Online Appendix: Formal Proofs

We prove the formal statements in a slightly different order than they are presented in the text. We use a single proof for propositions 1 and 5, because proving the former proposition requires to proof the latter. We begin by proving several intermediary results.

Intermediary results

Lemma 1. A distribution of internal support p is feasible if and only if

(1)
$$\sum_{a=0,1} \int_0^1 \left(\frac{1}{1+a} - (1+\kappa)(1-\theta) \right) p_a(\theta) dF(\theta) \ge 1 - (1+\kappa) \left(1 - \mathbb{E}[\theta] \right).$$

Proof. We first prove the sufficiency by constructing an information structure from a given distribution of support that satisfies (1). Then, we prove the necessity by showing that any distribution of support induced by a subgame equilibrium under some information structure must satisfy (1). To prove sufficiency, assume that p satisfies (1). Then, suppose (M, σ) is such that $M = \{0, 1\}$ and for each θ ,

$$\sigma(0,0|\theta) = p_0(\theta)$$

$$\sigma(1,0|\theta) = \sigma(0,1|\theta) = \frac{1}{2}p_1(\theta)$$

$$\sigma(1,1|\theta) = p_2(\theta).$$

Let (q_1^*, q_2^*) be a strategy profile such that $q_i^*(m_i) = m_i$ for each $m_i = 0, 1$ and i = 1, 2. We now verify that (q_1^*, q_2^*) is an equilibrium under (M, σ) . Consider the best response of an ally i to the strategy of his peer q_{-i}^* . If $m_i = 0$, then the expected payoff from $a_i = 0$ is

$$\int_0^1 \sigma(0,0|\theta) dF(\theta) + \int_0^1 (\theta - (1-\theta)\kappa) \sigma(0,1|\theta) dF(\theta)$$
$$= \int_0^1 p_0(\theta) dF(\theta) + \int_0^1 (\theta - (1-\theta)\kappa) \frac{1}{2} p_1(\theta) dF(\theta).$$

The latter expression can be rearranged to get

$$\sum_{a=0,1} \int_0^1 \left(\frac{1}{1+a} - (1+\kappa)(1-\theta) \right) p_a(\theta) dF(\theta) + (1+\kappa) \int_0^1 (1-\theta) \left(p_0(\theta) + \frac{1}{2} p_1(\theta) \right) dF(\theta)$$

$$\geq \sum_{a=0,1} \int_0^1 \left(\frac{1}{1+a} - (1+\kappa)(1-\theta) \right) p_a(\theta) dF(\theta)$$

$$\geq 1 - (1+\kappa) (1 - \mathbb{E}[\theta]) > 0,$$

and so $a_i = 0$ is optimal following $m_i = 0$. Conversely, $a_i = 1$ is optimal after $m_i = 1$, since,

otherwise, by choosing $a_i = 0$, the ally i would expect to obtain

$$\int_{0}^{1} (\theta - (1 - \theta)\kappa) \, \sigma(1, 1|\theta) dF(\theta) + \int_{0}^{1} \sigma(1, 0|\theta) dF(\theta)$$

$$= \int_{0}^{1} (\theta - (1 - \theta)\kappa) \, p_{2}(\theta) dF(\theta) + \int_{0}^{1} \frac{1}{2} p_{1}(\theta) dF(\theta)$$

$$= \int_{0}^{1} (\theta - (1 - \theta)\kappa) \, (1 - p_{0}(\theta) - p_{1}(\theta)) \, dF(\theta) + \int_{0}^{1} \frac{1}{2} p_{1}(\theta) dF(\theta)$$

$$= 1 - (1 + \kappa) \, (1 - \mathbb{E}[\theta]) - \sum_{a=0,1} \int_{0}^{1} \left(\frac{1}{1+a} - (1+\kappa)(1-\theta) \right) p_{a}(\theta) dF(\theta) \le 0.$$

So q_i^* is a best response of i given q_{-i}^* and so (q_1^*, q_2^*) constitutes a Bayesian Nash equilibrium under (M, σ) . By construction, (q_1^*, q_2^*) induces \boldsymbol{p} under (M, σ) , and so \boldsymbol{p} is feasible.

To prove the necessity, suppose that \boldsymbol{p} is feasible. If so, then by definition there exists an information structure (M, σ) and an equilibrium (q_1^*, q_2^*) under this information structure that induces \boldsymbol{p} . Because q_1^* is a best response against q_2^* , if ally 1 observes any m_1 such that $q_1^*(m_1) > 0$, it must be true that he prefers to oppose the ruler and so

$$\int_0^1 \int_{M_2} \left((\theta - (1 - \theta)\kappa) \, q_2^*(m_2) + 1 - q_2^*(m_2) \right) \sigma(m_1, dm_2 | \theta) dF(\theta) \le 0.$$

Integrating both sides with respect to m_1 implies that

$$\int_{M_1} q_1^*(m_1) \int_0^1 \int_{M_2} \left((\theta - (1 - \theta)\kappa) q_2^*(m_2) + 1 - q_2^*(m_2) \right) \sigma(dm_1, dm_2 | \theta) dF(\theta)$$

$$= \int_0^1 \left(1 - (1 + \kappa)(1 - \theta) \right) \left(\int_M q_1^*(m_1) q_2^*(m_2) \sigma(dm_1, dm_2 | \theta) \right) dF(\theta)$$

$$+ \int_0^1 \left(\int_M \left(q_1^*(m_1) - q_1^*(m_1) q_2^*(m_2) \right) \sigma(dm_1, dm_2 | \theta) \right) dF(\theta) \le 0.$$

Equivalent steps yield

$$\int_0^1 (1 - (1 + \kappa)(1 - \theta)) \left(\int_M q_1^*(m_1) q_2^*(m_2) \sigma(dm_1, dm_2 | \theta) \right) dF(\theta)$$

$$+ \int_0^1 \left(\int_M (q_2^*(m_2) - q_1^*(m_1) q_2^*(m_2)) \sigma(dm_1, dm_2 | \theta) \right) dF(\theta) \le 0.$$

