” T PPt “

řV
v participationv

|V|
.

• Repeat Stage 2 until the value of T PP converges.

Several aspects of this framework are worth noting. First, individuals with high values β

(specifically, β ą 1) will participate politically even if none of their immediate neighbors

plan to participate. Similarly, individuals with very low values of β (β ă 0) will never

participate, even if all of their peers are participating. For anyone with a value of β P

p0, 1q, there is a threshold level of peer participation that will induce those individuals to

participate. For example, if βv “ 0.5, then v will participate if and only if at least half of

her friends participate.

The second aspect of this model is that it is dynamic. We begin in a state of non-

participation at time t “ 0, then in the first period only people with β ą 1 will participate.

But as people with β ą 1 announce they are participating, that changes the value of lpr

for everyone connected to one of these rabble-rousers, potentially leading them to plan

to participate as well. These spillovers may—but also may not, depending on network

structure—cascade for a period of time before eventually the network stabilizes into an

equilibrium level of political participation, which may occur at any level between no one

participating and everyone participating.

The focus of our analysis is on the average level of political participation to which this

model converges for given values of βmean and βsd – what we term Theoretically Predicted

Participation (TPP). TPP is calculated by simulating this process of influence repeatedly

on the network of each village until the simulation converges, then calculating the average

level of participation at these convergent states. In other words, TPP is a network

structure property. For a given pair of parameters βmean and βsd, villages whose networks

converge to higher levels of simulated participation (higher TPP) should also have higher

levels of actual (observed) voter turnout.

Importantly, the use of simulations is motivated by the fact that whether a network will

support a “snowballing” of social influence or not has no mechanical relationship to ba-

sic network properties (like average number of connections or degree distribution). This

9



is because in a social context model, adding connections among individuals doesn’t just

increase exposure of individuals to rabble rousers (which will increase an individual’s like-

lihood of participating); it also increases exposure to non-participants (which will depress

participating). In a simulation where rabble rousers are relatively rare, for example, par-

ticipation will only snowball if the network has small pockets where these rabble rousers

constitute a large portion of the local neighborhood, making it possible for them to have

sufficient influence to induce others in their pocket to participate, generating a critical

mass of participants. In a fully connected network, if rabble rousers are rare globally,

they will also be rare in every local neighborhood, and thus will never induce increased

participation. It is for this reason that small-world networks are often most supportive

of high equilibrium TPP Siegel (2009). The only way to know if political participation

will spread on a network, therefore, is through simulation.

Of course, this is not to say that different network properties may not be highly corre-

lated. Indeed, in our data, the correlation between average degree and index of simulated

equilibrium participation turns out to be 0.98 for the Union network. But it is worth

emphasizing that this is an empirical regularity in these networks, not a relationship that

is intrinsic to the measure as past work has shown (Siegel, 2009).2 As such, it is only

because we simulated TPP on these networks that we are aware of this strong empirical

relationship. If replicated in other social network data sets, this suggests that real-world

social networks tend to have topologies in which average degree is related to ability to

support participation snowballs, a finding which would have important implications for

the interpretation of analyses of average degree.

2.4 Simulation Result Summary

We focus on parameter values of βmean P t0.5, 0.6, 0.7u and βsd P t0.25, 0.5u. These pa-

rameter values are chosen because they effectively cover the entire range of values that

give rise to interesting dynamics in our networks. Significantly higher values of βmean

2Indeed, it is quite easy to construct networks that not only have the same average degree, but also
identical degree distributions with very different TPP scores due to differences in network topology.
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tend to result in convergence to full participation, while substantially lower values lead

to non-dynamic simulations (those with values of β ą 1 participate, but they are rare

and others tend to have very low proclivities to participate, as a result of which almost

no vertices flip from non-participation to participation). Similarly, larger values of βsd

increase the share of individuals whose behavior is unaffected by the behavior of other

so much that the simulations tend not to be dynamic. In these non-dynamic settings,

all networks are essentially comparable, as participation ends up being roughly equal to

the share of nodes with βmean ą 1, which is the same for all networks in expectation.

Note that we exclude one parameter pair from those sets (βmean “ 0.5, βsd “ 0.25), as it

generates almost no unconditional participators, and thus no dynamics.

Average TPP scores across study area villages for different parameter values and network

specifications are presented in Table 2. Moreover, the inter-village correlation in TPP

scores across this parameter space is quite high, as shown in Tables 3-7 in Appendix E.

The overall average correlation across parameters for the Union network is 0.64, and so

for ease of exposition (and to reduce the number of regressions we run on the same data),

most of the following results will be presented using an index constructed as the first

principle component of these statistics for each network type.

Table 2: Average Theoretically-Predicted Participation (TPP)

βmean βsd Mean, Union Mean, Family Mean, Friends

0.50 0.50 0.42 0.39 0.36
0.60 0.50 0.67 0.59 0.54
0.60 0.25 0.45 0.38 0.30
0.70 0.50 0.83 0.77 0.71
0.70 0.25 0.98 0.96 0.89

Notes: This table presents average simulated TPP levels across villages for different parameter values and network specifi-
cations. Correlations between village TPP scores across different parameters can be found in Appendix E.

3 Social Context and Turnout

Figure 1 presents the bivariate correlation between the TPP (operationalized as the first

principle component of normalized TPP scores across all parameter choices) and actual

turnout in the Presidential and district (LC5) elections for the Union network. Note
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that while TPP is surely estimated with some measurement error, as it enters into our

regressions as an independent variable, this will only result in attenuation bias, generating

conservative estimates of statistical significance. Regression tables and results for separate

network types can be found in Appendix F.

