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A.1 Additional Notation

Throughout the appendix, let Φ(c) =
∑

i ϕ(ci). We have logωi(c) = log ϕ(ci)− log Φ(c) and
thus

∂ logωi(c)

∂ci
=
ϕ′(ci)

ϕ(ci)
− ϕ′(ci)

Φ(c)

=
ϕ′(ci)

ϕ(ci)

(
1− ϕ(ci)

Φ(c)

)
= ϕ̂′(ci)(1− ωi(c)),

where ϕ̂ = log ϕ. Because ϕ is strictly increasing and log-concave, ϕ̂′ > 0 and ϕ̂′′ ≤ 0.

A.2 Equilibrium Existence and Uniqueness

For the existence and uniqueness results, I consider a more general version of the model
presented in the text. I allow groups to be asymmetric in their size and productivities,
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which entails generalizing each faction i’s budget constraint (1) to

pi
πp
i

+
ri
πr
i

+
ci
πc
i

= Li, (A.1)

where πp
i , π

r
i , π

c
i , Li > 0. I assume a labor-financed government throughout the existence

and uniqueness results, as this is the more difficult case; all claims here also apply to a
capital-financed state in which f(p) = X. In addition, the results here do not depend on
Assumption 1.

Let Γ(t) denote the subgame that follows the government’s selection of t, in which the
factions simultaneously decide how to allocate their labor. Let σi = (pi, ri, ci) be a strategy
for faction i in the subgame, and let

Σi =

{
(pi, ri, ci)

∣∣∣∣ piπp
i

+
ri
πr
i

+
ci
πc
i

= Li

}

denote the strategy space. Let σ = (σ1, . . . , σN) and Σ =×N

i=1
Σi.

I begin by proving that a Nash equilibrium exists in each subgame. The task is compli-
cated by the potential discontinuity of the factions’ payoffs, namely at c = 0 when ϕ(0) = 0.
I rely on Reny’s (1999) conditions for the existence of pure strategy equilibria in a discontin-
uous game. The key condition is better-reply security—informally, that at least one player
can assure a strict benefit by deviating from any non-equilibrium strategy profile, even if the
other players make slight deviations.

Lemma A.1. Γ(t) is better-reply secure.

Proof. Let U t : Σ → RN
+ be the vector payoff function for the factions in Γ(t), so that

U t(σ) = (u1(t, σ), . . . , uN(t, σ)). Take any convergent sequence in the graph of U t, call it
(σk, U t(σk)) → (σ∗, U∗), such that σ∗ is not an equilibrium of Γ(t). Because production and
the effective tax rate are continuous in (p, r), we have

U∗
i = w∗

i × τ̄(t, r∗)× f(p∗)

for each i, where w∗
i ≥ 0 and

∑N
i=1w

∗
i = 1. I must show there is a player i who can secure

a payoff Ūi > U∗
i at σ∗; i.e., there exists σ̄i ∈ Σi such that ui(t, σ̄i, σ′

−i) ≥ Ūi for all σ′
−i in a

neighborhood of σ∗
−i (Reny 1999, 1032).

If N = 1 or Φ(c∗) > 0, then U t is continuous in a neighborhood of σ∗, so the conclusion
is immediate. If τ̄(t, r∗)× f(p∗) = 0, then each U∗

i = 0 and each faction can assure a strictly
greater payoff by deviating to a strategy with positive production, resistance, and conflict.
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For the remaining cases, suppose N > 1, τ̄(t, r∗) × f(p∗) > 0, and Φ(c∗) = 0, the latter of
which implies c∗ = 0 and ϕ(0) = 0. Since N > 1, there is a faction i such that w∗

i < 1. Take
any ϵ ∈ (0, (1− w∗

i )/2) and any δ1 > 0 such that

τ̄(t, r′)× f(p′) ≥ (w∗
i + 2ϵ)× τ̄(t, r∗)× f(p∗)

for all σ′ in a δ1-neighborhood of σ∗. Since w∗
i + 2ϵ < 1 and τ̄(t, r) × f(p) is continuous in

(p, r), such a δ1 exists. Then let σ̄i = (p̄i, r̄i, c̄i) be any strategy in a δ1-neighborhood of σ∗
i

such that c̄i > 0. Because c∗−i = 0 and ϕ is continuous, there exists δ2 > 0 such that

ωi(c̄i, c
′
−i) =

ϕ(c̄i)

ϕ(c̄i) +
∑

j∈N\{i} ϕ(c
′
j)

≥ w∗
i + ϵ

w∗
i + 2ϵ

for all σ′
−i in a δ2-neighborhood of σ∗

−i. Therefore, for all σ′
−i in a min{δ1, δ2}-neighborhood

of σ∗
−i, we have

ui(t, σ̄i, σ
′
−i) ≥ (w∗

i + ϵ)× τ̄(t, r∗)× f(p∗) > U∗
i ,

establishing the claim.

The other main condition for equilibrium existence is that each faction’s utility function
be quasiconcave in its own actions. I prove this by showing that the logarithm of a faction’s
utility function is concave in its actions.

Lemma A.2. Γ(t) is log-concave.

Proof. Take any (p, r, c) such that ui(t, p, r, c) > 0, and let P =
∑

j pj and R =
∑

j rj. First,
assume

∑
j ̸=i ϕ(cj) > 0, so that ui is continuously differentiable in (pi, ri, ci). We have

∂ log ui(t, p, r, c)

∂pi
=

1

P
,

∂ log ui(t, p, r, c)

∂ri
=

−tg′(R)
1− tg(R)

,

∂ log ui(t, p, r, c)

∂ci
= ϕ̂′(ci)(1− ωi(c)),

and therefore

∂2 log ui(t, p, r, c)

∂p2i
=

−1

P 2
< 0,

∂2 log ui(t, p, r, c)

∂r2i
=

−tg′′(R)(1− tg(R))− (tg′(R))2

(1− tg(R))2
≤ 0,
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∂2 log ui(t, p, r, c)

∂c2i
= ϕ̂′′(ci)(1− ωi(c))− ϕ̂′(ci)

∂ωi(c)

∂ci
≤ 0,

∂2 log ui(t, p, r, c)

∂pi∂ri
=
∂2 log ui(t, p, r, c)

∂pi∂ci
=
∂2 log ui(t, p, r, c)

∂ri∂ci
= 0,

so log ui is concave in (pi, ri, ci). By the same token, τ̄(t, r)× f(p) is log-concave in (p, r).
Now assume

∑
j ̸=i ϕ(cj) = 0. Take any (p′i, r

′
i, c

′
i) such that ui(t, p′, r′, c′) > 0, where

(p′, r′, c′) = ((p′i, p−i), (r
′
i, r−i), (c

′
i, c−i)). Take any α ∈ [0, 1], and let (pα, rα, cα) = α(p, r, c)+

(1− α)(p′, r′, c′). If ci = c′i = 0, then ωi(c
α) = ωi(c) = ωi(c

′) = 1/N and thus

log ui(t, p
α, rα, cα) = log

1

N
+ log τ̄(t, rα) + log f(pα)

≥ log
1

N
+ α (log τ̄(t, r) + log f(p)) + (1− α) (log τ̄(t, r′) + log f(p′))

= α log ui(t, p, r, c) + (1− α) log ui(t, p
′, r′, c′),

where the inequality follows from the log-concavity of τ̄(t, r) × f(p) in (p, r). If ci > 0 and
c′i = 0, then ωi(c

α) = ωi(c) = 1, ωi(c
′) = 1/N , and thus

log ui(t, p
α, rα, cα) = log τ̄(t, rα) + log f(pα)

≥ α (log τ̄(t, r) + log f(p)) + (1− α)

(
log

1

N
+ log τ̄(t, r′) + log f(p′)

)
= α log ui(t, p, r, c) + (1− α) log ui(t, p

′, r′, c′).

The same argument holds in case ci = 0 and c′i > 0. It is easy to see that the same conclusion
holds if ci > 0 and c′i > 0, in which case ωi(c

α) = ωi(c) = ωi(c
′) = 1. Therefore, log ui is

concave in (pi, ri, ci).

Equilibrium existence follows immediately from the two preceding lemmas.

Proposition A.1. Γ(t) has a pure strategy equilibrium.

Proof. The strategy space Σ is compact, each payoff function ui is bounded on Σ, and Γ(t) is
better-reply secure (Lemma A.1) and quasiconcave (Lemma A.2). Therefore, a pure strategy
equilibrium exists (Reny 1999, Theorem 3.1).

I now turn to the question of uniqueness. I show that although Γ(t) may have multiple
equilibria, these equilibria are identical in terms of three essential characteristics: total pro-
duction,

∑
i pi; total resistance,

∑
i ri; and the vector of individual expenditures on internal

conflict, c.
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To prove essential uniqueness, I must characterize the equilibrium more fully than I have
up to this point. The following result rules out equilibria in which (1) a faction’s share in the
internal competition is zero or (2) a faction could raise its share to one by an infinitesimal
change in strategy.

Lemma A.3. If N > 1, then each ϕ(ci) > 0 in any equilibrium of Γ(t).

Proof. Assume N > 1, and let (p, r, c) be a strategy profile of Γ(t) in which ci = 0 for
some i ∈ N . The claim holds trivially if ϕ(0) > 0, so assume ϕ(0) = 0. If Φ(c) > 0 or
τ̄(t, r) × f(p) = 0, then ui(t, p, r, c) = 0. But i could ensure a strictly positive payoff with
any strategy that allocated nonzero labor to production, resistance, and conflict, so (p, r, c)

is not an equilibrium. Conversely, suppose Φ(c) = 0, which implies cj = 0 for all j ∈ N ,
and τ̄(t, r) × f(p) > 0. Then ui(t, p, r, c) = (τ̄(t, r) × f(p))/N . But i could obtain a payoff
arbitrarily close to τ̄(t, r) × f(p) by diverting an infinitesimal amount of labor away from
production or resistance and into internal conflict, so (p, r, c) is not an equilibrium.

This result is important because it implies utility functions are continuously differentiable
in the neighborhood of any equilibrium. Equilibria can therefore be characterized in terms
of first-order conditions.

Lemma A.4. (p′, r′, c′) is an equilibrium of Γ(t) if and only if, for each i ∈ N ,

p′i

(
πp
i

∂ log f(p′)

∂pi
− µi

)
= 0, (A.2)

r′i

(
πr
i

∂ log τ̄(t, r′)

∂ri
− µi

)
= 0, (A.3)

c′i

(
πc
i

∂ logωi(c
′)

∂ci
− µi

)
= 0, (A.4)

p′i
πp
i

+
r′i
πr
i

+
c′i
πc
i

− Li = 0, (A.5)

where
µi = max

{
πp
i

∂ log f(p′)

∂pi
, πr

i

∂ log τ̄(t, r′)

∂ri
, πc

i

∂ logωi(c
′)

∂ci

}
.

Proof. In equilibrium, each faction’s strategy must solve the constrained maximization prob-
lem

max
pi,ri,ci

log ui(t, p, r, c)

s.t.
pi
πp
i

+
ri
πr
i

+
ci
πc
i

− Li = 0,
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pi ≥ 0, ri ≥ 0, ci ≥ 0.

It follows from Lemma A.3 that each ui is C1 in (pi, ri, ci) in a neighborhood of any equi-
librium. This allows use of the Karush–Kuhn–Tucker conditions to characterize solutions
of the above problem. The “only if” direction holds because (A.2)–(A.5) are the first-order
conditions for the problem and the linearity constraint qualification holds. The “if” direction
holds because log ui is concave in (pi, ri, ci), per Lemma A.2.