Adding up the above two inequalities and dividing by 2 we get

$$\int_{0}^{1} (1 - (1 + \kappa)(1 - \theta)) \left(\int_{M} q_{1}^{*}(m_{1}) q_{2}^{*}(m_{2}) \sigma(dm_{1}, dm_{2}|\theta) \right) dF(\theta)
+ \frac{1}{2} \int_{0}^{1} \left(\int_{M} (q_{1}^{*}(m_{1}) + q_{2}^{*}(m_{2}) - 2q_{1}^{*}(m_{1}) q_{2}^{*}(m_{2})) \sigma(dm_{1}, dm_{2}|\theta) \right) dF(\theta)
= \int_{0}^{1} (1 - (1 + \kappa)(1 - \theta)) p_{2}(\theta) dF(\theta) + \frac{1}{2} \int_{0}^{1} p_{1}(\theta) dF(\theta)
= \int_{0}^{1} (1 - (1 + \kappa)(1 - \theta)) (1 - p_{0}(\theta) - p_{1}(\theta)) dF(\theta) + \frac{1}{2} \int_{0}^{1} p_{1}(\theta) dF(\theta)
= 1 - (1 + \kappa)(1 - \mathbb{E}[\theta]) - \sum_{a=0,1} \int_{0}^{1} \left(\frac{1}{1 + a} - (1 + \kappa)(1 - \theta) \right) p_{a}(\theta) dF(\theta) \le 0,$$

as stated in the lemma.

Lemma 2. The feasibility constraint (1) is binding for any optimal distribution of internal support.

Proof. Given Lemma 1, we can write the ruler's optimization problem as

(2)
$$\max_{\boldsymbol{p}} V(\boldsymbol{p}) = 1 + \int_{0}^{1} ((\lambda(1-\theta) - 1) p_{1}(\theta) - p_{0}(\theta)) dF(\theta)$$
$$s.t. \sum_{a=0,1} \int_{0}^{1} \left(\frac{1}{1+a} - (1+\kappa)(1-\theta)\right) p_{a}(\theta) dF(\theta) \ge 1 - (1+\kappa)(1-\mathbb{E}[\theta]).$$

The Lagrangian of problem (2) is

$$\ell(p_0, p_1, \theta, \mu) := (\lambda(1 - \theta) - 1) p_1 - p_0 + \mu \left(\sum_{a=0,1} \left(\frac{1}{1+a} - (1+\kappa)(1-\theta) \right) p_a - c \right),$$

where $\mu \geq 0$ is the multiplier of the feasibility constraint (1) and $c := 1 - (1 + \kappa) (1 - \mathbb{E}[\theta])$ is a constant. Let

$$\ell_0(\theta, \mu) := \frac{\partial}{\partial p_0} \ell(p_0, p_1, \theta, \mu) = -1 + \mu \left(1 - (1 + \kappa)(1 - \theta) \right)$$

$$\ell_1(\theta, \mu) := \frac{\partial}{\partial p_1} \ell(p_0, p_1, \theta, \mu) = \lambda (1 - \theta) - 1 + \mu \left(\frac{1}{2} - (1 + \kappa)(1 - \theta) \right).$$

Consider any optimal distribution of internal support p^* . Clearly, for a = 0, 1 and $\theta \in [0, 1]$,

(3)
$$p_a^*(\theta) = \begin{cases} 1, & \ell_a(\theta, \mu) > \max\{0, \ell_{1-a}(\theta, \mu)\} \\ 0, & \ell_a(\theta, \mu) < \max\{0, \ell_{1-a}(\theta, \mu)\} \end{cases}$$

Assume $\mu = 0$. Then, $\ell_0(\theta, 0) = -1 < 0$ for all θ , so that $p_0^*(\theta) = 0$ for all θ . Moreover, $\ell_1(\theta, 0) = \lambda(1 - \theta) - 1 > 0$ if and only if $\theta < 1 - \frac{1}{\lambda}$, so that $p_1^*(\theta) = \mathbb{I}\left(\theta \le 1 - \frac{1}{\lambda}\right)$. But then,

$$\sum_{a=0,1} \int_0^1 \left(\frac{1}{1+a} - (1+\kappa)(1-\theta) \right) p_a^*(\theta) dF(\theta)$$

$$= \int_0^{1-\frac{1}{\lambda}} \left(\frac{1}{2} - (1+\kappa)(1-\theta) \right) dF(\theta)$$

$$< \int_0^{1-\frac{1}{\lambda}} \left(1 - (1+\kappa)(1-\theta) \right) dF(\theta)$$

$$\leq 1 - (1+\kappa) \left(1 - \mathbb{E}[\theta] \right),$$

where the last inequality is because $\int_0^t (1-(1+\kappa)(1-\theta)) dF(\theta)$ is strictly convex in t, equals to $1-(1+\kappa)(1-\mathbb{E}[\theta])$ at t=1, and equals to $0<1-(1+\kappa)(1-\mathbb{E}[\theta])$ at t=0. This is a contradiction to the feasibility constraint (1). Hence, it must be true that $\mu>0$ and, as a result, (1) must be binding for p^* .

Lemma 3. Any optimal distribution of support p^* takes one in three possibilities:

1. $p_0^*(\theta) = \mathbb{1}(\theta > x)$ and $p_1^*(\theta) = 0$ for all θ , where $x \in \left(\frac{\kappa}{1+\kappa}, 1\right)$ is the unique positive root of equation

(4)
$$\int_{x}^{1} (1 - (1 + \kappa)(1 - \theta)) dF(\theta) = 1 - (1 + \kappa)(1 - \mathbb{E}[\theta]);$$

- 2. $p_0^*(\theta) = \mathbbm{1}(\theta > t)$ for some $t \in \left(\frac{\kappa}{1+\kappa}, x\right)$ and $p_1^*(\theta) = \mathbbm{1}(\theta \le \alpha(t))$, where $\alpha(t) \in (0, t)$ is strictly decreasing in t and $\alpha(t) < \frac{\kappa}{1+\kappa}$;
- 3. $p_0^*(\theta) = \mathbbm{1}(\theta > t)$ for some $t \in \left(\frac{\kappa}{1+\kappa}, x\right)$ and $p_1^*(\theta) = \mathbbm{1}(\beta(t) < \theta \le t)$, where $\beta(t) \in (0, t)$ is strictly increasing in t and $\beta(t) < 1 \frac{1}{2(1+\kappa)}$.