First, in both LC5 specifications, TPP is positively correlated with turnout. Second, the

results are significant, despite our relatively small sample size, attenuation bias from mea-

surement error in estimation of TPP, and noise in our dependent variable introduced from

estimating voter turnout (which will also depress significance). Moreover, the correlation

between these factors appears relatively uniform — results are not being driven by out-

liers, as is the risk in small-N studies — and the relative consistency across specifications

provides further evidence of a genuine relationship.

These correlations are also robust to the introduction of different controls and sample

restrictions. As shown in Appendix G, results are unchanged when controlling for ethno-

linguistic fractionalization or the share of each village that has completed primary school,

or when restricting the sample to the set of villages for which our estimates of turnout

are likely most accurate. Point estimates are also very stable (albeit not significant)

when controlling for network size and when including the exceptionally small 16th village

and controlling for size. Finally, results are similar when allowing for only reciprocated

friend and family ties, although as discussed in Appendix H, the low degree count for

reciprocated family and friend networks means this is not our preferred specification.3

We interpret the correlation in the LC5 elections as support for network structure theories

of social influence. Moreover, we suspect the difference in results between the presiden-

tial election and the LC5 election may relate to media environments. In Uganda, the

presidential election is a much higher-salience election that garners substantially greater

media attention and entails far more campaign efforts. It seems likely that voters are

exposed to information about the likelihood that peers and non-peers will turn out from

many non-network channels, such as election rallies. As a result, the specific topology of
3The average person in our survey has 0.3 reciprocated friends, and 1.5 reciprocated family ties,

suggesting limits placed on the number of reportable names resulted in under-reporting of reciprocations.
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Figure 1
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measurement error in independent variables results in attenuation bias.
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village networks should matter less for shaping the social contexts that influence voter

turnout decisions. As demonstrated in the right-hand panel of Figure 1, this is what we

find, though the correlation is still in the predicted direction. In the lower-salience LC5

election, by contrast, a larger share of the information voters receive about anticipated

participation likely comes through their day-to-day interactions and conversations, which

are largely dictated by their social networks, increasing the observed correlation between

network structure and turnout.4

Of course, this is not the only possible explanation for this pattern. The higher salience of

the presidential election may also result in voters being less influenced by social context

and more influenced by their own political views (i.e. there may be a higher βsd for

that election), an explanation that would also have important implications for the scope

conditions of future studies of network influence. Further research will be required to

learn whether this result is generalizable, and if so, what is its exact cause.

To push forward our understanding of how TPP might matter for turnout, we examine

heterogeneous effects of social context in more and less competitive elections and where

there is greater and lesser variation in the distribution of votes across candidates. These

analyses are suggestive, as our sample size of fifteen village puts severe constraints on

statistical power for subgroup analysis. First, as shown in SI Table 12 we find that social

context effects are somewhat smaller in villages where voters’ candidate preferences are

more homogeneous. Second, while the effect of TPP is slightly larger among villages with

more competitive down-ballot LC3 local elections, there is no evidence of a heterogeneous

impact of TPP for villages facing more competitive down-ballot LC5 council seat elec-

tions.5 While only suggestive (given our limited statistical power), taken together these

results point towards network effects supporting a social norm of political participation,

rather than facilitating strategic mobilization around a certain party or candidate.
4An alternative explanation for the difference between local and presidential elections is that there

are ceiling effects in the latter. As shown in SI, Figure 8, turnout in the presidential race in our sample
ranges from 44% to 71% of the adult population, and 51% to 77% of registered voters, far below the
point where we would expect ceiling effects to operate. The national average turnout was 68 percent of
registered voters.

5LC5 Chairs are elected at the County level, regular LC5 Councilors are elected at the Sub-County
level, offering variation across villages. LC3 councilors are elected at the even lower Parish level.
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4 Other Forms of Political Participation

While the focus of much research on social influence and networks has been on voter

turnout, social context theory is generally agnostic about the specific form of social be-

havior being fostered. For example, a classic example of social context mirror comes from

the increased likelihood of individuals to give money to street buskers when a confeder-

ate gives in front of them (Cialdini, 2015). With that in mind, we further examine the

relationship between TPP and self-reported information on participation in village gover-

nance. In particular, we find that TPP correlates with (a) the share of villagers reporting

having attended a village meeting and (b) the share who report having contributed (in

time, cash, or labor) to a village project. These results are presented in Figure 2. Con-

sistent with theory, we find that our correlation between political participation and TPP

holds up for these alternate behaviors, providing two additional data points in support

of social context theory. In addition, in the case of meeting attendance, the correlation

is quite strong and significant despite the relative small sample size and attenuation bias

from measurement error in TPP.

5 Alternate Explanations

We briefly address three alternative explanations for the observed correlation between

TPP and voter turnout: (a) that the relationship is spurious and should be attributed

to differences in pro-social norms; (b) that TPP simply captures mobilization efforts of

central agents; and (c) that networks matter for disseminating information on elections,

rather than on the voting intention of peers. We rule out these explanations in turn.