A weak welfare optimality result follows almost immediately from this equilibrium charac-
terization. If (p′, r′, c′) is an equilibrium of Γ(t), then there is no other equilibrium (p′′, r′′, c′′)

such that c′′ = c′ and τ̄(t, r′′) × f(p′′) > τ̄(t, r′)× f(p′). In other words, taking as fixed the
factions’ allocations toward internal conflict, there is no inefficient misallocation of labor
between production and resistance.

Corollary A.1. If (p′, r′, c′) is an equilibrium of Γ(t), then (p′, r′) solves

max
p,r

log τ̄(t, r) + log f(p)

s.t.
pi
πp
i

+
ri
πr
i

= Li −
c′i
πc
i

, i = 1, . . . , N,

pi ≥ 0, ri ≥ 0, i = 1, . . . , N.

Proof. This is a C1 concave maximization problem with linear constraints, so the Karush–
Kuhn–Tucker first-order conditions are necessary and sufficient for a solution. The result
then follows from Lemma A.4.

I next prove that if post-tax output is weakly greater in one equilibrium of Γ(t) than
another, then each of the two individual components (production and the factions’ total
share) is weakly greater. The proof relies on the fact that if c′i ≤ c′′i and ωi(c

′) ≤ ωi(c
′′), then

∂ logωi(c
′)

∂ci
= ϕ̂′(c′i)(1− ωi(c

′)) ≥ ϕ̂′(c′′i )(1− ωi(c
′′)) =

∂ logωi(c
′′)

∂ci
.

If in addition ωi(c
′) < ωi(c

′′), the inequality is strict.

Lemma A.5. If (p′, r′, c′) and (p′′, r′′, c′′) are equilibria of Γ(t) such that τ̄(t, r′) × f(p′) ≥
τ̄(t, r′′)× f(p′′), then τ̄(t, r′) ≥ τ̄(t, r′′) and f(p′) ≥ f(p′′).

Proof. Suppose the claim of the lemma does not hold, so there exist equilibria such that
τ̄(t, r′) × f(p′) ≥ τ̄(t, r′′) × f(p′′) but τ̄(t, r′) < τ̄(t, r′′). Together, these inequalities imply
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f(p′) > f(p′′). (The proof in case τ̄(t, r′) > τ̄(t, r′′) and f(p′) < f(p′′) is analogous.)
I will first establish that p′i > 0 implies r′′i = 0. Per Lemma A.4 and the log-concavity of

f and τ̄ , p′i > 0 implies

πp
i

∂ log f(p′′)

∂pi
> πp

i

∂ log f(p′)

∂pi
≥ πr

i

∂ log τ̄(t, r′)

∂ri
> πr

i

∂ log τ̄(t, r′′)

∂ri
.

Therefore, again by Lemma A.4, r′′i = 0.
Next, I establish that Φ(c′′) > Φ(c′). Since f(p′) > f(p′′), there is a faction i ∈ N such

that p′i > p′′i . As this implies r′′i = 0, the budget constraint gives c′′i > c′i. If Φ(c′′) ≤ Φ(c′),
then ωi(c

′′) > ωi(c
′) and thus by Lemma A.4

πc
i

∂ logωi(c
′)

∂ci
> πc

i

∂ logωi(c
′′)

∂ci
≥ πp

i

∂ log f(p′′)

∂pi
> πp

i

∂ log f(p′)

∂pi
.

But this implies p′i = 0, a contradiction. Therefore, Φ(c′′) > Φ(c′).
Using these intermediate results, I can now establish the main claim by contradiction.

Since τ̄(t, r′′) > τ̄(t, r′), there is a faction j ∈ N such that r′′j > r′j. This implies p′j = 0, so
the budget constraint gives c′′j < c′j. Since Φ(c′′) > Φ(c′), this in turn gives ωj(c

′′) < ωj(c
′)

and thus

πc
j

∂ logωj(c
′′)

∂cj
> πc

j

∂ logωj(c
′)

∂cj
≥ πr

j

∂ log τ̄(t, r′)

∂rj
> πr

j

∂ log τ̄(t, r′′)

∂rj
.

But this implies r′′j = 0, a contradiction.

I can now state and prove the essential uniqueness of the equilibrium of each labor
allocation subgame.

Proposition A.2. If (p′, r′, c′) and (p′′, r′′, c′′) are equilibria of Γ(t), then f(p′) = f(p′′),
τ̄(t, r′) = τ̄(t, r′′), and c′ = c′′.

Proof. First I prove that τ̄(t, r′)×f(p′) = τ̄(t, r′′)×f(p′′). Suppose not, so that, without loss
of generality, τ̄(t, r′) × f(p′) > τ̄(t, r′′) × f(p′′). Then Lemma A.5 implies τ̄(t, r′) ≥ τ̄(t, r′′)

and f(p′) ≥ f(p′′), at least one strictly so, and thus

max

{
πp
i

∂ log f(p′′)

∂pi
, πr

i

∂ log τ̄(t, r′′)

∂ri

}
≥ max

{
πp
i

∂ log f(p′)

∂pi
, πr

i

∂ log τ̄(t, r′)

∂ri

}
for all i ∈ N , strictly so for some j ∈ N . Since τ̄(t, r′′)× f(p′′) < τ̄(t, r′)× f(p′), it follows
from Corollary A.1 that the set N+ = {i ∈ N | c′′i > c′i} is nonempty. For any i ∈ N+ such
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that ωi(c
′′) > ωi(c

′),

πc
i

∂ logωi(c
′)

∂ci
> πc

i

∂ logωi(c
′′)

∂ci

≥ max

{
πp
i

∂ log f(p′′)

∂pi
, πr

i

∂ log τ̄(t, r′′)

∂ri

}
≥ max

{
πp
i

∂ log f(p′)

∂pi
, πr

i

∂ log τ̄(t, r′)

∂ri

}
.

But this implies p′i = r′i = 0, contradicting c′′i > c′i. So ωi(c
′′) ≤ ωi(c

′) for all i ∈ N+. Since
N+ is nonempty and the conflict shares are increasing in ci and sum to one, this can hold
only if N+ = N and ωi(c

′′) = ωi(c
′) for all i ∈ N . This implies

πc
j

∂ logωj(c
′)

∂cj
≥ πc

j

∂ logωj(c
′′)

∂cj

≥ max

{
πp
j

∂ log f(p′′)

∂pj
, πr

j

∂ log τ̄(t, r′′)

∂rj

}
> max

{
πp
j

∂ log f(p′)

∂pj
, πr

j

∂ log τ̄(t, r′)

∂rj

}
,

which in turn implies p′j = r′j = 0, contradicting c′′j > c′j. I conclude that τ̄(t, r′) × f(p′) =

τ̄(t, r′′)× f(p′′) and thus, by Lemma A.5, τ̄(t, r′) = τ̄(t, r′′) and f(p′) = f(p′′).
Next, I prove that c′ = c′′. Suppose not, so c′ ̸= c′′. Without loss of generality, suppose

Φ(c′) ≥ Φ(c′′). Since τ̄(t, r′) × f(p′) = τ̄(t, r′′) × f(p′′) yet c′ ̸= c′′, by Corollary A.1 there
exists i ∈ N such that c′i > c′′i and j ∈ N such that c′j < c′′j . It follows from Φ(c′) ≥ Φ(c′′)

that ωj(c
′) < ωj(c

′′) and therefore

πc
j

∂ logωj(c
′)

∂cj
> πc

j

∂ logωj(c
′′)

∂cj

≥ max

{
πp
j

∂ log f(p′′)

∂pj
, πr

j

∂ log τ̄(t, r′′)

∂rj

}
= max

{
πp
j

∂ log f(p′)

∂pj
, πr

j

∂ log τ̄(t, r′)

∂rj

}
.

But this implies p′j = r′j = 0, contradicting c′′j > c′j.

Proposition A.2 allows me to write the equilibrium values of total production, total
resistance, and individual conflict allocations as functions of the tax rate. For each t ∈ [0, 1],
let P ∗(t) = P if and only if there is an equilibrium (p, r, c) of Γ(t) such that

∑
i pi = P . Let

the functions R∗(t) and c∗(t), the latter of which is vector-valued, be defined analogously.
The only remaining step to prove the existence of an equilibrium in the full game is to
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show that an optimal tax rate exists. An important consequence of Proposition A.2 is that
the optimal tax rate (if one exists) does not depend on the equilibrium that is selected in each
labor allocation subgame, since the government’s payoff depends only on total production
and resistance. The main step toward proving the existence of an optimal tax rate is to show
that total production and resistance are continuous in t.

Lemma A.6. P ∗, R∗, and c∗ are continuous.

Proof. Define the equilibrium correspondence E : [0, 1] ⇒ Σ by

E(t) = {(p, r, c) | (p, r, c) is an equilibrium of Γ(t)}.

Standard arguments (e.g., Fudenberg and Tirole 1991, 30–32) imply that E has a closed
graph.17 This in turn implies E is upper hemicontinuous, as its codomain, Σ, is compact.
Let F : Σ → RN+2

+ be the function defined by F (p, r, c) = (
∑

i pi,
∑

i ri, c). Since F is
continuous as a function, it is upper hemicontinuous as a correspondence. Then we can
write the functions in the lemma as the composition of F and E:

(P ∗(t), R∗(t), c∗(t)) = {F (p, r, c) | (p, r, c) ∈ E(t)} = (F ◦ E)(t).

As the composition of upper hemicontinuous correspondences, (P ∗, R∗, c∗) is upper hemicon-
tinuous (Aliprantis and Border 2006, Theorem 17.23). Then, as an upper hemicontinuous
correspondence that is single-valued (per Proposition A.2), (P ∗, R∗, c∗) is continuous as a
function.

Continuity of total production and resistance in the tax rate imply that the government’s
payoff is continuous in the tax rate, so an equilibrium exists.

Proposition A.3. There is a pure strategy equilibrium.

Proof. For each labor allocation subgame Γ(t), let σ∗(t) be a pure strategy equilibrium of
Γ(t). Proposition A.1 guarantees the existence of these equilibria. By Proposition A.2, the
government’s payoff from any t ∈ [0, 1] is

uG(t, σ
∗(t)) = t× g(R∗(t))× P ∗(t).

17The only complication in applying the usual argument is that the model is discontinuous at c = 0 in
case ϕ(0) = 0. However, by the same arguments as in the proof of Lemma A.1, if ϕ(0) = 0 there cannot be
a sequence (tk, (pk, rk, ck)) in the graph of E such that ck → 0.
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This expression is continuous in t, per Lemma A.6, and therefore attains its maximum on the
compact interval [0, 1]. A maximizer t∗ exists, and the pure strategy profile (t∗, (σ∗(t))t∈[0,1])

is an equilibrium.

A.3 Symmetric Game Properties

In the remainder of the appendix, I consider the special symmetric case of the model discussed
in the text, in which each πp

i = πp, πr
i = πr, πc

i = πc, and Li = L/N . Let Γ(t) denote the
labor allocation subgame with tax rate t in the model with a labor-financed government,
and let ΓX(t) denote the same with a capital-financed government.

An important initial result for the symmetric case is that in every equilibrium of every
labor allocation subgame, every faction spends the same amount on internal conflict.

Lemma A.7. If the game is symmetric and (p, r, c) is an equilibrium of Γ(t) or ΓX(t), then
ci = cj for all i, j ∈ N .