Proof. We first show that (4) has a unique positive root. The left hand side of (4) is strictly quasi-concave in x, strictly increasing in $x < \frac{\kappa}{1+\kappa}$, strictly decreasing in $x > \frac{\kappa}{1+\kappa}$. At $x = \frac{\kappa}{1+\kappa}$,

$$\int_{\frac{\kappa}{1+\kappa}}^{1} (1 - (1+\kappa)(1-\theta)) dF(\theta) > \int_{0}^{1} (1 - (1+\kappa)(1-\theta)) dF(\theta) = 1 - (1+\kappa)(1-\mathbb{E}[\theta]).$$

At x = 1,

$$\int_{1}^{1} (1 - (1 + \kappa)(1 - \theta)) dF(\theta) = 0 < 1 - (1 + \kappa)(1 - \mathbb{E}[\theta]).$$

Hence, other than 0, (4) admits another root $x \in \left(\frac{\kappa}{1+\kappa}, 1\right)$.

Let p^* be optimal. We first characterize p_0^* . To do so, we show that $p_0^*(\theta) = \mathbb{1}(\theta > t)$ for some $t > \frac{\kappa}{1+\kappa}$. Then, we show that $t \leq x$.

First, because $\mu > 0$, $\ell_0(\theta, \mu) = -\mu(1 + \kappa)(1 - \theta) + \mu - 1$ is strictly increasing in θ and $\ell_0(\theta, \mu) > 0$ if and only if $\theta > 1 - \frac{\mu - 1}{\mu(1 + \kappa)} > \frac{\kappa}{1 + \kappa}$. Moreover, note that

$$\ell_1(\theta, \mu) - \ell_0(\theta, \mu) = \lambda(1 - \theta) - \frac{1}{2}\mu > 0$$

if and only if $\theta < 1 - \frac{\mu}{2\lambda}$. Therefore, $p_0^*(\theta) = 0$ for all $\theta < 1 - \frac{\mu}{2\lambda}$ and $p_1^*(\theta) = 0$ for all $\theta > 1 - \frac{\mu}{2\lambda}$. Let $t := 1 - \min\left\{\frac{\mu}{2\lambda}, \frac{\mu-1}{\mu(1+\kappa)}\right\}$ if $\mu > 1$ and t := 1 if $\mu \le 1$. Note that $t > \frac{\kappa}{1+\kappa}$. Then, $\ell_0(\theta, \mu) > \max\left\{0, \ell_1(\theta, \mu)\right\}$ if and only if $\theta > t$, which implies that $p_0^*(\theta) = \mathbbm{1}(\theta > t)$. Second, assume that $p_1^*(\theta) > 0$ for some $\theta > 1 - \frac{1}{2(1+\kappa)}$. Because $p_1^*(\theta) = 0$ for all

Second, assume that $p_1^*(\theta) > 0$ for some $\theta > 1 - \frac{1}{2(1+\kappa)}$. Because $p_1^*(\theta) = 0$ for all $\theta > 1 - \frac{\mu}{2\lambda}$, it must be true that $\frac{1}{2(1+\kappa)} > \frac{\mu}{2\lambda}$ and so $\lambda - \mu(1+\kappa) > 0$. This implies that $\ell_1(\theta,\mu) = (\lambda - \mu(1+\kappa))(1-\theta) + \frac{1}{2}\mu - 1$ is strictly decreasing in θ and $\ell_1(\theta,\mu) > 0$ if and only if $\theta < 1 - \frac{1-\frac{1}{2}\mu}{\lambda-\mu(1+\kappa)}$. Let $t' := 1 - \max\left\{\frac{\mu}{2\lambda}, \frac{1-\frac{1}{2}\mu}{\lambda-\mu(1+\kappa)}\right\}$, then $\ell_1(\theta,\mu) > \max\left\{0, \ell_0(\theta,\mu)\right\}$ if and only if $\theta < t'$ and so $p_1^*(\theta) = \mathbbm{1}\left\{\theta \le t'\right\}$. Then, as $p_1^*(\theta) > 0$ for some $\theta > 1 - \frac{1}{2(1+\kappa)}$, it

must be true that $t' > 1 - \frac{1}{2(1+\kappa)}$. Moreover, by definition, $t' \le 1 - \frac{\mu}{2\lambda} \le t$. But then,

$$\begin{split} &\sum_{a=0,1} \int_0^1 \left(\frac{1}{1+a} - (1+\kappa)(1-\theta) \right) p_a^*(\theta) dF(\theta) \\ &= \int_t^1 \left(1 - (1+\kappa)(1-\theta) \right) dF(\theta) + \int_0^{t'} \left(\frac{1}{2} - (1+\kappa)(1-\theta) \right) dF(\theta) \\ &< \int_t^1 \left(1 - (1+\kappa)(1-\theta) \right) dF(\theta) + \int_0^{t'} \left(1 - (1+\kappa)(1-\theta) \right) dF(\theta) \\ &\le \int_t^1 \left(1 - (1+\kappa)(1-\theta) \right) dF(\theta) + \int_0^t \left(1 - (1+\kappa)(1-\theta) \right) dF(\theta) \\ &= 1 - (1+\kappa) \left(1 - \mathbb{E}[\theta] \right), \end{split}$$

where the third inequality is due to $t'>1-\frac{1}{2(1+\kappa)}>1-\frac{1}{1+\kappa}=\frac{\kappa}{1+\kappa}$ and the fact that $\int_0^{t'}\left(1-(1+\kappa)(1-\theta)\right)dF(\theta)$ is strictly increasing in $t'\geq\frac{\kappa}{1+\kappa}$. This contradicts the feasibility constraint (1). Hence, it must be true that $p_1^*(\theta)=0$ for all $\theta>1-\frac{1}{2(1+\kappa)}$.