5.1 Differences in Pro-Social Norms

A common concern in observational network studies is that an unobserved third factor

is driving both the behavior being measures and network structure. For example, one

might worry that communities consisting of more pro-social individuals also tend to

form networks with high TPP values, and are more likely to participate politically. We
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Figure 2
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Notes: The above plot presents the partial correlation between Theoretically-Predicted Participation (TPP) and two
alternate forms of political participation: attendance at village meetings and contributions to village projects. Grey bands
indicate 95% confidence intervals. As detailed in Section 2.3, TPP is operationalized as the first principle component of
normalized TPP scores across all considered simulation parameters (as TPP highly correlated across parameters). Data
on attendance and contributions is self-reported. Adjustments for measurement /estimation error in TPP have not been
made in these estimates; as a result their statistical difference from zero is likely under-stated, as measurement error in
independent variables results in attenuation bias.

test for this directly using behavioral games conducted as part of a “lab-in-the-field”

component of the survey from which this network data is drawn. In particular, we test

whether villages with higher TPP are also villages in which participants are more other-

regarding as measured in a divide-the-dollar dictator game.6 If pro-sociality is driving

both network structure and turnout, generosity in the divide-the-dollar game should be

positively correlated with TPP. As shown in Figure 3, however, if anything, there is a

negative correlation between pro-sociality among lab subjects and TPP.

In addition, we also find that higher turnout is correlated with high TPP when we look

only at the network formed by family connections (Appendix F). As family connections

are less likely to have been forged in response to an unobserved third factor (like pro-

sociality), we take this as additional evidence that it is network structure that is driving
6See Appendix J for game details.
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Figure 3
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Network Structure and Generosity

Notes: The above plot presents the partial correlation between generosity and turnout (left) and TPP (right). Generosity
is operationalized as the portion of ten 100UGX coins subjects agree to give to a randomly selected but unidentified village
resident in a lab-in-the-field divide-the-dollar dictator game. Grey bands indicate 95% confidence intervals. As detailed
in Section 2.3, TPP is operationalized as the first principle component of normalized TPP scores across all considered
simulation parameters (as TPP highly correlated across parameters). Adjustments for measurement /estimation error in
TPP have not been made in these estimates; as a result their statistical difference from zero is likely under-stated, as
measurement error in independent variables results in attenuation bias.

this relationship.

5.2 Role of Central Actors

Are differences between the networks in our study driven by the mobilization efforts of

central actors? To examine this, we drop the five people with the highest eigenvector

centrality from each network. If variation in our measure of TPP were being driven by

the presence of a few highly central brokers in some networks, then we would expect the

correlation between turnout and this modified TPP to decrease. Instead, as shown in

Figure 4, our LC5 results are strengthened and presidential results remain in the correct

direction, indicating that the results are driven by general network structure rather than
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Figure 4

.1

.2

.3

.4

.5

LC
5 

Tu
rn

ou
t

-1 0 1 2 3
TPP, Union

Beta:     0.05, P-Value:     0.04

.45

.5

.55

.6

.65

.7

Pr
es

id
en

tia
l T

ur
no

ut

-1 0 1 2 3
TPP, Union

Beta:     0.01, P-Value:     0.72

With 5 Highest Centrality Dropped
Theoretically Predicted Participation & Turnout

Notes: The above plot presents the partial correlation between voter turnout in the Ugandan Presidential and LC5 Chair
Elections and a modified version of TPP. Grey bands indicate 95% confidence intervals. In particular, TPP has been
re-calculated by removing the five individuals with highest eigenvector centrality from each network and re-running TPP
simulations on those networks.

a small number of facilitators.7 Notably, results are similar after dropping the 10 and 15

most connected nodes, as shown in in Appendix K.

5.3 Information Diffusion

A final concern is that networks that give rise to higher TPP may also be networks

that better support the efficient diffusion of information, leading to greater turnout. In

other words, one might imagine that the role of the social network has little to do with

the social context model, but instead with the diffusion through the social network of

information, for example about the time and place of the local election, or candidates’

policy platforms.
7We employ this strategy rather than regressing turnout on the eigenvector centrality scores of the

top five people in each village to avoid the difficulty of comparing eigenvector centrality scores across
networks. Eigenvector centrality is fundamentally a measure of relative centrality among the vertices
of a given network, making interpretation of direct (cardinal) comparisons of centrality scores across
networks problematic.
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We offer two tests of this possibility. First, we correlate awareness of the UBridge program

with TPP. UBridge was a novel program introduced by USAID to a number of individuals

within each village. If the efficiency by which networks diffuse information is driving our

results, then UBridge awareness and TPP should be positively correlated. As shown in

Figure 5, they are not. Moreover, as shown in Appendix M, TPP remains a significant

predictor of turnout even when regressing turnout on TPP and UBridge awareness.

Figure 5: UBridge Awareness & TPP
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Notes: The above plot presents the partial correlation between the share of each village that reports awareness of the
UBridge program in household surveys and TPP. Grey bands indicate 95% confidence intervals. As detailed in Section L,
TPP is operationalized as the first principle component of normalized TPP scores across all simulation parameters. Ad-
justments for measurement /estimation error in TPP have not been made in these estimates; as a result their statistical
difference from zero is likely under-stated, as measurement error in independent variables results in attenuation bias.

Second, we take advantage of the fact that the properties of networks that support infor-

mation diffusion are quite distinct from the properties that support high participation in

social context models, allowing for easy differentiation of these mechanisms.8 This makes
8The reason is similar to the reason that average degree is not a robust predictor of equilibrium

participation in social context models across different network topologies. Consider a fully connected
network. This network will diffuse information quickly, but may not support high TPP. This is because
when rabble rousers are relatively rare, participation will only increase if the network has small pockets
where these rabble rousers constitute a large portion of the local neighborhood, making it possible for
them to have sufficient influence to induce others to participate. In a fully connected network, if rabble
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it possible to create an empirically distinct measure of each village network’s ability to

support information diffusion via simulation. In particular, we operationalize “diffusion

efficiency” as the average share of each village reached within a given number of steps of

a diffusion simulation (see Appendix L for more details).