Proof. Because the game is symmetric, there exists an equilibrium (p′, r′, c′) in which
(p′i, r

′
i, c

′
i) = (pj, rj, cj), (p′j, r

′
j, c

′
j) = (pi, ri, ci), and (p′k, r

′
k, c

′
k) = (pk, rk, ck) for all k ∈

N \ {i, j}. Proposition A.2 then implies ci = cj.

This means we can characterize an equilibrium of the labor allocation subgame in terms
of just three variables: total production, total resistance, and the (common across factions)
individual allocation to internal conflict. Using the characterization result of Lemma A.4, we
can identify an equilibrium as a solution to some subset of the following system of equations
derived from the first-order conditions. Each Qxy represents marginal equality of the returns
to x and y, while Qb is the budget constraint. I write these as functions of t as well as
the exogenous parameters π = (πp, πr, πc, L,N) to allow for comparative statics via implicit
differentiation:

Qpr(P,R,C; t, π) = πp(1− tg(R)) + πrtPg′(R) = 0, (A.6)

Qpc(P,R,C; t, π) =
πp

P
− N − 1

N
πcϕ̂′(C) = 0, (A.7)

Qrc(P,R,C; t, π) =
πrtg′(R)

1− tg(R)
+
N − 1

N
πcϕ̂′(C) = 0, (A.8)

Qb(P,R,C; t, π) = L− P

πp
− R

πr
− NC

πc
= 0. (A.9)

The condition (A.8) is redundant when the government is labor-financed and (A.6) and (A.7)
both hold, but it is useful for characterizing equilibrium with a capital-financed government.
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A.4 Proofs of Named Results

A.4.1 Proof of Proposition 1

The quantities defined in Proposition 1 are as follows. (R̃X(t), c̃X(t)) is the solution to the
system

Qrc(0, R̃X(t), c̃X(t); t, π) =
πrtg′(R̃X(t))

1− tg(R̃X(t))
+
N − 1

N
πcϕ̂′(c̃X(t)) = 0, (A.10)

Qb(0, R̃X(t), c̃X(t); t, π) = L− R̃X(t)

πr
− Nc̃X(t)

πc
= 0. (A.11)

The cutpoint tax rates are

t̂X0 =
ηπcϕ̂′(πcL/N)

ηπcϕ̂′(πcL/N)− πrg′(0)
, (A.12)

t̂X1 =
ηπcϕ̂′(0)

ηπcg(πrL)ϕ̂′(0)− πrg′(πrL)
, (A.13)

where η = (N − 1)/N . Observe that

πr ∂ log τ̄(t̂
X
0 , 0)

∂ri
= ηπcϕ̂′(πcL/N) = πc∂ logωi((π

cL/N)1N)

∂ci
,

πr ∂ log τ̄(t̂
X
1 , (π

rL/N)1N)

∂ri
= ηπcϕ̂′(0) = πc∂ logωi(0)

∂ci

for each i ∈ N , where 1N is an N -vector of 1s.

Proposition 1. If the government is capital-financed, every labor allocation subgame has a
unique equilibrium. There exists a tax rate t̂X0 ∈ (0, 1) such that each ri = 0 in equilibrium
if and only if t ≤ t̂X0 . There exists t̂X1 > t̂X0 such that each ci = 0 in equilibrium if and only
if t ≥ t̂X1 . For t ∈ (t̂X0 , t̂

X
1 ), in equilibrium each ri = R̃X(t)/N > 0 (strictly increasing in t)

and each ci = c̃X(t) > 0 (strictly decreasing).

Proof. ΓX(t) has an equilibrium (Proposition A.1), and there exists c∗X(t) such that each
ci = c∗X(t) in all of its equilibria (Proposition A.2 and Lemma A.7). The budget constraint
then implies each ri = πr(L/N − c∗X(t)/π

c) in every equilibrium of ΓX(t), so the equilibrium
is unique.

Let (r, c) be the equilibrium of ΓX(t). To simplify expressions in what follows, let C =

ci = c∗X(t) and R =
∑

i ri = πr(L − NC/πc). If t ≤ t̂X0 and R > 0, then the first-order

11



conditions give

πr ∂ log τ̄(t, r)

∂ri
< πr ∂ log τ̄(t̂

X
0 , 0)

∂ri
= πc∂ logωi((π

cL/N)1N)

∂ci
≤ πc∂ logωi(c)

∂ci

for each i ∈ N . But this implies each ri = 0, contradicting R > 0. Therefore, if t ≤ t̂X0 , then
R = 0. Similarly, if t > t̂X0 and R = 0, then each ci = πcL/N and thus

πc∂ logωi(c)

∂ci
= πr ∂ log τ̄(t̂

X
0 , 0)

∂ri
< πr ∂ log τ̄(t, r)

∂ri
.

But this implies each ci = 0, a contradiction. Therefore, if t > t̂X0 , then R > 0. The proof
that C > 0 if and only if t < t̂X1 is analogous.

For t ∈ (t̂X0 , t̂
X
1 ), the first-order conditions imply that R and C solve Qrc(0, R, C; t, π) =

Qb(0, R, C; t, π) = 0; therefore, R = R̃X(t) and C = c̃X(t). To reduce clutter in what follows,
I omit the evaluation point (0, R̃X(t), c̃X(t); t, π) from all partial derivative expressions. The
Jacobian of the system defining (R̃X(t), c̃X(t)) is

JX =

[
∂Qrc/∂R ∂Qrc/∂C

∂Qb/∂R ∂Qb/∂C

]

=

πrt
g′′(R̃X(t))− tg(R̃X(t))

2ĝ′′(R̃X(t))

(1− tg(R̃X(t)))2
ηπcϕ̂′′(c̃X(t))

−1/πr −N/πc


where η = (N − 1)/N and ĝ = log g. Its determinant is

|JX | =
πc

πr

(
ηϕ̂′′(c̃X(t))−Nπrt

g′′(R̃X(t))− tg(R̃X(t))
2ĝ′′(R̃X(t))

(1− tg(R̃X(t)))2

)
< 0.

By the implicit function theorem and Cramer’s rule,

dR̃X(t)

dt
=

∣∣∣∣∣−∂Qrc/∂t ∂Qrc/∂C

−∂Qb/∂t ∂Qb/∂C

∣∣∣∣∣
|JX |

=

∣∣∣∣∣−πrg′(R̃X(t))/(1− tg(R̃X(t)))
2 ηπcϕ̂′′(c̃X(t))

0 −N/πc

∣∣∣∣∣
|JX |

=
Nπrg′(R̃X(t))

πc(1− tg(R̃X(t)))2|JX |

12



> 0,

as claimed. The budget constraint then implies dc̃X(t)/dt < 0, as claimed.

A.4.2 Proof of Propositions 2 and 3

Before proving the results, I separately derive the comparative statics of t̂X0 and R̃X(t) in N
and πc.

Lemma A.8. The lower cutpoint t̂X0 is strictly increasing in the number of factions, N . It is
locally decreasing in the effectiveness of conflict, πc, if and only if

ϕ̂′
(
πcL

N

)
+
πcL

N
ϕ̂′′
(
πcL

N

)
≥ 0.

Proof. Recall that

t̂X0 =
((N − 1)/N)πcϕ̂′(πcL/N)

((N − 1)/N)πcϕ̂′(πcL/N)− πrg′(0)
.

Observe that g′(0) < 0, (N − 1)/N is strictly increasing in N , and ϕ̂′(πcL/N) is weakly
increasing in N . Therefore, t̂X0 is strictly increasing in N . Notice that

∂

∂πc

[
πcϕ̂′

(
πcL

N

)]
= ϕ̂′

(
πcL

N

)
+
πcL

N
ϕ̂′′
(
πcL

N

)
,

so t̂X0 is locally increasing in πc if and only if the above expression is positive.

Lemma A.9. For fixed t ∈ (t̂X0 , t̂
X
1 ), total resistance, R̃X(t), is strictly decreasing in the

number of factions, N . It is locally decreasing in the effectiveness of conflict, πc, if and only
if

ϕ̂′(c̃X(t)) + c̃X(t)ϕ̂
′′(c̃X(t)) ≥ 0.

Proof. I will treat N as if it were continuous in order to obtain comparative statics by implicit
differentiation. Throughout the proof I write R̃X(t) and c̃X(t) as functions of (N, πc).

I first consider comparative statics in N . To reduce clutter in what follows, I omit the
evaluation point (0, R̃X(t;N, π

c), c̃X(t;N, π
c); t, π) from all partial derivative expressions. By

the implicit function theorem and Cramer’s rule,

∂R̃X(t;N, π
c)

∂N
=

∣∣∣∣∣−∂Qrc/∂N ∂Qrc/∂C

−∂Qb/∂N ∂Qb/∂C

∣∣∣∣∣
|JX(t;N, πc)|
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=

∣∣∣∣∣−πcϕ̂′(c̃X(t;N, π
c))/N2 ((N − 1)/N)πcϕ̂′′(c̃X(t;N, π

c))

c̃X(t;N, π
c)/πc −N/πc

∣∣∣∣∣
|JX(t;N, πc)|

=
ϕ̂′(c̃X(t;N, π

c))− (N − 1)c̃X(t;N, π
c)ϕ̂′′(c̃X(t;N, π

c))

N |JX(t;N, πc)|
< 0,

as claimed, where |JX(t;N, π
c)| < 0 is defined as in the proof of Proposition 1.

I now consider comparative statics in πc. Again by the implicit function theorem and
Cramer’s rule,

∂R̃X(t;N, π
c)

∂πc
=

∣∣∣∣∣−∂Qrc/∂πc ∂Qrc/∂C

−∂Qb/∂πc ∂Qb/∂C

∣∣∣∣∣
|JX(t;N, πc)|

=

∣∣∣∣∣−((N − 1)/N)ϕ̂′(c̃X(t;N, π
c)) ((N − 1)/N)πcϕ̂′′(c̃X(t;N, π

c))

−Nc̃X(t;N, πc)/(πc)2 −N/πc

∣∣∣∣∣
|JX(t;N, πc)|

=
(N − 1)

(
ϕ̂′(c̃X(t;N, π

c)) + c̃X(t;N, π
c)ϕ̂′′(c̃X(t;N, π

c))
)

πc|JX(t;N, πc)|
.

Therefore, ∂R̃X(t;N, π
c)/∂πc ≤ 0 if and only if

ϕ̂′(c̃X(t;N, π
c)) + c̃X(t;N, π

c)ϕ̂′′(c̃X(t;N, π
c)) ≥ 0,

as claimed.

The propositions, which I prove together, follow mainly from these lemmas.

Proposition 2. A capital-financed government’s equilibrium payoff is increasing in the num-
ber of factions, N .

Proposition 3. If there is a unique equilibrium tax rate t∗, the government’s equilibrium
payoff is locally increasing in competitive effectiveness, πc, if and only if the incentive effect
outweighs the labor-saving effect (i.e., Equation 8 holds) at the corresponding equilibrium
level of internal competition.

Proof. Throughout the proof I write various equilibrium quantities, including the cutpoints
t̂X0 and t̂X1 , as functions of (N, πc). Let the government’s equilibrium payoff as a function of
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these parameters be
u∗G(N, π

c) = max
t∈[0,1]

t× g(R∗(t;N, πc))×X.