But because $p_1^*(\theta) = 0$ for all $\theta > 1 - \frac{1}{2(1+\kappa)}$

$$\int_0^1 \left(\frac{1}{2} - (1+\kappa)(1-\theta)\right) p_1^*(\theta) dF(\theta) \le 0,$$

so that

$$\int_{t}^{1} (1 - (1 + \kappa)(1 - \theta)) dF(\theta)
= \int_{0}^{1} (1 - (1 + \kappa)(1 - \theta)) p_{0}^{*}(\theta) dF(\theta)
\ge \int_{0}^{1} (1 - (1 + \kappa)(1 - \theta)) p_{0}^{*}(\theta) dF(\theta) + \int_{0}^{1} \left(\frac{1}{2} - (1 + \kappa)(1 - \theta)\right) p_{1}^{*}(\theta) dF(\theta)
= \sum_{a=0,1} \int_{0}^{1} \left(\frac{1}{1+a} - (1+\kappa)(1 - \theta)\right) p_{a}^{*}(\theta) dF(\theta)
\ge 1 - (1+\kappa)(1 - \mathbb{E}[\theta]),$$

where the last inequality is due to the feasibility constraint (1). By the definition of x and the fact that $\int_t^1 (1 - (1 + \kappa)(1 - \theta)) dF(\theta)$ is strictly decreasing in $t > \frac{\kappa}{1+\kappa}$. It must be true that $t \leq x$.

Now we characterize p_1^* . Suppose t = x. Because $p_1^*(\theta) = 0$ for all $\theta > 1 - \frac{1}{2(1+\kappa)}$. Assume $p_1^*(\theta) > 0$ in a set of positive measure, then

$$\sum_{a=0,1} \int_0^1 \left(\frac{1}{1+a} - (1+\kappa)(1-\theta) \right) p_a^*(\theta) dF(\theta)$$

$$= \int_x^1 \left(1 - (1+\kappa)(1-\theta) \right) dF(\theta) + \int_0^{1-\frac{1}{2(1+\kappa)}} \left(\frac{1}{2} - (1+\kappa)(1-\theta) \right) dF(\theta)$$

$$= 1 - (1+\kappa) \left(1 - \mathbb{E}[\theta] \right) + \int_0^{1-\frac{1}{2(1+\kappa)}} \left(\frac{1}{2} - (1+\kappa)(1-\theta) \right) dF(\theta)$$

$$< 1 - (1+\kappa) \left(1 - \mathbb{E}[\theta] \right),$$

where the last inequality is due to $\frac{1}{2} - (1+\kappa)(1-\theta) < 0$ for all $\theta < 1 - \frac{1}{2(1+\kappa)}$. This contradicts the feasibility constraint (1). Therefore, it must be true that $p_1^*(\theta) = 0$ almost everywhere.

Suppose t < x. The same steps above shows that $p_1^*(\theta) > 0$ must hold in a set of positive measure to bind the feasibility constraint (1). Because $\ell_1(\theta, \mu)$ is linear in θ and because $p_0^*(\theta) = \mathbb{1}(\theta > t)$, p_1^* takes one in two possible forms: either $p_1^*(\theta) = \mathbb{1}(\theta \le t')$ for some t' < t or $p_1^*(\theta) = \mathbb{1}(t' < \theta \le t)$ for some t' < t.

Consider the first possibility, $p_1^*(\theta) = \mathbb{1}(\theta \leq t')$ for some t' < t. Because the feasibility constraint (1) must be binding, it must be true that

(5)
$$\int_{t}^{1} (1 - (1 + \kappa)(1 - \theta)) dF(\theta) + \int_{0}^{t'} \left(\frac{1}{2} - (1 + \kappa)(1 - \theta)\right) dF(\theta) = 1 - (1 + \kappa)(1 - \mathbb{E}[\theta]).$$

Because the left hand side of the above equation is strictly quasi-convex in t',

$$\int_{t}^{1} (1 - (1 + \kappa)(1 - \theta)) dF(\theta) > 1 - (1 + \kappa)(1 - E[\theta])$$

at t' = 0 as t < x, and

$$\int_{t}^{1} (1 - (1 + \kappa)(1 - \theta)) dF(\theta) + \int_{0}^{t} \left(\frac{1}{2} - (1 + \kappa)(1 - \theta)\right) dF(\theta)$$

$$< \int_{t}^{1} (1 - (1 + \kappa)(1 - \theta)) dF(\theta) + \int_{0}^{t} (1 - (1 + \kappa)(1 - \theta)) dF(\theta)$$

$$= 1 - (1 + \kappa)(1 - \mathbb{E}[\theta])$$

at t'=t, there exists a unique $\alpha(t) \in (0,t)$ that solves (5). It follows that $t'=\alpha(t)$. Note that the left hand side of (5) is strictly increasing in $t \in \left[\frac{\kappa}{1+\kappa}, t\right]$, which implies that it is strictly bounded below $1-(1+\kappa)\left(1-\mathbb{E}[\theta]\right)$ for all $t' \in \left[\frac{\kappa}{1+\kappa}, t\right]$. As a result, $\alpha(t) < \frac{\kappa}{1+\kappa}$.

By the implicit function theorem,

$$\alpha'(t) = \frac{1 - (1 + \kappa)(1 - t)}{\frac{1}{2} - (1 + \kappa)(1 - \alpha(t))} \frac{f(t)}{f(\alpha(t))} < 0,$$

where the second inequality is due to $t > \frac{\kappa}{1+\kappa}$, so that $1 - (1+\kappa)(1-t) > 0$, and $\alpha(t) < \frac{\kappa}{1+\kappa} < 1 - \frac{1}{2(1+\kappa)}$, so that $\frac{1}{2} - (1+\kappa)(1-\alpha(t)) < 0$.