As shown in Figure 6, we find diffusion efficiency is uncorrelated with TPP. And as with

UBridge awareness, TPP remains a significant predictor of turnout even when regressing

turnout on TPP and information diffusion efficiency (Appendix M).

Figure 6: Simulated Information Diffusion and TPP
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Notes: The above plot presents the partial correlation between the simulated information diffusion efficiency with which
village networks diffuse information and TPP. Grey bands indicate 95% confidence intervals. As detailed in Section L,
diffusion efficiency is operationalized as the first principle component of normalized diffusion rates across a number of
simulation parameters, analogous to the operationalization of TPP. Adjustments for measurement /estimation error in
diffusion efficiency have not been made in these estimates; as a result their statistical difference from zero is likely under-
stated, as measurement error in independent variables results in attenuation bias.

rousers are rare globally, they will also be rare in every local neighborhood, and thus will never induce
increased participation.
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6 Conclusions

This study provides, to the best of our knowledge, the first direct, empirical test of the

theoretical predictions of social context theory, which hitherto was only substantiated

using simulated (as compared to real-world) data. It finds that at least among the 15

Ugandan villages examined herein, the theoretical predictions of Siegel (2009) and Rolfe

(2012) on how network structure may impact political participation are borne out.

In addition to providing the first test of these theories based on real-world rather than

simulated network data, our exercise offers several important lessons for political science

theories that take seriously the role of social networks. Most importantly, it suggests

that the importance of networks may be contingent on the environment being studied.

In particular, our results suggest that in contexts where individuals exposed to extensive

messaging by extra-network mediums, the influence of network dynamics may be dimin-

ished. Of course, in a single study we cannot show with certainty that this the reason for

our heterogeneous results. It is also possible that voters care more about the presidential

elections, and as a result their behavior may be less influenced by that of their peers.

Nevertheless, these results point to possible directions for future research, as they suggests

an important scope condition for studies of network influence of the type characterized

by Rolfe (2012) and Siegel (2009). Peer-to-peer networks may matter tremendously for

political participation related to less high-profile elections or causes, but less so for those

that are covered extensively by public media.

However, another interpretation of our result is that the relevant sources of social influence

might vary across contexts. Here, we believe that for the presidential election the relevant

source of influence was likely rallies and mass media, while for the LC5 elections it was

peer networks. A similar principle may apply not just in different contexts, but also for

demographic groups: in a given rural US community, the relevant source of influence for

older Americans may be their in-person peer networks (or the evening news), while for

younger residents it may be social media networks. In other words, one interpretation of

our result might be that “the relevant network of social influence is likely to vary across
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contexts,” rather than “sometimes networks of social influence matter and sometimes

they don’t.”

This analysis also points to the promise of using rich empirical measures to differentiate

between mechanisms of network influence, and the promise of mapping entire networks.

Because we use theoretically-motivated measures (like diffusion efficiency and TPP), we

are able to move beyond just showing that “networks matter” and actually offer empirical

evidence to show why they matter. In other “small world” social networks around the

world, where peer-to-peer networks are likely the most relevant network, otherwise puz-

zling variation in participation might be explained by the extent to which the network

structure helps the local “rabble rousers” to extend their influence. Examples include

not only voting in local elections, but also helping with village-level cooperative projects,

attending public meetings, and joining social movements.

Finally, our study hints at resolutions to remaining puzzles in the study of social context

and turnout. For instance, differences in turnout between urban and rural voters in local

elections may have to do with geographic variation in the structure social networks, or in

the relative importance of peer-to-peer networks. Members of racial minority groups may

be more likely to participate when living amongst other minorities because of the social

networks in which they are embedded (Anoll, 2018), and declines in turnout associated

with residential moves might have to do with disruptions in the social networks that

sustain political participation. Mapping complete networks is time-consuming and costly,

but potentially worth the investment.
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Online Appendix

A Network Survey

We collect data from a set of Ugandan villages that took part in a multi-year program

called Governance, Accountability, Participation, and Performance (GAPP), which was

implemented by RTI International and funded by the United States Agency for Interna-

tional Development (USAID) in Arua district, Uganda. 16 villages were selected from a

set of over 131 villages that were part of the U-Bridge program, the maximum number

that could be enumerated considering budget constraints. Half of the villages had a rel-

atively high level of adoption of the U-Bridge program given village characteristics, and

half of which had low levels of adoption. the process of selecting the highest and lowest

performers was as follows. We regressed village level adoption of the U-Bridge technol-

ogy on village-level predictors, and generate a set of predicted values for the dependent

variable. We then calculated the difference between the predicted value and the actual

value of U-Bridge adoption. Using these residuals, we selected the 8 highest performing

and the 8 lowest performing villages with respect to U-Bridge adoption.