I begin with the comparative statics on N . First, suppose t = t̂X0 (N
′, πc) is an equilibrium

for all N ′ in a neighborhood of N .18 Then u∗G(N ′, πc) = t̂X0 (N
′, πc)×X in a neighborhood of

N , which by Lemma A.8 is strictly increasing in N ′. Next, suppose there is an equilibrium
with t ∈ (t̂X0 (N

′, πc), t̂X1 (N
′, πc)) for all N ′ in a neighborhood of N . Then, by the envelope

theorem,
∂u∗G(N, π

c)

∂N
= g′(R̃X(t;N, π

c))
∂R̃X(t;N, π

c)

∂N
×X > 0,

where the inequality follows from Lemma A.9. Finally, suppose t̂X1 (N ′, πc) < 1 and t = 1 is
an equilibrium for all N ′ in a neighborhood of N . Then u∗G(N, π

c) = g(πrL) ×X is locally
constant in N , and thus weakly increasing.

I now consider the comparative statics on πc. First, suppose t = t̂X0 (N, π
c′) is an equilib-

rium for all πc′ in a neighborhood of πc. Then u∗G(N, πc′) = t̂X0 (N, π
c′)×X in a neighborhood

of πc′, which by Lemma A.8 is locally increasing at πc if and only if

ϕ̂′
(
πcL

N

)
+
πcL

N
ϕ̂′′
(
πcL

N

)
≥ 0.

Next, suppose there is a unique equilibrium with t ∈ (t̂X0 (N, π
c′), t̂X1 (N, π

c′)) for all πc′ in a
neighborhood of πc. Then, by the envelope theorem,

∂u∗G(N, π
c)

∂πc
= g′(R̃X(t;N, π

c))
∂R̃X(t;N, π

c)

∂πc
×X.

This is positive if and only if ϕ̂′(c̃X(t)) + c̃X(t)ϕ̂
′′(c̃X(t)) ≥ 0, per Lemma A.9. Finally,

suppose t̂X1 (N, πc′) < 1 and t = 1 is an equilibrium for all πc′ in a neighborhood of πc. Then
u∗G(N, π

c) = g(πrL)×X is locally constant in πc, and thus weakly increasing.

I also prove the claim in footnote 13.

Lemma A.10. Let θ, λ > 0. If ϕ(C) = θ exp(λC), then the incentive effect outweighs the
labor-saving effect for all C ≥ 0. If ϕ(C) = θCλ, then the incentive and labor-saving effects
are exactly offsetting for all C > 0.

Proof. First consider the difference contest success function, ϕ(C) = θ exp(λC). Then

18There cannot be an equilibrium tax rate t < t̂X0 or (if t̂X1 < 1) t ∈ [t̂X1 , 1), as R∗ is constant on [0, t̂X0 ]
and on [t̂X1 , 1].
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ϕ̂(C) = log θ + λC, ϕ̂′(C) = λ, and ϕ̂′′(C) = 0 for all C ≥ 0. Therefore,

ϕ̂′(C) + Cϕ̂′′(C) = λ > 0.

Now consider the ratio contest success function, ϕ(C) = θCλ. Then ϕ̂(C) = log θ +

λ logC, ϕ̂′(C) = λ/C, and ϕ̂′′(C) = −λ/C2. Therefore,

ϕ̂′(C) + Cϕ̂′′(C) =
λ

C
+ C

(
−λ
C2

)
= 0.

A.4.3 Proof of Proposition 4

The quantities defined in Proposition 4 are as follows. (P̄0, c̄0) is the solution to the system

Qpc(P̄0, 0, c̄0; t, π) =
πp

P̄0

− N − 1

N
πcϕ̂′(c̄0) = 0, (A.14)

Qb(P̄0, 0, c̄0; t, π) = L− P̄0

πp
− Nc̄0

πc
= 0. (A.15)

(P̃1(t), R̃1(t), c̃1(t)) is the solution to the system

Qpr(P̃1(t), R̃1(t), c̃1(t); t, π) = πp(1− tg(R̃1(t)) + πrtP̃1(t)g
′(R̃1(t)) = 0, (A.16)

Qpc(P̃1(t), R̃1(t), c̃1(t); t, π) =
πp

P̃1(t)
− N − 1

N
πcϕ̂′(c̃1(t)) = 0, (A.17)

Qb(P̃1(t), R̃1(t), c̃1(t); t, π) = L− P̃1(t)

πp
− R̃1(t)

πr
− Nc̃1(t)

πc
= 0. (A.18)

(P̃2(t), R̃2(t)) is the solution to the system

Qpr(P̃2(t), R̃2(t), 0; t, π) = πp(1− tg(R̃2(t)) + πrtP̃2(t)g
′(R̃2(t)) = 0, (A.19)

Qb(P̃2(t), R̃2(t), 0; t, π) = L− P̃2(t)

πp
− R̃2(t)

πr
= 0. (A.20)

The first cutpoint tax rate is

t̂0 =
πp

πp − πrP̄0g′(0)
. (A.21)

Lemma A.11 below shows that P̄0 > 0 and therefore, since g′(0) < 0, that t̂0 < 1. The
second cutpoint tax rate is

t̂1 =
πp

πpg(R̄1)− πrP̄1g′(R̄1)
, (A.22)
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where

P̄1 =
N

N − 1

πp

πc

1

ϕ̂′(0)
, (A.23)

R̄1 = πr

(
L− P̄1

πp

)
. (A.24)

The next three lemmas give conditions on the tax rate under which there is positive pro-
duction, resistance, and internal conflict in the equilibrium of the labor allocation subgame.
Jointly, these lemmas constitute the bulk of the proof of Proposition 4. The proofs rely on
the following equalities:

πr ∂ log τ̄(t̂0, 0)

∂ri
= −πr t̂0g

′(0)

1− t̂0
=
πp

P̄0

,

πr ∂ log τ̄(t̂1, (R̄1/N)1N)

∂ri
= −πr t̂1g

′(R̄1)

1− t̂1g(R̄1)
=
πp

P̄1

for all i ∈ N .

Lemma A.11. If the game is symmetric, Assumption 1 holds, and (p, r, c) is an equilibrium
of Γ(t), then 0 <

∑
i pi ≤ P̄0 < πpL.

Proof. Assumption 1 implies

Qpc(πpL, 0, 0; 0, π) =
1

L
− N − 1

N
πcϕ̂′(0) < 0.

Since Qpc is decreasing in P and weakly increasing in C, this gives P̄0 < πpL.
Let P =

∑
i pi, and suppose P > P̄0. The budget constraint and Lemma A.7 then give

ci = C < c̄0 for each i ∈ N . But then we have

πc∂ logωi(c)

∂ci
≥ N − 1

N
πcϕ̂′(c̄0) =

πp

P̄0

> πp∂ log f(p)

∂pi

for each i ∈ N . By Lemma A.4, this implies each pi = 0, a contradiction. Therefore, P ≤ P̄0.
Finally, since P = 0 implies each ui(t, p, r, c) = 0, but any faction can assure itself a

positive payoff with any (pi, ri, ci) ≫ 0, in equilibrium P > 0.

Lemma A.12. If the game is symmetric, Assumption 1 holds, and (p, r, c) is an equilibrium
of Γ(t), then

∑
i ri > 0 if and only if t > t̂0.
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Proof. Let P =
∑

i pi and R =
∑

i ri. To prove the “if” direction, suppose t > t̂0 and R = 0.
Since P ≤ P̄0, this implies each ci = C > 0; the first-order conditions of Lemma A.4 then
give P = P̄0 and C = c̄0. It follows that

πr ∂ log τ̄(t, r)

∂ri
> πr ∂ log τ̄(t̂0, r)

∂ri
=
πp

P̄0

= πp∂ log f(p)

∂pi
.

This implies each pi = 0, a contradiction.
To prove the “only if” direction, suppose t ≤ t̂0 and R > 0. For each i ∈ N ,

πr ∂ log τ̄(t, r)

∂ri
< πr ∂ log τ̄(t̂0, 0)

∂ri
=
πp

P̄0

≤ πp∂ log f(p)

∂pi
.

This implies each ri = 0, a contradiction.

Lemma A.13. If the game is symmetric and Assumption 1 holds, then t̂1 > t̂0. If, in addition,
(p, r, c) is an equilibrium of Γ(t), then each ci > 0 if and only if t < t̂1.

Proof. To prove that t̂1 > t̂0, note that

P̄1 =
N

N − 1

πp

πc

1

ϕ̂′(0)
≤ N

N − 1

πp

πc

1

ϕ̂′(c̄0)
= P̄0

by log-concavity of ϕ. This implies R̄1 > 0, so g(R̄1) < g(0) = 1 and g′(0) ≤ g′(R̄1) < 0.
Therefore,

πp − πrP̄0g
′(0) > πpg(R̄1)− πrP̄1g

′(R̄1) > 0,

which implies t̂1 > t̂0.
Let P =

∑
i pi and R =

∑
i ri. To prove the “if” direction of the second statement,

suppose t ≥ t̂1 and some ci > 0. By Lemma A.7, cj = ci = C > 0 for each j ∈ N . Since
P > 0 by Lemma A.11, the first-order conditions give

P =
N

N − 1

πp

πc

1

ϕ̂′(C)
≥ P̄1.

The budget constraint then gives R < R̄1 and thus

πr ∂ log τ̄(t, r)

∂ri
> πr ∂ log τ̄(t̂1, (R̄1/N)1N)

∂ri
=
πp

P̄1

≥ πp∂ log f(p)

∂pi
.

But this implies each pi = 0, a contradiction.
To prove the “only if” direction, suppose t < t̂1 and each ci = 0. The first-order conditions

18



then give P ≤ P̄1, so R ≥ R̄1 > 0 by the budget constraint. This in turn gives

πp∂ log f(p)

∂pi
=
πp

P
≥ πp

P̄1

≥ πr ∂ log τ̄(t̂1, r)

∂ri
> πr ∂ log τ̄(t, r)

∂ri

for each i ∈ N . But this implies each ri = 0, a contradiction.

The last thing we need to prove the propositions is how the labor allocations change with
the tax rate when t > t̂0.

Lemma A.14. Let the game be symmetric and Assumption 1 hold. For all t ∈ (t̂0, t̂1),

dP̃1(t)

dt
=

−(N − 1)πpπcϕ̂′′(c̃1(t))

Nπrt∆1(t)
≤ 0, (A.25)

dR̃1(t)

dt
=

−πp
(
Nπp/πcP̃1(t)

2 − (N − 1)πcϕ̂′′(c̃1(t))/Nπ
p
)

t∆1(t)
> 0, (A.26)

dc̃1(t)

dt
=

(πp)2

πrtP̃1(t)2∆1(t)
< 0, (A.27)

where

∆1(t) =
(
πptg′(R̃1(t))− πrtP̃1(t)g

′′(R̃1(t))
)( Nπp

πcP̃1(t)2
− N − 1

N

πc

πp
ϕ̂′′(c̃1(t))

)
− N − 1

N
πctg′(R̃1(t))ϕ̂

′′(c̃1(t))

< 0.

(A.28)

For all t > t̂1,

dP̃2(t)

dt
=

−πp

πrt∆2(t)
< 0, (A.29)

dR̃2(t)

dt
=

1

t∆2(t)
> 0, (A.30)

where
∆2(t) =

πr

πp
tP̃2(t)g

′′(R̃2(t))− 2tg′(R̃2(t)) > 0. (A.31)

Proof. Throughout the proof, let η = (N − 1)/N .
First consider t ∈ (t̂0, t̂1). To reduce clutter in what follows, I omit the evaluation point

(P̃1(t), R̃1(t), c̃1(t); t, π) from all partial derivative expressions. The Jacobian of the system
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of equations that defines (P̃1(t), R̃1(t), c̃1(t)) is

J1(t) =

∂Q
pr/∂P ∂Qpr/∂R ∂Qpr/∂C

∂Qpc/∂P ∂Qpc/∂R ∂Qpc/∂C

∂Qb/∂P ∂Qb/∂R ∂Qb/∂C



=

π
rtg′(R̃1(t)) πrtP̃1(t)g

′′(R̃1(t))− πptg′(R̃1(t)) 0

−πp/P̃1(t)
2 0 −ηπcϕ̂′′(c̃1(t))

−1/πp −1/πr −N/πc

 .
It is easy to verify that |J1(t)| = ∆1(t) < 0. Notice that

∂Qpr

∂t
= πrP̃1(t)g

′(R̃1(t))− πpg(R̃1(t))

= πr

(
−π

p(1− tg(R̃1(t)))

πrtg′(R̃1(t))

)
g′(R̃1(t))− πpg(R̃1(t))

= −π
p

t
.