Now consider the second possibility that $p_1^*(\theta) = \mathbb{1}(t' < \theta \le t)$ for some t' < t. Because the feasibility constraint (1) must be binding, it must be true that

(6)
$$\int_{t}^{1} (1 - (1 + \kappa)(1 - \theta)) dF(\theta) + \int_{t'}^{t} \left(\frac{1}{2} - (1 + \kappa)(1 - \theta)\right) dF(\theta)$$
$$= 1 - (1 + \kappa)(1 - \mathbb{E}[\theta]).$$

The left hand side of the above equation is strictly quasi-concave in t',

$$\int_{t}^{1} (1 - (1 + \kappa)(1 - \theta)) dF(\theta) + \int_{0}^{t} \left(\frac{1}{2} - (1 + \kappa)(1 - \theta)\right) dF(\theta)$$

$$< \int_{t}^{1} (1 - (1 + \kappa)(1 - \theta)) dF(\theta) + \int_{0}^{t} (1 - (1 + \kappa)(1 - \theta)) dF(\theta)$$

$$= 1 - (1 + \kappa)(1 - \mathbb{E}[\theta])$$

at t' = 0, and

$$\int_{t}^{1} (1 - (1 + \kappa)(1 - \theta)) dF(\theta) > 1 - (1 + \kappa)(1 - \mathbb{E}[\theta])$$

at t'=t due to t< x, there exists a unique $\beta(t)\in (0,t)$ that solves (6). It follows that $t'=\beta(t)$. When $t>1-\frac{1}{2(1+\kappa)}$, the left hand side of (6) is strictly decreasing in $t'\in \left[1-\frac{1}{2(1+\kappa)},t\right]$, which implies that it is strictly bounded above $1-(1+\kappa)\left(1-\mathbb{E}[\theta]\right)$ for all $t'\in \left[1-\frac{1}{2(1+\kappa)},t\right]$. As a result, $\beta(t)<1-\frac{1}{2(1+\kappa)}$. When $t\leq 1-\frac{1}{2(1+\kappa)}$, $\beta(t)< t\leq 1-\frac{1}{2(1+\kappa)}$. By the implicit function theorem,

$$\beta'(t) = -\frac{\frac{1}{2}}{\frac{1}{2} - (1 + \kappa)(1 - \beta(t))} \frac{f(t)}{f(\beta(t))} > 0,$$

where the second inequality is due to $\beta(t) < 1 - \frac{1}{2(1+\kappa)}$, so that $\frac{1}{2} - (1+\kappa)(1-\alpha(t)) < 0$.

PROOFS OF PROPOSITIONS

Propositions 1 and 5

According to Lemma 3, there are three possible optimal distributions of support:

- 1. $p_0^*(\theta) = \mathbb{1}(\theta < x)$ and $p_1^*(\theta) = 0$ for all θ , which generates the expected payoff of F(x);
- 2. $p_0^*(\theta) = \mathbb{1}(\theta > t)$ for some $t \in \left(\frac{\kappa}{1+\kappa}, x\right)$ and $p_1^*(\theta) = \mathbb{1}(\theta \le \alpha(t))$, which generates the expected payoff of

$$V_{\alpha}(t) := F(t) + \int_0^{\alpha(t)} (\lambda(1-\theta) - 1) dF(\theta);$$

3. $p_0^*(\theta) = \mathbbm{1}(\theta > t)$ for some $t \in \left(\frac{\kappa}{1+\kappa}, x\right)$ and $p_1^*(\theta) = \mathbbm{1}(\beta(t) < \theta \le t)$, which generates the expected payoff of

$$V_{\beta}(t) := F(t) + \int_{\beta(t)}^{t} \left(\lambda(1-\theta) - 1\right) dF(\theta).$$

We compare the expected payoffs under three above options through claims 1, 2, and 3.

Claim 1. For any $t \in \left(\frac{\kappa}{1+\kappa}, x\right)$, $V_{\alpha}(t) > V_{\beta}(t)$ if and only if $\lambda < 2(1+\kappa)$.

Proof. Fix $t \in \left(\frac{\kappa}{1+\kappa}, x\right)$. Then,

$$V_{\beta}(t) - V_{\alpha}(t) = \int_{0}^{\alpha(t)} (1 - \lambda(1 - \theta)) dF(\theta) - \int_{\beta(t)}^{t} (1 - \lambda(1 - \theta)) dF(\theta) =: h(t, \lambda).$$

We prove the lemma by showing that $h(t,\lambda)$ is strictly increasing in λ and that $h(x,2(1+\kappa))=0$. First, note that

$$\frac{\partial}{\partial \lambda}h(t,\lambda) = \int_{\beta(t)}^{t} (1-\theta)dF(\theta) - \int_{0}^{\alpha(t)} (1-\theta)dF(\theta).$$

By the definition of $\beta(t)$ in (6) and that of $\alpha(t)$ in (5),

(7)
$$\int_{\beta(t)}^{t} \left(\frac{1}{2} - (1+\kappa)(1-\theta)\right) dF(\theta) = \int_{0}^{t} \left(1 - (1+\kappa)(1-\theta)\right) dF(\theta) = \int_{0}^{\alpha(t)} \left(\frac{1}{2} - (1+\kappa)(1-\theta)\right) dF(\theta),$$

so that

$$(1+\kappa)\left(\int_{\beta(t)}^{t} (1-\theta) dF(\theta) - \int_{0}^{\alpha(t)} (1-\theta) dF(\theta)\right) = \frac{1}{2} \left(F(t) - F(\beta(t)) - F(\alpha(t))\right).$$

This implies that

$$\frac{\partial}{\partial \lambda}h(t,\lambda) = \frac{F(t) - F(\beta(t)) - F(\alpha(t))}{2(1+\kappa)}.$$

Moreover, because

$$\int_{\beta(t)}^{t} \left(\frac{1}{2} - (1+\kappa)(1-\theta)\right) dF(\theta) = \left(F(t) - F\left(\beta(t)\right)\right) \mathbb{E}\left[\frac{1}{2} - (1+\kappa)(1-\theta)|\beta(t)| < \theta \le t\right]$$

and

$$\int_0^{\alpha(t)} \left(\frac{1}{2} - (1+\kappa)(1-\theta) \right) dF(\theta) = F(\alpha(t)) \mathbb{E}\left[\frac{1}{2} - (1+\kappa)(1-\theta) | \theta \le \alpha(t) \right],$$

(7) can be rewritten as

$$\begin{split} \left(F(t) - F\left(\beta(t)\right)\right) \mathbb{E}\left[\frac{1}{2} - (1+\kappa)(1-\theta)|\beta(t) < \theta \leq t\right] &= \int_0^t \left(1 - (1+\kappa)(1-\theta)\right) dF(\theta) \\ &= F\left(\alpha(t)\right) \mathbb{E}\left[\frac{1}{2} - (1+\kappa)(1-\theta)|\theta \leq \alpha(t)\right]. \end{split}$$