We conducted a census in each village in order to collect complete network data, inter-

viewing every available adult who was a resident in the village. This involved a village

listing prior to enumeration, the purpose of which was to create a written record of all

of the names and household locations for all adults in the villages. To do this the enu-

merator met with the village leader (in Uganda, called an LC1) and two other village

leaders (usually a member of the Village Health Team and an additional village elder or

community leader). Together they drew a map of the village identifying every location

of a household and major geographical features (e.g., rivers, churches, etc.). Then the

group created a list—using their shared knowledge of those households—to identify and

name every adult in the village. The enumerator entered this information into a tablet

along with other key identifying information such as quadrant (an arbitrary division of

the village created by the enumerator—designed to divide the village into four equal por-
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tions), age and gender of the potential respondent. These names were then used in the

network section of the survey, where respondents were asked about four types of social

ties. The exact question wording for the social ties is as follows:

“In each of the following questions, we will ask you to think about people in your com-

munity and their relationships to you.”

• Family: “Think about up to five family members in this village not living in your

household with whom you most frequently spend time. For instance, you might

visit one another, eat meals together, or attend events together.”

• Friends: “Think about up to five of your best friends in this village. By friends I

mean someone who will help you when you have a problem or who spends much of

his or her free time with you. If there are less than five, that is okay too.”

• Lender: “Think about up to five people in this village that you would ask to borrow

a significant amount of money if you had a personal emergency.”

• Problem solver: “Imagine there is a problem with public services in this village.

For example, you might imagine that a teacher has not come to school for several

days or that a borehole in your village needs to be repaired. Think about up to

five people in this village whom you would be most likely to approach to help solve

these kinds of problems.”

B Turnout Estimation

As noted above, our turnout measure assumes that votes at a given precinct (polling

station) are evenly distributed among voters registered at that precinct from different

villages.

To illustrate, assume that at Precinct 1, 200 votes were cast. If 75% of the voters

registered at Precinct 1 come from Village A and 25% come from Village B, we assume

that Village A contributed 150 votes and Village B contributed 50 votes. Turnout for

each village is then calculated as the sum of votes we infer to have been case by its
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residents at all Precincts. By assuming that at a given precinct all villages have the same

turnout, this estimation should bias our analysis in favor of not finding differences in

turnout across villages.

One constraint of this measures is that the accuracy of these estimates will be related

to the correspondence of villages to precincts. If each village sends all residents to its

own polling place (i.e. that polling place is only attended by residents of one village),

inferences about village voting will be perfect. If, by contrast, all villages send their voters

to a single polling place, effectively no information can be learned about how individual

villages voted.

This correspondence can be summarized using a concentration statistic, where higher

values mean the mapping from precincts to villages is more precise. For a village v P V

and a polling place (precinct) p P P, let votersv be the set of voters who live in v, let

votersp be the set of voters who vote at polling place p, and let votersv,p be the set of

voters who reside in v and voted at p. Then:

concentrationv,p ”
#votersv,p

#votersp
(1)

In other words, concentrationv,p is the share of voters at a precinct from village v.

Since villages send people to multiple polling places, however, we must then calculate a

weighted average of concentrationv,p across polling places where the weight for each polling

place is the share of voters from each village going to that polling place. Formally:

concentrationv ”
ÿ

pPP

concentrationv,p ˚
#votersv,p

#votersv
(2)

The distribution of this statistic are presented in Figure 7:

Distribution of village-level estimated turnout as share of adult populations are presented

below in Figure 8. In addition, we also plot concentrationv against TPP in Figure 9.
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Figure 7: Distribution of concentrationv,p Measure Across Villages
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Figure 8: Estimated Village Turnout as a Share of Adult Population
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Figure 9: Precinct / Village Alignment (concentrationv) and TPP
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Notes: The above plot presents the partial correlation between Theoretically-Predicted Participation (TPP) and precinct
/ village alignment (concentrationv). Grey bands indicate 95% confidence intervals. As detailed in Section 2.3, TPP is
operationalized as the first principle component of normalized TPP scores across all parameter choices (as TPP is highly
correlated across parameters). Presidential and LC5 Chair are concentration are correlated at 0.9998, which is why the
plots are nearly identical.

C TPP Simulation Notes

C.1 Participation Updating

Updating of the participationv,t`1 is accomplished by iterating through all vertices in

the network in random order and having each vertex update its value of lpr and its
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participation participationv,t`1 sequentially rather than simulatenously. This is the one

departure from Siegel (2009). When all vertices update lpr simultaneously, it is possible

to converge to a “flashing” state in which at time t a portion of the network is planning

to vote while another portion is not planning to vote, at time t ` 1, these two groups

flip inclinations, and at time t ` 2 they return to their initial state. This is caused by

knife-edge simultaneity of updating, which seems unrealistic, since real updating is almost

certainly sequential. Thus simulation uses sequential updating.

C.2 Convergence

The simulation is run until no more than 1% percent of the vertices in the network change

participation status for at least 20 consecutive periods. Results below are averaged across

2,500 runs for each set of parameter values.

D Parameter Choices

These parameter values are chosen because they effectively cover the range of values that

give rise to interesting dynamics. Significantly higher values of βmean tend to result in

convergence to full participation, while substantially lower values lead to non-dynamic

simulations (those with values of β ą 1 participate, but they are rare and others tend

to have very low proclivities to participate, as a result of which almost no vertices flip

from non-participation to participation). Similarly, larger values of βsd increase the share

of individuals whose behavior is unaffected by the behavior of other so much that the

simulations tend not to be dynamic. In these non-dynamic settings, all networks are

essentially comparable, as participation ends up being roughly equal to the share of

nodes with βmean ą 1, which is the same for all networks in expectation.