Then, by the implicit function theorem and Cramer’s rule,

dP̃1(t)

dt
=

∣∣∣∣∣∣∣
−∂Qpr/∂t ∂Qpr/∂R ∂Qpr/∂C

−∂Qpc/∂t ∂Qpc/∂R ∂Qpc/∂C

−∂Qb/∂t ∂Qb/∂R ∂Qb/∂C

∣∣∣∣∣∣∣
|J1(t)|

=
−ηπpπcϕ̂′′(c̃1(t))

πrt∆1(t)

≤ 0,

dR̃1(t)

dt
=

∣∣∣∣∣∣∣
∂Qpr/∂P −∂Qpr/∂t ∂Qpr/∂C

∂Qpc/∂P −∂Qpc/∂t ∂Qpc/∂C

∂Qb/∂P −∂Qb/∂t ∂Qb/∂C

∣∣∣∣∣∣∣
|J1(t)|

=
−πp

(
Nπp/πcP̃1(t)

2 − ηπcϕ̂′′(c̃1(t))/π
p
)

t∆1(t)

> 0,
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dc̃1(t)

dt
=

∣∣∣∣∣∣∣
∂Qpr/∂P ∂Qpr/∂R −∂Qpr/∂t

∂Qpc/∂P ∂Qpc/∂R −∂Qpc/∂t

∂Qb/∂P ∂Qb/∂R −∂Qb/∂t

∣∣∣∣∣∣∣
|J1(t)|

=
(πp)2

πrtP̃1(t)2∆1(t)

< 0,

as claimed.
Now consider t > t̂1. Again to reduce clutter in what follows, I omit the evaluation point

(P̃2(t), R̃2(t), 0; t, π) from all partial derivative expressions. The Jacobian of the system of
equations that defines (P̃2(t), R̃2(t)) is

J2(t) =

[
∂Qpr/∂P ∂Qpr/∂R

∂Qb/∂P ∂Qb/∂R

]

=

[
πrtg′(R̃2(t)) πrtP̃2(t)g

′′(R̃2(t))− πptg′(R̃2(t))

−1/πp −1/πr

]
.

It is easy to verify that |J2(t)| = ∆2(t) > 0. As before, ∂Qpr/∂t = −πp/t. So by the implicit
function theorem and Cramer’s rule,

dP̃2(t)

dt
=

∣∣∣∣∣−∂Qpr/∂t ∂Qpr/∂R

−∂Qb/∂t ∂Qb/∂R

∣∣∣∣∣
|J2(t)|

=
−πp

πrt∆2(t)

< 0,

dR̃2(t)

dt
=

∣∣∣∣∣∂Qpr/∂P −∂Qpr/∂t

∂Qb/∂P −∂Qb/∂t

∣∣∣∣∣
|J2(t)|

=
1

t∆2(t)

> 0,

as claimed.

The proof of Proposition 4 follows almost immediately from these lemmas.

21



Proposition 4. Assume the government is labor-financed. There exist tax rates t̂0 ∈ (0, 1)

and t̂1 > t̂0 such that in every equilibrium of the labor allocation subgame with tax rate t:

• If t ≤ t̂0, then each pi = P̄0/N > 0, each ri = 0, and each ci = c̄0 > 0.

• If t ∈ (t̂0, t̂1), then
∑

i pi = P̃1(t) > 0 (weakly decreasing in t),
∑

i ri = R̃1(t) > 0

(strictly increasing), and each ci = c̃1(t) > 0 (strictly decreasing).

• If t ≥ t̂1, then
∑

i pi = P̃2(t) > 0 (strictly decreasing in t),
∑

i ri = R̃2(t) > 0 (strictly
increasing), and each ci = 0.

Proof. For fixed t, every equilibrium of Γ(t) has the same total production, total resistance,
and individual conflict allocations, per Proposition A.2. Consider any t ∈ [0, 1] and let
(p, r, c) be an equilibrium of Γ(t).

If t ≤ t̂0, then
∑

i pi = P > 0,
∑

i ri = 0, and each ci = C > 0 by Lemmas A.11–
A.13. The first-order conditions (Lemma A.4) imply that P and C solve Qpc(P, 0, C; t, π) =

Qb(P, 0, C; t, π) = 0; therefore, P = P̄0 and C = c̄0. Since each ri = 0, each pi = πp(L/N −
c̄0/π

c) = P̄0/N , so the equilibrium is unique.
Similarly, if t ∈ (t̂0, t̂1), then

∑
i pi = P > 0,

∑
i ri = R > 0, and each ci = C > 0

by Lemmas A.11–A.13. The first-order conditions then imply that these solve the system
(A.6)–(A.9); therefore, P = P̃1(t), R = R̃1(t), and C = c̃1(t). The comparative statics on
P̃1, R̃1, and c̃1 follow from Lemma A.14.

Finally, if t ≥ t̂1, then
∑

i pi = P > 0,
∑

i ri = R > 0, and each ci = 0 by Lemmas
A.11–A.13. The first-order conditions then imply that P and R solve Qpr(P,R, 0; t, π) =

Qb(P,R, 0; t, π) = 0; therefore, P = P̃2(t) and R = R̃2(t). The comparative statics on P̃2

and R̃2 follow from Lemma A.14.

A.4.4 Proof of Proposition 5

Proposition 5. If the government is labor-financed, there is an equilibrium in which the
government chooses the greatest tax rate that engenders no resistance, t = t̂0. If g or ϕ is
strictly log-concave, this is the unique equilibrium tax rate.

Proof. As in the proof of Lemma A.14, let η = (N − 1)/N .
For each t ∈ [0, 1], fix an equilibrium (p(t), r(t), c(t)) of Γ(t). By Propositions 4 and A.2,

22



the government’s induced utility function is

u∗G(t) = uG(t, p(t), r(t), c(t)) =


tP̄0 t ≤ t̂0,

tg(R̃1(t))P̃1(t) t̂0 < t < t̂1,

tg(R̃2(t))P̃2(t) t ≥ t̂1.

It is immediate from the above expression that u∗G(t) < u∗G(t̂0) for all t < t̂0.
Now consider t ∈ (t̂0, t̂1). By Lemma A.14,

du∗G(t)

dt
= g(R̃1(t))P̃1(t) + tg′(R̃1(t))

dR̃1(t)

dt
P̃1(t) + tg(R̃1(t))

dP̃1(t)

dt

= g(R̃1(t))P̃1(t)−
πpg′(R̃1(t))P̃1(t)

(
Nπp/πcP̃1(t)

2 − ηπcϕ̂′′(c̃1(t))/π
p
)

∆1(t)

− ηπpπcg(R̃1(t))ϕ̂
′′(c̃1(t))

πr∆1(t)
,

where ∆1(t) is defined by (A.28). To reduce clutter in what follows, let P̃ = P̃1(t), R̃ = R̃1(t),
and c̃ = c̃1(t). Since ∆1(t) < 0, the sign of the above expression is the same as that of

g′(R̃)P̃

(
N(πp)2

πcP̃ 2
− ηπcϕ̂′′(c̃)

)
+
ηπpπcg(R̃)ϕ̂′′(c̃)

πr
− g(R̃)P̃∆1(t)

= P̃ g′(R̃)

(
N(πp)2

πcP̃ 2
− ηπcϕ̂′′(c̃)

)
+
ηπpπcg(R̃)ϕ̂′′(c̃)

πr

− P̃ g(R̃)
(
πptg′(R̃)− πrtP̃ g′′(R̃)

)(Nπp

πcP̃ 2
− η

πc

πp
ϕ̂′′(c̃)

)
+ ηπctP̃ g(R̃)g′(R̃)ϕ̂′′(c̃)

= P̃

g′(R̃)− g(R̃)
(
πptg′(R̃)− πrtP̃ g′′(R̃)

)
πp

(N(πp)2

πcP̃ 2
− ηπcϕ̂′′(c̃)

)

+ ηπcg(R̃)ϕ̂′′(c̃)

(
πp

πr
+ tP̃ g′(R̃)

)
=

P̃

g′(R̃)
(1− tg(R̃))

(
g′(R̃)2 − g(R̃)g′′(R̃)

)(N(πp)2

πcP̃ 2
− ηπcϕ̂′′(c̃)

)
+ ηπcg(R̃)ϕ̂′′(c̃)

(
πp

πr
tg(R̃)

)
.

The first term is weakly negative, strictly so if g is strictly log-concave. The second term
is weakly negative, strictly so if ϕ is strictly log-concave. Therefore, du∗G(t)/dt ≤ 0 for all
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t ∈ (t̂0, t̂1), strictly so if g or ϕ is strictly log-concave. This implies u∗G(t̂0) ≥ u∗G(t) for all
t ∈ (t̂0, t̂1], strictly so if g or ϕ is strictly log-concave.

Finally, consider t > t̂1. Again by Lemma A.14,

du∗G(t)

dt
= g(R̃2(t))P̃2(t) + tg′(R̃2(t))

dR̃2(t)

dt
P̃2(t) + tg(R̃2(t))

dP̃2(t)

dt

= g(R̃2(t))P̃2(t) +
g′(R̃2(t))P̃2(t)

∆2(t)
− πpg(R̃2(t))

πr∆2(t)
,

where ∆2(t) is defined by (A.31). To reduce clutter in what follows, let P̃ = P̃2(t) and
R̃ = R̃2(t). Since ∆2(t) > 0, the sign of the above expression is the same as that of

P̃ g(R̃)∆2(t) + P̃ g′(R̃)− πpg(R̃)

πr

= P̃ g(R̃)

(
πrtP̃ g′′(R̃)

πp
− 2tg′(R̃)

)
+ P̃ g′(R̃)− πpg(R̃)

πr

=
πp

πrtg′(R̃)2

(
(1− tg(R̃))2

(
g(R̃)g′′(R̃)− g′(R̃)2

)
−
(
tg(R̃g′(R̃))

)2)

<
πp(1− tg(R̃))2

(
g(R̃)g′′(R̃)− g′(R̃)2

)
πrtg′(R̃)2

≤ 0.

Therefore, u∗G(t̂0) ≥ u∗G(t̂1) > u∗G(t) for all t > t̂1.
Combining these findings, u∗G(t̂0) ≥ u∗G(t) for all t ∈ [0, 1] \ {t̂0}, strictly so if g or ϕ is

strictly log-concave. Therefore, there is an equilibrium in which t = t̂0, and every equilibrium
has this tax rate if g or ϕ is strictly log-concave.

A.4.5 Proof of Proposition 6

Proposition 6. Equilibrium production with a labor-financed government, P̄0, is strictly de-
creasing in the number of factions, N . It is locally decreasing in conflict effectiveness, πc, if
and only if the incentive effect outweighs the labor-saving effect at c̄0.

Proof. I will treat N as if it were continuous in order to obtain comparative statics by implicit
differentiation. Throughout the proof I write P̄0 and c̄0 as functions of (N, πc).