Due to t < x, $\int_0^t (1 - (1 + \kappa)(1 - \theta)) dF(\theta) < 0$, so that

$$\mathbb{E}\left[\frac{1}{2}-(1+\kappa)(1-\theta)|\theta\leq\alpha(t)\right]<\mathbb{E}\left[\frac{1}{2}-(1+\kappa)(1-\theta)|\beta(t)<\theta\leq t\right]<0,$$

where the first inequality is due to $\alpha(t) < t$. It follows that

$$\frac{F(t) - F(\beta(t))}{F(\alpha(t))} = \frac{-\mathbb{E}\left[\frac{1}{2} - (1 + \kappa)(1 - \theta)|\theta \le \alpha(t)\right]}{-\mathbb{E}\left[\frac{1}{2} - (1 + \kappa)(1 - \theta)|\beta(t) < \theta \le t\right]} > 1.$$

Hence,

(8)
$$F(t) - F(\beta(t)) > F(\alpha(t))$$

which implies that $\frac{\partial}{\partial \lambda}h(t,\lambda) = \frac{F(t)-F(\beta(t))-F(\alpha(t))}{2(1+\kappa)} > 0$. At last, again due to (7),

$$h(t, 2(1+\kappa)) = 2\left(\int_0^{\alpha(t)} \left(\frac{1}{2} - (1+\kappa)(1-\theta)\right) dF(\theta) - \int_{\beta(t)}^t \left(\frac{1}{2} - (1+\kappa)(1-\theta)\right) dF(\theta)\right)$$

$$= 2\left(\int_0^t (1 - (1+\kappa)(1-\theta)) dF(\theta) - \int_0^t (1 - (1+\kappa)(1-\theta)) dF(\theta)\right)$$

$$= 0.$$

Therefore, $h(t,\lambda) < 0$ and so $V_{\alpha}(t) > V_{\beta}(t)$ if $\lambda < 2(1+\kappa)$ while $h(t,\lambda) > 0$ and so $V_{\alpha}(t) > V_{\beta}(t)$ if $\lambda > 2(1+\kappa)$.

Claim 2. Suppose $\lambda < 2(1 + \kappa)$. There exists a unique optimal distribution of internal support p^* , for which

1. if

$$\lambda \le \lambda_{\alpha}^*(\kappa) := 1 + \frac{1}{2} \frac{2(1+\kappa) - 1}{1 - (1+\kappa)(1-x)},$$

 $p_0^*(\theta) = 1 (\theta > x) \text{ and } p_1^*(\theta) = 0 \text{ for all } \theta;$

2. if $\lambda_{\alpha}^{*}(\kappa) < \lambda < 2(1+\kappa)$, $p_{0}^{*}(\theta) = \mathbb{1}\left(\theta > \overline{y}\right)$ and $p_{1}^{*}(\theta) = \mathbb{1}\left(\theta \leq \underline{y}\right)$, where $\underline{y} < \overline{y} < x$.

Moreover, $\lambda_{\alpha}^*(\kappa) < 2(1+\kappa)$ if and only if $\kappa > \kappa^*$, where $\kappa^* \in \left(0, \frac{\mathbb{E}[\theta]}{1-\mathbb{E}[\theta]}\right)$.

Proof. We first prove the last argument. Note that the definition of $\lambda_{\alpha}^{*}(\kappa)$ implies that $\lambda_{\alpha}^{*}(\kappa) < 2(1+\kappa)$ if and only if $x > 1 - \frac{1}{2(1+\kappa)}$. By the definition of x in (4), $\mathbb{E}[\theta|\theta < x] = \frac{\kappa}{1+\kappa}$, which by the implicit function theorem implies that

$$\frac{\partial x}{\partial \kappa} = \frac{1}{(1+\kappa)^2} \frac{1}{\frac{d}{dx} \mathbb{E}[\theta | \theta < x]}.$$

Because F has a log-concave density, $\frac{d}{dx}\mathbb{E}[\theta|\theta < x] \leq 1$, so that

$$\frac{\partial x}{\partial \kappa} \ge \frac{1}{(1+\kappa)^2}.$$

In turn,

$$\frac{\partial}{\partial \kappa} \left(x - \left(1 - \frac{1}{2(1+\kappa)} \right) \right) = \frac{\partial x}{\partial \kappa} - \frac{1}{2} \frac{1}{(1+\kappa)^2} \ge \frac{1}{2} \frac{1}{(1+\kappa)^2} > 0.$$

Then, because

$$\begin{split} &\lim_{\kappa \to 0} \left(x - \left(1 - \frac{1}{2(1+\kappa)} \right) \right) = -\frac{1}{2} < 0 \\ &\lim_{\kappa \to \frac{\mathbb{E}[\theta]}{1 - \mathbb{E}[\theta]}} \left(x - \left(1 - \frac{1}{2(1+\kappa)} \right) \right) = \frac{1 - \mathbb{E}[\theta]}{2} > 0, \end{split}$$

there exists a unique $\kappa^* \in \left(0, \frac{\mathbb{E}[\theta]}{1 - \mathbb{E}[\theta]}\right)$ such that $x > 1 - \frac{1}{2(1+\kappa)}$, so that $\lambda_{\alpha}^*(\kappa) < 2(1+\kappa)$, if and only if $\kappa > \kappa^*$.