Note that we exclude one parameter pair from those sets (βmean “ 0.5, βsd “ 0.25), as it

generates almost no unconditional participators, and thus no dynamics.
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E Social Context Simulation Validity

Table 3: Correlations across Parameter Values, Union Network

Variables Mean 0.5, SD 0.5 Mean 0.6, SD 0.5 Mean 0.6, SD 0.25 Mean 0.7, SD 0.5 Mean 0.7, SD 0.25
Mean 0.5, SD 0.5 1.00
Mean 0.6, SD 0.5 0.93 1.00
Mean 0.6, SD 0.25 0.51 0.56 1.00
Mean 0.7, SD 0.5 0.94 0.98 0.55 1.00
Mean 0.7, SD 0.25 0.35 0.36 0.84 0.39 1.00

Table 4: Correlations across Parameter Values, Family Network

Variables Mean 0.5, SD 0.5 Mean 0.6, SD 0.5 Mean 0.6, SD 0.25 Mean 0.7, SD 0.5 Mean 0.7, SD 0.25
Mean 0.5, SD 0.5 1.00
Mean 0.6, SD 0.5 0.96 1.00
Mean 0.6, SD 0.25 0.86 0.89 1.00
Mean 0.7, SD 0.5 0.96 0.99 0.86 1.00
Mean 0.7, SD 0.25 0.91 0.90 0.83 0.93 1.00
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Table 5: Correlations across Parameter Values, Friends Network

Variables Mean 0.5, SD 0.5 Mean 0.6, SD 0.5 Mean 0.6, SD 0.25 Mean 0.7, SD 0.5 Mean 0.7, SD 0.25
Mean 0.5, SD 0.5 1.00
Mean 0.6, SD 0.5 0.98 1.00
Mean 0.6, SD 0.25 0.94 0.98 1.00
Mean 0.7, SD 0.5 0.99 1.00 0.97 1.00
Mean 0.7, SD 0.25 0.98 0.99 0.96 0.99 1.00

Table 6: Correlations across Parameter Values, Lender Network

Variables Mean 0.5, SD 0.5 Mean 0.6, SD 0.5 Mean 0.6, SD 0.25 Mean 0.7, SD 0.5 Mean 0.7, SD 0.25
Mean 0.5, SD 0.5 1.00
Mean 0.6, SD 0.5 0.98 1.00
Mean 0.6, SD 0.25 0.92 0.97 1.00
Mean 0.7, SD 0.5 0.97 0.99 0.97 1.00
Mean 0.7, SD 0.25 0.95 0.98 0.97 0.99 1.00
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Table 7: Correlations across Parameter Values, Solver Network

Variables Mean 0.5, SD 0.5 Mean 0.6, SD 0.5 Mean 0.6, SD 0.25 Mean 0.7, SD 0.5 Mean 0.7, SD 0.25
Mean 0.5, SD 0.5 1.00
Mean 0.6, SD 0.5 0.95 1.00
Mean 0.6, SD 0.25 0.89 0.95 1.00
Mean 0.7, SD 0.5 0.96 0.98 0.96 1.00
Mean 0.7, SD 0.25 0.85 0.93 0.92 0.91 1.00
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F Turnout and TPP by Network Type

Table 8 presents the regressions underlying Figure 1.

Table 8: TPP and Turnout Regressions

(1) (2) (3)
Presidential LC5 Chair Pooled

Eqm Participation Index (Union) 0.0048 0.045˚ 0.0048
(0.023) (0.021) (0.026)

LC5 Election * Eqm Participation 0.040
(0.023)

LC5 Chair Election -0.35˚˚˚

(0.019)

Observations 15 15 30
Standard errors in parentheses
˚ p ă 0.1, ˚˚ p ă 0.05, ˚˚˚ p ă 0.01

Pooled estimates clustered at village level.

Figure 10 below shows the relationship between turnout and TPP simulated separately

on the four different types of networks that contribute to the Union network presented

in the main paper. We find that our main results are generally insensitive to the type of

network used to estimate TPP.
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Figure 10
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Theoretically Predicted Participation & Presidential Turnout

G Robustness Regression Tables

The following tables show robustness of our primary result when controlling for ELF

(Column 2), controlling for education (Column 3), subsetting on the half of villages

with the best polling-place-village correspondence (Column 4), and when including the

exceptionally small 16th village surveyed (Column 5).

10



Table 9: Robustness for LC5 Election

(1) (2) (3) (4) (5) (6) (7)
Basic ELF Educ Size Concentrate W/16th Village

TPP (Union) 0.045˚ 0.044˚ 0.046˚ 0.038 0.041˚ 0.014 0.038
(0.021) (0.022) (0.022) (0.028) (0.020) (0.011) (0.029)

ELF -0.068
(0.13)

Educ 0.058
(0.19)

(Log) Network Size 0.060 -0.10
(0.17) (0.12)

Observations 15 15 15 15 8 16 16
Standard errors in parentheses
˚ p ă 0.1, ˚˚ p ă 0.05, ˚˚˚ p ă 0.01

Table 10: Robustness for Pres Election

(1) (2) (3) (4) (5) (6) (7)
Basic ELF Educ Size Concentrate W/16th Village

TPP (Union) 0.0048 0.0020 0.0041 0.0016 0.0058 -0.027˚˚ 0.0012
(0.023) (0.023) (0.024) (0.031) (0.026) (0.012) (0.032)

ELF -0.17
(0.14)

Educ -0.036
(0.21)

(Log) Network Size 0.030 -0.13
(0.18) (0.13)

Observations 15 15 15 15 8 16 16
Standard errors in parentheses
˚ p ă 0.1, ˚˚ p ă 0.05, ˚˚˚ p ă 0.01
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H Considering Non-Reciprocal Ties

Figure 11 presents results when networks are created using only reciprocated ties to form

Friends and Family ties (note the other two inputs into the Union network – the Lender /

Solver networks – cannot be restricted in an analogous manner). The figures show results

quite similar under this restriction.