Recall that (P̄0(N, π
c), c̄0(N, π

c)) is defined as the solution to (A.14) and (A.15). To
reduce clutter in what follows, I omit the evaluation point (P̄0(N, π

c), 0, c̄0(N, π
c); t, π) from
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all partial derivative expressions. The Jacobian of the system is

J0 =

[
∂Qpc/∂P ∂Qpc/∂C

∂Qb/∂P ∂Qb/∂C

]
=

[
−πp/P̄0(N, π

c)2 −(N − 1)πcϕ̂′′(c̄0(N, π
c))/N

−1/πp −N/πc

]
,

with determinant

|J0| =
Nπp

πcP̄0(N, πc)2
− N − 1

N

πc

πp
ϕ̂′′(c̄0(N, π

c)) > 0.

By the implicit function theorem and Cramer’s rule,

∂P̄0(N, π
c)

∂N
=

∣∣∣∣∣−∂Qpc/∂N ∂Qpc/∂C

−∂Qb/∂N ∂Qb/∂C

∣∣∣∣∣
|J0|

=

∣∣∣∣∣πcϕ̂′(c̄0(N, π
c))/N2 −(N − 1)πcϕ̂′′(c̄0(N, π

c))/N

c̄0(N, π
c)/πc −N/πc

∣∣∣∣∣
|J0|

=
1

|J0|

(
N − 1

N
c̄0(N, π

c)ϕ̂′′(c̄0(N, π
c))− ϕ̂′(c̄0(N, π

c))

N

)
< 0,

as claimed. Similarly,

∂P̄0(N, π
c)

∂πc
=

∣∣∣∣∣−∂Qpc/∂πc ∂Qpc/∂C

−∂Qb/∂πc ∂Qb/∂C

∣∣∣∣∣
|J0|

=

∣∣∣∣∣(N − 1)ϕ̂′(c̄0(N, π
c))/N −(N − 1)πcϕ̂′′(c̄0(N, π

c))/N

−Nc̄0(N, πc)/(πc)2 −N/πc

∣∣∣∣∣
|J0|

= −N − 1

πc|J0|

(
ϕ̂′(c̄0(N, π

c)) + c̄0(N, π
c)ϕ̂′′(c̄0(N, π

c))
)
,

which is negative if and only if the incentive effect outweighs the labor-saving effect at
c̄0(N, π

c).
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A.4.6 Proof of Proposition 7

Proposition 7. The equilibrium tax rate of a labor-financed government,

t̂0 =
πp

πp − πrP̄0g′(0)
,

is strictly increasing in fractionalization, N . It strictly increases with a marginal increase
in competitive effectiveness, πc, if and only if the incentive effect outweighs the labor-saving
effect at c̄0.

Proof. Immediate from Proposition 6, as t̂0 is strictly decreasing in P̄0, and N and πc enter
the expression for t̂0 only via P̄0.

A.4.7 Proof of Proposition 8

Proposition 8. A labor-financed government’s equilibrium payoff is strictly decreasing in the
number of factions, N . It strictly decreases with a marginal increase in conflict effectiveness,
πc, if and only if the incentive effect outweighs the labor-saving effect at c̄0.

Proof. By Proposition 5, the government’s equilibrium payoff is

t̂0P̄0 =
πpP̄0

πp − πrP̄0g′(0)
=

πp

(πp/P̄0)− πrg′(0)
.

This expression is strictly increasing in P̄0. SinceN and πc only enter through the equilibrium
value of P̄0, the claim follows from Proposition 6.

A.5 Extensions

A.5.1 Endogenous Inequality

In the model with asymmetric taxation, the government is labor-financed and taxes each
faction’s production separately. To keep the analysis simple, I assume throughout the exten-
sion that N = 2. The government chooses a pair of tax rates, t1 and t2, where each ti ∈ [0, 1]

as before. The factions then respond as before, by allocating their labor among production,
resistance, and internal conflict, (pi, ri, ci), subject to the budget constraint, Equation 1. I
consider tax schemes such that t1 ≥ t2; as the factions remain identical ex ante, this restric-
tion is without loss of generality. The utility functions for the government and the factions
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are now

uG(t, p, r, c) = τ(t1, r)p1 + τ(t2, r)p2,

ui(t, p, r, c) = ωi(c) [τ̄(t1, r)p1 + τ̄(t2, r)p2] .

If the government chooses the same tax rate for both groups, t1 = t2, then each player’s
utility is the same as in the original model with that rate. Throughout the analysis of this
extension, I impose an additional technical condition on the function that translates ci into
effective strength in the internal conflict: I assume ϕ′/ϕ is convex.19

Similar to above, let Γ(t1, t2) denote the labor allocation subgame following the govern-
ment’s choice of the given tax rates. Notice that in the model with asymmetric taxation we
have

∂ui(t, p, r, c)

∂pi
=

ϕ(ci)

ϕ(ci) + ϕ(cj)
(1− tig(ri + rj)),

∂ui(t, p, r, c)

∂ri
=

ϕ(ci)

ϕ(ci) + ϕ(cj)
(−g′(ri + rj))(tipi + tjpj),

∂ui(t, p, r, c)

∂ci
=

ϕ′(ci)ϕ(cj)

(ϕ(ci) + ϕ(cj))2
[
(1− tig(ri + rj))pi + (1− tjg(ri + rj))pj

]
.

To analyze the extension, I first consider how the factions would respond to the choice
of unequal tax rates. Naturally, as taxation reduces the marginal benefit of production, the
faction that is taxed more produces less in equilibrium. The more highly taxed faction then
shifts some of the labor it would have spent on economic production into resistance and
internal conflict. This has the counterintuitive implication that the equilibrium payoff for
the more-taxed faction is no less than that of the less-taxed faction. By reducing a group’s
incentive to produce, the government increases its incentive to appropriate from the other
group, resulting in it taking home a disproportionate share of the total post-tax output. This
result is reminiscent of the “paradox of power” characterized by Hirshleifer (1991), wherein
seemingly weaker groups expend disproportionate effort on appropriation. The following
proposition summarizes the equilibrium responses to unequal taxation.

Proposition A.4. In the game with asymmetric taxation, if the government chooses t1 > t2,
then p1 ≤ p2, r1 ≥ r2, and c1 ≥ c2 in any equilibrium of the subsequent labor allocation
subgame.

Proof. First I will prove c1 ≥ c2. To this end, suppose ci > cj; I will show this implies ti > tj

19The baseline assumptions imply that ϕ′/ϕ is positive and decreasing, so convexity is a natural restriction.
The difference and ratio functional forms described above in footnote 13 both satisfy this condition.
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and thus i = 1. Log-concavity of ϕ implies ϕ′(ci)ϕ(cj) ≤ ϕ′(cj)ϕ(ci), so we have

πc∂ui(t, p, r, c)

∂ci
≤ πc∂uj(t, p, r, c)

∂cj
.

The first-order conditions of equilibrium then imply

max

{
πp∂ui(t, p, r, c)

∂pi
, πr ∂ui(t, p, r, c)

∂ri

}
≤ max

{
πp∂uj(t, p, r, c)

∂pj
, πr ∂uj(t, p, r, c)

∂rj

}
.

As ϕ(ci) > ϕ(cj), this can hold only if 1− tig(ri + rj) < 1− tjg(ri + rj); i.e., ti > tj.
I now prove r1 ≥ r2. First suppose c1 > 0. The first-order conditions of equilibrium,

combined with the fact that c1 ≥ c2, imply

πc∂u2(t, p, r, c)

∂c2
≥ πc∂u1(t, p, r, c)

∂c1
≥ πr ∂u1(t, p, r, c)

∂r1
> πr ∂u2(t, p, r, c)

∂r2
.

It then follows from the first-order conditions that r2 = 0, which implies r1 ≥ r2. On the
other hand, suppose c1 = 0, in which case c2 = 0 per above. It is then immediate from the
budget constraint that r1 ≥ r2 if p1 = 0, so suppose p1 > 0. The first-order conditions and
t1 > t2 imply

πp∂u2(t, p, r, c)

∂p2
> πp∂u1(t, p, r, c)

∂p1
≥ πr ∂u1(t, p, r, c)

∂r1
= πr ∂u2(t, p, r, c)

∂r2
.

It then follows from the first-order conditions that r2 = 0, which implies r1 ≥ r2.
Finally, under the budget constraint, c1 ≥ c2 and r1 ≥ r2 imply p1 ≤ p2.

The factions’ responses show why asymmetric taxation is ultimately unprofitable for a
labor-financed government. There is obviously no profit to be made from the more highly
taxed faction, as it reduces its production in response to the greater taxation. But as the
more-taxed faction increases its appropriative efforts, the less-taxed faction also loses some of
its incentive to engage in productive activity. The decrease in the less-taxed faction’s incen-
tive to resist does not make up the difference, as the marginal benefit of resistance remains a
function of the government’s overall payoff, just as in the baseline model. Ultimately, then,
the government is no better off having the ability to set unequal tax rates across groups.

Proposition A.5. Asymmetric taxation does not raise the equilibrium payoff of a labor-
financed government.

Proof. Assume t1 > t2, and let (p, r, c) be an equilibrium of Γ(t1, t2). Let t̂0, P̄0, and c̄0 be
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defined as in Proposition 4. In addition, let P = p1 + p2, R = r1 + r2, and C = c1 + c2.
My first task is to prove P ≤ P̄0. As any equilibrium entails P > 0, it follows from

Proposition A.4 that p2 > 0. If p1 = 0, in which case P = p2, the first-order conditions for
equilibrium imply

πpϕ(c2) ≥
πcϕ′(c2)ϕ(c1)

ϕ(c1) + ϕ(c2)
P.

Rearranging terms and applying the fact that ϕ(c1) ≥ ϕ(c2) (per Proposition A.4) gives

P ≤ πp(ϕ(c1) + ϕ(c2))ϕ(c2)

πcϕ(c1)ϕ′(c2)
≤ 2πpϕ(c2)

πcϕ′(c2)
.

Under this inequality, P > P̄0 would imply c2 > c̄0, violating the budget constraint. There-
fore, P ≤ P̄0. Next, suppose p1 > 0, so the first-order conditions for equilibrium imply

πp(1− t1g(R)) ≥
πcϕ′(c1)ϕ(c2)

ϕ(c1)(ϕ(c1) + π(c2))
[P − (t · p)g(R)] ,

πp(1− t2g(R)) ≥
πcϕ′(c2)ϕ(c1)

ϕ(c2)(ϕ(c1) + π(c2))
[P − (t · p)g(R)] .

(A.32)

As log ϕ is concave and its derivative is convex, c1 ≥ c2 (per Proposition A.4) implies
ϕ′(c1)/ϕ(c1) ≤ ϕ′(c2)/ϕ(c2) and

1

2

(
ϕ′(c1)

ϕ(c1)
+
ϕ′(c2)

ϕ(c2)

)
≥ ϕ′(C/2)

ϕ(C/2)
.

In addition, p1 ≤ p2 and t1 > t2 imply(
t1 + t2

2

)
P ≥ t1p1 + t2p2.