Because $\lambda < 2(1+\kappa)$, $V_{\alpha}(t) > V_{\beta}(t)$ for all $t \in \left(\frac{\kappa}{1+\kappa}, x\right)$. Note that

$$V_{\alpha}'(t) = f(t) + (\lambda (1 - \alpha(t)) - 1) f(\alpha(t)) \alpha'(t)$$

= $f(t) \left(1 - (\lambda (1 - \alpha(t)) - 1) \frac{1 - (1 + \kappa)(1 - t)}{(1 + \kappa)(1 - \alpha(t)) - \frac{1}{2}} \right),$

which has the same sign with

$$W_{\alpha}(t) := (1+\kappa)(1-\alpha(t)) - \frac{1}{2} - (\lambda(1-\alpha(t)) - 1)(1-(1+\kappa)(1-t))$$

= $\frac{1}{2} - (1+\kappa)(1-t) - (1-\alpha(t))(\lambda(1-(1+\kappa)(1-t)) - (1+\kappa)).$

Because $\lambda < 2(1 + \kappa)$,

$$W_{\alpha}(t) > \frac{1}{2} - (1+\kappa)(1-t) - (1-\alpha(t))(2(1+\kappa)(1-(1+\kappa)(1-t)) - (1+\kappa))$$
$$= 2\left(\frac{1}{2} - (1+\kappa)(1-\alpha(t))\right)\left(\frac{1}{2} - (1+\kappa)(1-t)\right).$$

For any $t \le 1 - \frac{1}{2(1+\kappa)}$,

$$\frac{1}{2} - (1+\kappa)(1-\alpha(t)) < \frac{1}{2} - (1+\kappa)(1-t) \le 0.$$

so that

$$W_{\alpha}(t) > 2\left(\frac{1}{2} - (1+\kappa)(1-\alpha(t))\right)\left(\frac{1}{2} - (1+\kappa)(1-t)\right) \ge 0.$$

First, suppose $\lambda \leq \lambda_{\alpha}^*(\kappa)$. Then,

$$\lambda \left(1 - (1+\kappa)(1-t)\right) - (1+\kappa)$$

$$\leq \lambda_{\alpha}^{*}(\kappa) \left(1 - (1+\kappa)(1-t)\right) - (1+\kappa)$$

$$= \left(1 + \frac{1}{2} \frac{2(1+\kappa) - 1}{1 - (1+\kappa)(1-x)}\right) \left(1 - (1+\kappa)(1-t)\right) - (1+\kappa)$$

$$< \left(1 + \frac{1}{2} \frac{2(1+\kappa) - 1}{1 - (1+\kappa)(1-t)}\right) \left(1 - (1+\kappa)(1-t)\right) - (1+\kappa)$$

$$= \frac{1}{2} - (1+\kappa)(1-t).$$

In turn, for any $t > 1 - \frac{1}{2(1+\kappa)}$,

$$W_{\alpha}(t) > \frac{1}{2} - (1 + \kappa)(1 - t) - (1 - \alpha(t)) \left(\frac{1}{2} - (1 + \kappa)(1 - t)\right)$$
$$= \left(\frac{1}{2} - (1 + \kappa)(1 - t)\right) \alpha(t)$$
$$> 0.$$

Therefore, $V'_{\alpha}(t) > 0$ for any $t \in \left(\frac{\kappa}{1+\kappa}, x\right)$. This implies that

$$F(x) = V_{\alpha}(x) > V_{\alpha}(t) = \max \{V_{\alpha}(t), V_{\beta}(t)\}$$

for all $t \in \left(\frac{\kappa}{1+\kappa}, x\right)$. As a result, p^* such that $p_0^*(\theta) = \mathbb{1}(\theta > x)$ and $p_1^*(\theta) = 0$ for all θ is optimal.

Second, suppose $\lambda_{\alpha}^*(\kappa) < \lambda \leq 2(1+\kappa)$. This condition necessitates $\kappa > \kappa^*$, so that $x > 1 - \frac{1}{2(1+\kappa)}$. Remember that $W_{\alpha}(t) > 0$ for all $t \leq 1 - \frac{1}{2(1+\kappa)}$. Because $\lambda < 2(1+\kappa)$, $\frac{\kappa}{1+\kappa} + \frac{1}{\lambda} > 1 - \frac{1}{2(1+\kappa)}$. Then, for any $1 - \frac{1}{2(1+\kappa)} < t \leq \frac{\kappa}{1+\kappa} + \frac{1}{\lambda}$,

$$\frac{1}{2} - (1+\kappa)(1-t) > 0$$

$$\lambda (1 - (1+\kappa)(1-t)) - (1+\kappa) \le 0,$$

so that

$$W_{\alpha}(t) = \frac{1}{2} - (1 + \kappa)(1 - t) - (1 - \alpha(t)) \left(\lambda \left(1 - (1 + \kappa)(1 - t)\right) - (1 + \kappa)\right)$$

$$\geq \frac{1}{2} - (1 + \kappa)(1 - t)$$

$$> 0.$$

But for $t > \frac{\kappa}{1+\kappa} + \frac{1}{\lambda}$,

$$\begin{split} W_{\alpha}'(t) &= (1+\kappa) \left(1 - (1-\alpha(t)) \, \lambda \right) + \left(\lambda \left(1 - (1+\kappa)(1-t) \right) - (1+\kappa) \right) \alpha'(t) \\ &< (1+\kappa) \left(1 - (1-\alpha(t)) \, \lambda \right) \\ &< (1+\kappa) \left(1 - \frac{\lambda}{1+\kappa} \right), \end{split}$$

where the last inequality is due to $\alpha(t) < \frac{\kappa}{1+\kappa}$. Note that

$$\lambda > \lambda_{\alpha}^{*}(\kappa) = 1 + \frac{1}{2} \frac{2\kappa + 1}{1 - (1 + \kappa)(1 - x)} > 1 + \kappa.$$

Hence,

$$W_{\alpha}'(t) < (1+\kappa)\left(1-\frac{\lambda}{1+\kappa}\right) < 0$$

holds for all $t > \frac{\kappa}{1+\kappa} + \frac{1}{\lambda}$. This implies that $V_{\alpha}(t)$ is strictly quasi-concave in $t \in \left[\frac{\kappa}{1+\kappa} + \frac{1}{\lambda}, x\right]$. Moreover, $W_{\alpha}\left(\frac{\kappa}{1+\kappa} + \frac{1}{\lambda}\right) > 0$ and because $\alpha(x) = 0$,

$$W_{\alpha}(x) = \frac{1}{2} - (1+\kappa)(1-x) - (\lambda(1-(1+\kappa)(1-x)) - (1+\kappa))$$
$$= -(1-(1+\kappa)(1-x))\left(\lambda - \left(1 + \frac{1}{2} \frac{2(1+\kappa) - 1}{1 - (1+\kappa)(1-x)}\right)\right)$$
$$= -(1-(1+\kappa)(1-x))(\lambda - \lambda_{\alpha}^{*}(\kappa)) < 0.$$