As shown in Table 11, however, it is not clear that these restrictions are reasonable given

the low average degree they generate in the Friend and Family networks. This may be

due to censoring caused by the limited number of people individuals are allowed to list

(5 family members and 5 friends), or failures to recall individuals.

Table 11: Network Summary Statistics: Including Only Reciprocated Friends and Family
Ties

Union Friends Family Lender Solver

Average Size 210.3 210.3 210.3 210.3 210.3
Average Num Connections 924.1 34.3 156.5 403.3 450.2
Average Degree 8.7 0.3 1.5 3.8 4.2
Min Size 160.0 160.0 160.0 160.0 160.0
Max Size 283.0 283.0 283.0 283.0 283.0

12



Figure 11
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Notes: The above plot presents the partial correlation between Theoretically-Predicted Participation (TPP) and voter
turnout in the Ugandan Presidential and LC5 Chair Elections where ties are only added between friends and family if
ties are reciprocated. Grey bands indicate 95% confidence intervals. As detailed in Section 2.3, TPP is operationalized as
the first principle component of normalized TPP scores across all parameter choices (as TPP is highly correlated across
parameters). Turnout is shares of the adult village population. Regressions corresponding to these plots, as well as tests
for the statistical significance of differences across elections can be found in Appendix F, along with analogous plots for
different sub-networks. Adjustments for measurement /estimation error in TPP have not been made in these estimates; as
a result their statistical difference from zero is likely under-stated, as measurement error in independent variables results
in attenuation bias.

I Heterogeneous Effects

An important question is whether the social context effects we observe are driven by pres-

sure to vote, or by pressure to coordinate around a given candidate. Table 12 presents

tests for heterogeneous effects of TPP by (a) the degree to which village candidate pref-

erences appear to be homogenous (i.e. everyone votes for the same candidate), and (b)

the degree to which down-ballot races are competitive (there is no cross-village variation

in the competitiveness of top-of-ticket races).

Vote homogeneity is measured using a simple Herfindahl index (which takes on a value of

1 if everyone votes for the same candidate, and a value of 0 if no one votes for the same

candidate), while competitiveness is a fragmentation index (one minus the Herfindahl
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index of candidate vote shares across their entire electoral district – a value of 0 for

races where one candidate won all votes or stood in an uncontested election, and values

approaching 1 where votes are distributed evenly across a large number of candidates).

Note that the results in Column 4-5 are for down-ballot LC5 council seats, which are

elected at the Sub-County level, so some villages faced the same slate of candidates. For

that reason, results are clustered by sub-county (there are 10 clusters across the 15

villages). Similarly, Column 6 shows the relationship between competitiveness and TPP

for down-ballot LC3 races, where villages in the same Parish face the same candidates,

so results are clustered by parish (there are 13 clusters across the 15 villages). Column

names report the term for the election in which candidates appeared using the election

naming convention used throughout this paper (both LC5 council and LC3 candidates

stood during the same election in which the LC5 Chair was selected).

First, as shown in Columns 2 and 4, we find that social context effects are somewhat

smaller in villages where voters’ candidate preferences are more homogeneous. Second,

while the effect of TPP is slightly larger among villages with more competitive down-ballot

LC3 local elections (Column 6), there is no evidence of a heterogeneous impact of TPP

for villages facing more competitive down-ballot LC5 council seat elections (Column 5).

While only suggestive (given our limited statistical power), taken together these results

point towards network effects supporting a social norm of political participation, rather

than facilitating strategic mobilization around a certain party or candidate.
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Table 12: Social Norms and Political Mobilization

(1) (2) (3) (4) (5) (6)
Pres Pres LC5Chair LC5Chair LC5Chair LC5Chair

TPP (Union) 0.0048 0.22 0.045˚ 0.086 0.0063 -0.052
(0.023) (0.17) (0.021) (0.14) (0.048) (0.046)

Pres Vote Homogeneity 0.32
(0.25)

TPP X Vote Homogeneity -0.42
(0.33)

LC5Chair Vote Homogeneity -0.13
(0.19)

TPP X Vote Homogeneity -0.086
(0.26)

LC5 Council Competitive 0.27˚˚˚

(0.048)
TPP X LC5 Competitive 0.024

(0.093)
LC3 Competitive -0.098

(0.097)
TPP X LC3 Competitive 0.21˚

(0.099)

Std of Block Voting 0.10 0.13
Std of Competitiveness 0.24 0.17
Standard errors in parentheses
˚ p ă 0.1, ˚˚ p ă 0.05, ˚˚˚ p ă 0.01
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J Divide-The-Dollar Game

The divide-the-dollar game was organized as follows: first, subjects were given ten

100UGX coins. Subjects were then advised that they could split these coins between

themselves and a stranger, who they were told will be “someone from Arua whom you

do not know personally. We chose the stranger by randomly selecting someone living in

Arua district from a long list.”
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K Dropping Highest Centrality Nodes

This section presents robustness checks to the analysis presented in Section 5.2. As shown

in Figures 12 and 13, the results presented when we drop the 5 most central nodes in the

network are similar to those found when we drop the 10 most central and 15 most central

as well.