Summing the conditions in (A.32) and applying these inequalities gives

2πp

(
1− t1 + t2

2
g(R)

)
≥ πc [P − (t · p)g(R)]

[(
ϕ(c2)

ϕ(c1) + ϕ(c2)

)
ϕ′(c1)

ϕ(c1)
+

(
ϕ(c1)

ϕ(c1) + ϕ(c2)

)
ϕ′(c2)

ϕ(c2)

]
≥ πc [P − (t · p)g(R)]

[
1

2

(
ϕ′(c1)

ϕ(c1)
+
ϕ′(c2)

ϕ(c2)

)]
≥ πc [P − (t · p)g(R)]

(
ϕ′(C/2)

ϕ(C/2)

)
≥ πcP

(
1− t1 + t2

2
g(R)

)(
ϕ′(C/2)

ϕ(C/2)

)
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Simplifying and rearranging terms gives

P ≤ 2πpϕ′(C/2)

πcϕ(C/2)
.

As in the previous case, the budget constraint then implies P ≤ P̄0.
If tig(R) ≤ t̂0 for each i = 1, 2 such that pi > 0, then P ≤ P̄0 implies uG(t, c, p, r) ≤ t̂0P̄0,

as claimed. So suppose there is a group i such that pi > 0 and tig(R) > t̂0. The first-order
conditions for equilibrium imply

πp(1− tig(R)) ≥ πr(−g′(R))(tipi + tjpj).

This inequality, combined with log-concavity of g and the assumption that tig(R) > t̂0, gives

uG(t, p, c, r) = (tipi + tjpj)g(R)

≤ −
(
g(R)

g′(R)

)
πp(1− tig(R))

πr

< −
(

1

g′(0)

)
πp(1− t̂0)

πr

=

(
πp

πp − πrP̄0g′(0)

)
P̄0

= t̂0P̄0,

as claimed.

This brief extension demonstrates that the earlier results for labor-financed extraction
do not depend on the assumption of equal tax rates across factions. All else equal, a labor-
financed government benefits from social order and has no incentive to create inequality
where none exists before. What this extension does not answer is how asymmetric tax rates
would interact with ex ante asymmetries in productivity or size among factions, a topic that
is beyond the scope of the present analysis.

A.5.2 Conquest

In the conquest model, a set of N factions compete with each other and with an outsider,
denoted O, for the chance to be the government in the future. The incremental value of being
the government is v(N) > 0, which may increase with N (when capital is the main source
of revenue) or decrease (when labor is the main source of revenue). Each faction has L/N
units of labor, which it may divide between two activities: si ≥ 0, to prevent the outsider
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from taking over; and di ≥ 0, to influence its own chance of becoming the government if the
outsider fails. Each faction’s budget constraint is20

si + di =
L

N
. (A.33)

The success of the attempted takeover depends on how much the factions spend to combat
the outsider. I assume the outsider’s military strength is a fixed value, s̄O > 0, so the outsider
is not a strategic player here. The assumption that the outsider’s strength is exogenous is of
course a simplification, but it is plausible in situations where the outsider marshals its forces
before fully understanding the internal political situation—such as in Cortés’s incursion into
the Mexican mainland, and other early maritime colonial ventures. The probability that the
outsider becomes the government is

s̄O

s̄O + χ(
∑N

i=1 si)
, (A.34)

where χ : [0, L] → R+ represents the translation of society’s labor into its strength against
the outsider. In case the outsider fails, the probability that faction i becomes the government
is

ψ(di)∑N
j=1 ψ(dj)

, (A.35)

where ψ : [0, L/N ] → R+ represents the translation of an individual faction’s labor into its
proportional chance of success against other factions. As with the function ϕ in the original
model, I assume χ and ψ are strictly increasing and log-concave.

The factions simultaneously choose how to allocate their labor, subject to the budget
constraint (A.33). A faction’s utility function is

ui(s, d) =
ψ(di)∑N
j=1 ψ(dj)

×
χ(
∑N

j=1 sj)

s̄O + χ(
∑N

j=1 sj)
× v(N), (A.36)

where s = (s1, . . . , sN) and d = (d1, . . . , dN).
I begin by characterizing the equilibrium of the conquest game. Throughout the proofs,

let χ̂ = logχ and ψ̂ = logψ. I will characterize equilibria in terms of the criterion function

Qds(S;N) =
N − 1

N
(ψ(S) + s̄O)χ̂

′
(
L− S

N

)
− ψ̂′(S)s̄O, (A.37)

20The assumption of unit productivity for each activity is without loss of generality. The model here with
functional forms χ(S) = χ̃(πsS) and ψ(D) = ψ̃(πdD) is isomorphic to a model with the common budget
constraint si/πs + di/π

d = L/N and functional forms χ̃ and ψ̃.
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which is strictly increasing in both S and N .

Lemma A.15. The conquest game has a unique equilibrium in which each

si =


0 Qds(0;N) ≥ 0,

S̃(N)/N Qds(0;N) < 0, Qds(L;N) > 0,

L/N Qds(L;N) ≤ 0,

and each di = L/N − si, where S̃(N) is the unique solution to Qds(S̃(N);N) = 0.

Proof. Like the original game, the conquest game is log-concave, so a pure-strategy equi-
librium exists can be characterized by first-order conditions. In addition, the proof of
Lemma A.7 carries over to the conquest game, so in equilibrium each di = dj for i, j ∈ N .
The claim then follows from the first-order conditions for maximization of each faction’s
utility.

The strategic tradeoff for the factions here is analogous to the tradeoff between resistance
and internal conflict in the baseline model. Critically, the relative marginal benefit of fighting
the outsider declines as the number of factions increases. When the number of factions is
large, any individual faction’s chance of becoming the government if the outsider loses is
small, which in turn reduces its incentive to contribute to the collective effort against the
outsider. Consequently, as the following result states, the outsider is more likely to win the
more divided the society is.

Proposition A.6. In the conquest model, the probability that the outsider wins is increasing
in the number of factions, N .

Proof. I will prove that the equilibrium value of
∑

i si decreases with the number of factions.
Let (d, s) and (d′, s′) be the equilibria at N and N ′ respectively, where N ′ > N , and let
S =

∑
i si and S ′ =

∑
i s

′
i. If S = 0, then Qds(0;N) ≥ 0 and thus Qds(0;N ′) ≥ 0, so S ′ = 0

as well. If S ∈ (0, L), then S = S̃(N), which implies Qds(L;N) > 0 and thus Qds(L;N ′) > 0.
This in turn implies either S ′ = S̃(N ′) < S̃(N) or S ′ = 0 < S̃(N). Finally, if S = L, then it
is trivial that S ′ ≤ S.

A.5.3 Informal Sector Production

In the baseline model with a capital-financed government, the factions’ only choices are
resistance and internal competition. Here I extend the model to allow factions to allocate
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labor to the informal sector, which has a fixed marginal value and cannot be expropriated
by the government or by other factions. Let oi denote informal sector production, and let
κ > 0 denote the per-unit consumption value. Each faction’s utility function in the extended
model is

ui(t, o, r, c) = ωi(c)× τ̄(t, r)×X + κoi, (A.38)

and they are subject to the budget constraint

oi +
ri
πr

+
ci
πc

=
L

N
. (A.39)

(There is no loss of generality in normalizing the labor cost of informal production to 1.)
Because the government cannot expropriate informal production, its utility function remains
as in Equation 6.

The existence and uniqueness arguments from the baseline model do not immediately
carry over to the extended model, as quasiconcavity is not necessarily preserved under ad-
dition. If ui is strictly quasiconcave in a faction’s own choices,21 then the arguments from
Proposition A.1 and Proposition A.2 can be adapted to prove that the labor allocation sub-
game in the extended model has a unique equilibrium characterized by first-order conditions,
in which ci = C and oi = O for all factions i. From there, the argument of Lemma A.6 can
be adapted to show that total equilibrium resistance is continuous in t, which in turn implies
existence of an optimal tax rate per the argument of Proposition A.3. For the remainder of
the analysis of this extension, I will proceed under the assumption that ui is strictly quasi-
concave in a faction’s own choices, so that the existence and continuity of equilibria in the
labor allocation subgame can be presumed. Additionally, I will assume ϕ(0) > 0 to ensure
the utility function is everywhere continuously differentiable.

My goal is to show that the main substantive result of the baseline analysis with a capital-
financed government—namely, that the government’s equilibrium payoff increases with the
extent of social fractionalization (Proposition 2)—holds up in the environment with informal
production. I first consider a global result, showing that the government extracts the full
resource endowment in equilibrium if fractionalization is great enough.

Proposition A.7. In the model with a capital-financed government and informal production,
if N ≥ −πrg′(0)X

κ
, then there is an equilibrium where t∗ = 1 and each (o∗i (1), r

∗
i (1), c

∗
i (1)) =

( L
N
, 0, 0).

Proof. I begin by proving that each o∗i (1) =
L
N

(and thus r∗i (1) = c∗i (1) = 0 by the budget

21A sufficient condition is that ωi(c) · τ̄(t, r) is strictly concave in (ci, ri).
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constraint) under the hypothesis of the proposition. It will suffice to show that the first-order
conditions for a best response are satisfied for each faction at the proposed allocation. The
relevant partial derivatives are:

∂ui(t, o, r, c)

∂oi
= κ,

∂ui(t, o, r, c)

∂ri
=

−g′(0)
N

·X,

∂ui(t, o, r, c)

∂ci
= 0.

If N ≥ −πrg′(0)X
κ

, then we have

∂ui(t, o, r, c)

∂oi
≥ max

{
πr ∂ui(t, o, r, c)

∂ri
, πc∂ui(t, o, r, c)

∂ci

}
,

confirming that the proposed allocation is an equilibrium.
To conclude, I must prove that t∗ = 1 is optimal for 1. Because

∑
i r

∗
i (1) = 0, the

government’s expected utility from t∗ = 1 is uG(1, o∗(1), r∗(1), c∗(1)) = X. Regardless of the
factions’ responses, no other tax rate can yield a strictly greater payoff for the government,
so the proposed tax rate is optimal.

I next prove a local result, showing that the government’s utility decreases with frac-
tionalization when there is positive informal production in equilibrium. As in the proof of
Proposition 2 above, I treat N as though it were continuous so as to obtain comparative
statics via implicit differentiation.

Proposition A.8. In the model with a capital-financed government and informal production,
if there is an equilibrium where t = t∗ and each o∗i (t∗) > 0, then the government’s equilibrium
utility is locally non-decreasing in N .

Proof. As in the proof of Proposition 2 above, it will suffice to show that R∗(t∗) locally
decreases with N . The claim holds trivially if R∗(t∗) = 0, so consider the case where
R∗(t∗) > 0. In this case, equilibrium resistance is defined by the condition

πr ∂ui(t
∗, o, r, c)

∂ri
=
πr(−t∗g′(R∗(t∗)))

N
= κ =

∂ui(t
∗, o, r, c)

∂oi
.

Convexity of g implies −g′ decreases with R∗(t∗). Therefore, as N increases, R∗(t∗) must
decrease in order to maintain the condition.
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A.5.4 Incomplete Information

In the baseline model with a labor-financed government, the equilibrium tax rate is t̂0, the
highest level at which there is no resistance (Proposition 5). The proof that such a govern-
ment’s equilibrium payoff decreases with fractionalization (Proposition 8) depends on this
property. In this section, to probe the robustness of the result relating fractionalization
to government revenues, I consider a simple extension of the baseline labor-financed envi-
ronment in which the optimal tax rate may engender positive resistance. The main result
still holds true in this environment: the government’s equilibrium payoff decreases with the
extent of fractionalization.

To introduce the possibility of positive resistance in equilibrium, I assume there is in-
complete information about the labor cost of resistance at the time that the government
chooses the tax rate. After the government chooses t, Nature draws πr from a distribution
over {πr

ℓ , π
r
h}, where πr

ℓ < πr
h, and reveals its value to all players. The factions then play the

labor subgame as usual. The prior distribution of πr and the values of all other parameters
are common knowledge from the outset of the game. Let ξ ≡ Pr(πr = πr

h), and to avoid
trivialities assume ξ ∈ (0, 1).

The incomplete-information setup creates the possibility of nonzero resistance occurring
with positive probability along the equilibrium path. Let t̂0ℓ denote the greatest tax rate that
engenders no resistance if πr = πr

ℓ (Equation A.21), and let t̂0h be defined analogously. We
naturally have t̂0h ≤ t̂0ℓ, so the government can guarantee no resistance by choosing t = t̂0h.
A choice of t ∈ (t̂0h, t̂0ℓ] will raise the government’s payoff in case πr = πr

ℓ but will lower it
in case πr = πr

h. Following the same risk-reward tradeoff logic as in bargaining models with
incomplete information (Fearon 1995), it is optimal to choose t > t̂0h if ξ is sufficiently small.

For tractability, I impose specific functional forms to analyze the extended model. Let
ϕ(ci) = ci, so that ωi is a ratio-form contest success function. Let g(R) = 1−R, so that the
relationship between total resistance and the effective tax rate is linear. Finally, to reduce
clutter in the analysis, I normalize L = 1. Consequently, I also assume πr

h ≤ 1, so that
g(R) ≥ 0 for all feasible R ∈ [0, πrL].

With these functional forms, the labor allocation subgame has a closed-form solution
for each value of πr. Lemma A.3 implies each ci > 0 in equilibrium, so each t̂1 > 1;
the equilibrium following any t > t̂0 will thus be characterized by (A.16)–(A.18). It is
straightforward to verify that the equilibrium conditions imply the following:

P̄0ℓ = P̄0h =
πp

N
,

t̂0ℓ =
N

N + πr
ℓ

,
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t̂0h =
N

N + πr
h

,

P̃1h(t) =
πp
(
1
t
− 1 + πr

h

)
πr
h(N + 1)

,

R̃1h(t) =
N
(
1− 1

t

)
+ πr

h

N + 1
.

For any t ≥ t̂0h, the effective tax rate in case πr = πr
h is

t
(
1− R̃1h(t)

)
= t

[
[N + 1]− [N(1− 1

t
) + πr

h]

N + 1

]
=
N + (1− πr

h)t

N + 1
.

The government’s utility in this case is therefore

t
(
1− R̃1h(t)

)
P̃1h(t) =

N + (1− πr
h)t

N + 1
×
πp
(
1
t
− 1 + πh

r

)
πr
h(N + 1)

=
πpN

πr
h(N + 1)2

[
1

t
− 1 + πr

h

]
︸ ︷︷ ︸

>0

+
πp(1− πr

h)[1− (1− πr
h)t]

πr
h(N + 1)2

.
(A.40)

I now prove that the government’s expected utility strictly decreases with N in the incom-
plete information game, even when the equilibrium entails positive probability of resistance
along the equilibrium path. Arguments from the baseline analysis imply that no t < t̂0h

or t > t̂0ℓ may be optimal, so we may restrict attention to t ∈ [t̂0h, t̂0ℓ]. In this range, the
government’s expected utility from any tax rate is

E[uG(t, p∗(t), r∗(t), c∗(t))]

= ξ
[
t
(
1− R̃1h(t)

)
P̃1h(t)

]
+ (1− ξ)

[
tP̄0ℓ

]
=

ξπpN

πr
h(N + 1)2

[
1

t
− 1 + πr

h

]
+
ξπp(1− πr

h)[1− (1− πr
h)t]

πr
h(N + 1)2

+
(1− ξ)πpt

N
.

This expression is strictly convex in t, so it is maximized at one of the boundary points,
t ∈ {t̂0h, t̂0ℓ}. At the lower boundary, t = t̂0h, the tax demand engenders no resistance
regardless of the factions’ type. This yields a government payoff of

ξt̂0hP̄0h + (1− ξ)t̂0hP̄0ℓ =
πp

N + πr
h

,
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which is strictly decreasing in N . At the upper boundary, t = t̂0ℓ, the government’s payoff is

ξt̂0ℓ

(
1− R̃1h(t̂0ℓ)

)
P̃1h(t̂0ℓ) + (1− ξ)t̂0ℓP̄0ℓ.

It is evident from Equation A.40 that t(1 − R̃1h(t))P̃1h(t) is strictly decreasing in both
N and t. Since t̂0ℓ is increasing in N , this means the first term of the expression here is
strictly decreasing in N . Meanwhile, the baseline model result Proposition 8 implies that the
second term is strictly decreasing in N , as it is simply a scalar multiple of the government’s
utility from the complete-information game where πr = πr

ℓ . Altogether, we have that the
government’s equilibrium expected utility,

max
t∈[0,1]

E[uG(t, p∗(t), r∗(t), c∗(t))]

= max
{
E[uG(t̂0h, p∗(t̂0h), r∗(t̂0h), c∗(t̂0h))],E[uG(t̂0ℓ, p∗(t̂0ℓ), r∗(t̂0ℓ), c∗(t̂0ℓ))]

}
,

is strictly decreasing in N , just as in the baseline model.

A.5.5 Combined Capital and Labor Financing

In the baseline model, each player’s utility is a fraction of either exogenous resources X or
endogenous production

∑
i pi. I now extend the model to allow these to be combined, altering

the production function to f(p) = X +
∑

i pi (where X > 0). In the extended model, the
government’s utility is U-shaped as a function of social fractionalization. Marginal increases
in fractionalization reduce government revenues at low levels (when equilibrium behavior
resembles the baseline model with a labor-financed government), but increase revenue once
N is high enough (when behavior is more like in the capital-financed baseline). Additionally,
as the value of the exogenous resource X increases, the portion of the parameter space where
fractionalization increases revenues grows.

As in the extension with incomplete information (subsubsection A.5.4), I impose partic-
ular functional forms to allow for a closed-form solution. Specifically, I again let ϕ(ci) = ci

and g(R) = 1−R, and I assume L = 1 and πr ≤ 1 to ensure that g(R) ≥ 0.

Equilibrium with low fractionalization. If N < 1 + πp

X
, then the equilibrium closely re-

sembles that of the baseline model with a labor-financed government. (All of the following
statements can be verified by checking them against the first-order conditions for optimal
labor allocation.) Behavior in the labor allocation subgame is determined by two cutpoints
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on the tax rate. If t ≤ t̂0 ≡ Nπp

Nπp+πr(πp+X)
, then we have

P ∗(t) =
πp − (N − 1)X

N
;

R∗(t) = 0.

If t̂0 < t < t̂1 ≡ πp

πp(1−πr)+NπrX
, then we have

P ∗(t) =
πp(πr + 1

t
− 1)−NπrX

(N + 1)πr
;

R∗(t) =
πr(1 + X

πp )−N(1
t
− 1)

N + 1
.

Finally, if t ≥ t̂1, then we have

P ∗(t) = 0;

R∗(t) =
πr − (N − 1)

(
1
t
− 1
)

N
.

Note that t̂1 ≥ 1 if and only if N ≤ πp

X
.

I now solve for the government’s optimal tax rate. Clearly no t < t̂0 may be optimal.
For t ∈ [t̂0, t̂1], government revenues given equilibrium responses by the factions are

uG(t, p
∗(t), r∗(t), c∗(t))

= t× (1−R∗(t))× (X + P ∗(t))

=
πp

(N + 1)2

[
t

(
1− πr − πrX

πp

)
+N

] [
1

t
+ πr

(
1 +

X

πp

)
− 1

]
=

πp

(N + 1)2

[(
1− πr − πrX

πp

)
+
N

t
− t

(
1− πr − πrX

πp

)
−N

]
Because πr ≤ 1 and X

πp <
1

N−1
, we have

duG(t, p
∗(t), r∗(t), c∗(t))

dt
=

πp

(N + 1)2

[
−N
t2

− 1 + πr +
πrX

πp

]
≤ πp

(N + 1)2

[
X

πp
− N

t2

]
<

πp

(N + 1)2

[
1

N − 1
−N

]
< 0.
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Therefore, no t ∈ (t̂0, t̂1] may be optimal for the government. Meanwhile, for t > t̂1 the
government’s payoff is

uG(t, p
∗(t), r∗(t), c∗(t)) = t× (1−R∗(t))×X

=
(1− πr)t+N − 1

N
×X,

which is weakly increasing in t (strictly if πr < 1). Therefore, no t ∈ [t̂1, 1) may be optimal
for the government.

If N ≤ πp

X
, so that t̂1 ≥ 1, then the argument above implies that t∗ = t̂0. Otherwise, if

πp

X
< N < 1+ πp

X
, then the optimal tax rate depends on the government’s preference between

t = t̂0 and t = 1. We have

uG(t̂0, p
∗(t̂0), r

∗(t̂0), c
∗(t̂0)) = t̂0 × (X + P ∗(t̂0)) =

πp(πp +X)

Nπp + πr(πp +X)
;

uG(1, p
∗(1), r∗(1), c∗(1)) = (1−R∗(1)) ·X =

(N − πr)X

N
.

It is evident from these expressions that the government’s utility from t = t̂0 is decreasing in
N , while its utility from t = 1 is increasing in N . This implies that there exists a cutpoint
N∗ ∈ [π

p

X
, 1+ πp

X
] such that t∗ = t̂0 if N ∈ [0, N∗] and t∗ = 1 if N ∈ (N∗, 1+ πp

X
). Additionally,

the government’s equilibrium utility as a function of N is decreasing on [2, N∗) and increasing
on (N∗, 1 + πp

X
).

Equilibrium with high fractionalization. If N ≥ 1 + πp

X
, then the equilibrium resembles

that of the baseline model with a capital-financed government. If t ≤ t̂X ≡ N−1
N−1+πr , then

P ∗(t) = R∗(t) = 0. Otherwise, if t > t̂X , then equilibrium labor allocation is the same as in
the case above with t > t̂1:

P ∗(t) = 0;

R∗(t) =
πr − (N − 1)

(
1
t
− 1
)

N
.

It then follows from the same arguments as above that the government’s optimal tax rate
is t∗ = 1. Combined with the results from above, we now have that the government’s
equilbrium utility as a function of N is decreasing on [2, N∗) and increasing on (N∗,∞).

Exogenous resources and the cutpoint. The last step of the argument is to show that the
government benefits from fractionalization under a wider set of parameters as the resource
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Figure A.1. Government’s equilibrium payoff as a function of N and X in the extension with
combined resources and production.

endowment increases; i.e., that the cutpoint N∗ is decreasing in X. This is immediate in
case N∗ = πp

X
or N∗ = 1+ πp

X
. The last case to consider is when N∗ ∈ (π

p

X
, 1 + πp

X
), in which

case N∗ is defined as the root of

uG(1, p
∗(1), r∗(1), c∗(1))− uG(t̂0, p

∗(t̂0), r
∗(t̂0), c

∗(t̂0)) =
(N − πr)X

N
− πp(πp +X)

Nπp + πr(πp +X)
.

Since this expression is increasing in N , to prove that N∗ decreases with X it will suffice to
prove that this expression is also increasing in X. We have

d

dX

[
(N − πr)X

N
− πp(πp +X)

Nπp + πr(πp +X)

]
= 1− πr

N
− N(πp)2

[Nπp + πr(πp +X)]2

>
N − πr − 1

N

≥ 0,

where the final inequality holds because πr ≤ 1 and N ≥ 2. Therefore, N∗ decreases with
X. Figure A.1 illustrates how the government’s utility is U-shaped in N , as well as how the
range where N increases revenues expands as X increases.
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