Figure 12
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Notes: The above plot presents the partial correlation between voter turnout in the Ugandan Presidential and LC5 Chair
Elections and a modified version of TPP. Grey bands indicate 95% confidence intervals. In particular, TPP has been
re-calculated by removing the ten individuals with highest eigenvector centrality from each network and re-running TPP
simulations on those networks.
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L Information Diffusion Simulation

We measure the ability of a network to efficiently diffuse information by running a simple

diffusion model on our on empirical village networks. We then examine the average speed

with which information spreads for each village.

Our decision to simulate this process is due to the fact that — as with social context

influences — this is no simple statistic (like average degree or average shortest path length)

which reliably summarizes the ability of a network to efficiently diffuse information when

information spread is at least partially stochastic (Newman, N.d., p. 19-35).

Our simulation proceeds as follows:

1. At t “ 0, one vertex v0 in the network (selected with uniform probability) is endowed

with a unique piece of knowledge. It is thus “informed” (Ipv0q “ 1). All other

vertices are assumed to be ignorant of this knowledge (Ipv jq “ 0 @ j P Vz0).

2. At t “ 1, information spreads from v0 to each of the neighbors of v0, denoted Npv0q

with i.i.d. probability p
|Npv0q|

P p0, 1q.

3. Step 2 is then repeated indefinitely, where at each stage all “informed” vertices

Figure 13
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Notes: The above plot presents the partial correlation between voter turnout in the Ugandan Presidential and LC5 Chair
Elections and a modified version of TPP. Grey bands indicate 95% confidence intervals. In particular, TPP has been re-
calculated by removing the fifteen individuals with highest eigenvector centrality from each network and re-running TPP
simulations on those networks.
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spread their knowledge to neighbors with i.i.d. probability p.

The ability of the network to support diffusion can then be specified as the number of

people in the network that have become “informed” after s steps of the diffusion model.

The larger the number of people “informed” for a given number of steps s, the more

efficient a village’s network.

Note that the probability of information diffusion from a vertex to her neighbors is nor-

malized by the number of neighbors. This can be thought of as approximating the idea

that individuals can only have so many interactions in a given period of time. This

normalization more closely approximates the idea that all individuals have the same

probability of interacting and sharing information with at least a friend in a given pe-

riod, a dynamic suggested by recent work on information diffusion elsewhere in Uganda

(Larson and Lewis, 2017). With that said, results look similar without the normalization.

L.1 Information Diffusion Summary Statistics

Table 13 below shows the correlation in the share of individuals in each village informed

at different step thresholds, with different spread probabilities, and with different network

specifications. As the table shows, inter-parameter correlations are quite high, and so an

index is created for expositional ease by taking the first component of a PCA index for

each network specification.
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Table 13: Diffusion Correlations across Parameter Values

Variables p 0.60, 10 steps, Union p 0.60, 20 steps, Union p 0.35, 10 steps, Union p 0.35, 20 steps, Union
p 0.60, 10 steps, Union 1.00
p 0.60, 20 steps, Union 0.76 1.00
p 0.35, 10 steps, Union 0.96 0.60 1.00
p 0.35, 20 steps, Union 0.97 0.83 0.92 1.00
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M Information Measures, Turnout, and TPP Regressions

Table 14: Turnout and TPP with Information Measure Controls

(1) (2) (3) (4)
LC5 Chair LC5 Chair Presidential Presidential

Eqm Participation Index (Union) 0.055˚˚ 0.044˚ 0.016 0.0053
(0.019) (0.022) (0.021) (0.025)

Share of Village Aware of UBridge 0.33˚ 0.37˚

(0.16) (0.18)
Info Diffusion Simulation 1st Component -0.0020 0.0011

(0.012) (0.014)

Observations 15 15 15 15
Standard errors in parentheses
˚ p ă 0.1, ˚˚ p ă 0.05, ˚˚˚ p ă 0.01
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N Village Network Plots

Figure 14: 237 Vertices, 1,457 Edges. Eqm Participation Index Value: -1.25
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Figure 15: 229 Vertices, 1,723 Edges. Eqm Participation Index Value: 0.38

Figure 16: 204 Vertices, 1,618 Edges. Eqm Participation Index Value: 0.28

23



Figure 17: 197 Vertices, 1,283 Edges. Eqm Participation Index Value: -0.69

Figure 18: 30 Vertices, 176 Edges. Eqm Participation Index Value: -6.93

24



Figure 19: 189 Vertices, 1,370 Edges. Eqm Participation Index Value: -0.00

Figure 20: 283 Vertices, 2,797 Edges. Eqm Participation Index Value: 2.47
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Figure 21: 192 Vertices, 1,490 Edges. Eqm Participation Index Value: 0.45

Figure 22: 163 Vertices, 1,247 Edges. Eqm Participation Index Value: -0.10
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Figure 23: 168 Vertices, 1,189 Edges. Eqm Participation Index Value: -0.58

Figure 24: 254 Vertices, 2,423 Edges. Eqm Participation Index Value: 1.73
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Figure 25: 225 Vertices, 2,016 Edges. Eqm Participation Index Value: 1.22

Figure 26: 205 Vertices, 1,857 Edges. Eqm Participation Index Value: 1.48
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Figure 27: 263 Vertices, 2,272 Edges. Eqm Participation Index Value: 1.44

Figure 28: 185 Vertices, 1,516 Edges. Eqm Participation Index Value: 0.54
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Figure 29: 160 Vertices, 1,150 Edges. Eqm Participation Index Value: -0.45
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