Therefore, there exists a unique $\overline{y} \in \left(\frac{\kappa}{1+\kappa} + \frac{1}{\lambda}, x\right)$ that satisfies $W_{\alpha}(\overline{y}) = 0$ and, thus, maximizes $V_{\alpha}(t)$. Let $\underline{y} := \alpha(\overline{y})$. As a result, \boldsymbol{p}^* such that $p_0^*(\theta) = \mathbbm{1}(\theta > \overline{y})$ and $p_1^*(\theta) = \mathbbm{1}(\theta \leq \underline{y})$ is optimal. \blacksquare

Claim 3. Suppose $\lambda \geq 2(1 + \kappa)$. There exists a unique optimal distribution of internal support \mathbf{p}^* , for which

1. if $2(1+\kappa) \leq \lambda \leq \lambda^*(\kappa)$, where

$$\lambda^*(\kappa) := \min \left\{ \lambda_{\alpha}^*(\kappa), \lambda_{\beta}^*(\kappa) \right\}$$
$$\lambda_{\beta}^*(\kappa) := \frac{1}{2 \left(1 - (1 + \kappa)(1 - x) \right) (1 - x)}$$

then $p_0^*(\theta) = \mathbb{1}(\theta > x)$ and $p_1^*(\theta) = 0$ for all θ ;

2. if $\lambda > \lambda^*(\kappa)$, $p_0^*(\theta) = \mathbbm{1}(\theta > \overline{z})$ and $p_1^*(\theta) = \mathbbm{1}(\underline{z} < \theta \leq \overline{z})$, where $\underline{z} < \overline{z} < x$.

Moreover, $\lambda_{\alpha}^{*}(x) < \lambda_{\beta}^{*}(x)$ if and only if $\kappa > \kappa^{*}$.

Proof. We first prove the last statement. Note that $\lambda_{\beta}^*(\kappa) - \lambda_{\alpha}^*(\kappa)$ has the same sign as

$$\frac{1}{1-x} - \left(2\left(1 - (1+\kappa)(1-x)\right) + 2(1+\kappa) - 1\right) = \frac{1}{1-x} - \left(1 + 2(1+\kappa)x\right),$$

which in turn has the same sign with

$$1 - (1 - x) - 2(1 + \kappa)x(1 - x) = 2x\left(\frac{1}{2} - (1 + \kappa)(1 - x)\right).$$

The above expression is positive if and only if $x > 1 - \frac{1}{2(1+\kappa)}$ or, equivalently, $\kappa > \kappa^*$.

Because $\lambda \geq 2(1+\kappa)$, $V_{\beta}(t) \geq V_{\alpha}(t)$ for all $t \in \left(\frac{\kappa}{1+\kappa}, x\right)$. Note that

$$\begin{split} V_{\beta}'(t) &= \lambda (1-t) f(t) - (\lambda (1-\beta(t)) - 1) f(\beta(t)) \beta'(t) \\ &= f(t) \left(\lambda (1-t) - (\lambda (1-\beta(t)) - 1) \frac{1}{2(1+\kappa) (1-\beta(t)) - 1} \right) \\ &= \frac{\lambda f(t)}{2(1+\kappa)} \left(2(1+\kappa) (1-t) - \frac{1-\beta(t) - \frac{1}{\lambda}}{1-\beta(t) - \frac{1}{2(1+\kappa)}} \right), \end{split}$$

which has the same sign with

$$W_{\beta}(t) := 2(1+\kappa)(1-t) - \frac{1-\beta(t) - \frac{1}{\lambda}}{1-\beta(t) - \frac{1}{2(1+\kappa)}}.$$

Because

$$W_{\beta}'(t) = -2(1+\kappa) + \frac{\frac{1}{\lambda} - \frac{1}{2(1+\kappa)}}{\left(1 - \beta(t) - \frac{1}{2(1+\kappa)}\right)^2} \beta'(t) \le -2(1+\kappa) < 0,$$

 $V_{\beta}(t)$ is strictly quasi-concave in t, where the second inequality is due to $\beta'(t) > 0$ and $\lambda \geq 2(1+\kappa)$.

Now consider the first case when $2(1+\kappa) \leq \lambda \leq \lambda^*(\kappa)$. Note that this case necessitates $\lambda_{\alpha}^*(\kappa) \geq 2(1+\kappa)$, which according to Lemma 2 requires $\kappa \leq \kappa^*$. Because $\kappa \leq \kappa^*$, $x \leq 1 - \frac{1}{2(1+\kappa)}$. Then, because $\lambda \leq \lambda_{\beta}^*(\kappa)$ and because $\beta(x) = x$,

$$W_{\beta}(x) = 2(1+\kappa)(1-x) - \frac{1-x-\frac{1}{\lambda}}{1-x-\frac{1}{2(1+\kappa)}}$$

$$= \frac{1}{1-x-\frac{1}{2(1+\kappa)}} \left(2(1+\kappa)(1-x) \left(1-x-\frac{1}{2(1+\kappa)} \right) - (1-x) + \frac{1}{\lambda} \right)$$

$$= \frac{1}{1-x-\frac{1}{2(1+\kappa)}} \left(\frac{1}{\lambda} - 2\left(1-(1+\kappa)(1-x)\right)(1-x) \right) \ge 0,$$

where the last inequality is due to $\lambda \leq \lambda_{\beta}^*(\kappa) = \frac{1}{2(1-(1+\kappa)(1-x))(1-x)}$. It follows that $W_{\beta}(t) > 0$, so that $V_{\beta}'(t) > 0$, for all $t \in \left(\frac{\kappa}{1+\kappa}, x\right)$. This implies that

$$F(x) = V_{\beta}(x) > V_{\beta}(t) = \max \{V_{\alpha}(t), V_{\beta}(t)\}$$

for all $t \in \left(\frac{\kappa}{1+\kappa}, x\right)$. As a result, p^* such that $p_0^*(\theta) = \mathbb{1}(\theta > x)$ and $p_1^*(\theta) = 0$ for all θ is optimal.

At last, consider the second case when $\lambda > \lambda^*(\kappa)$. If $\kappa > \kappa^*$, $\lambda^*(\kappa) = \lambda_{\alpha}^*(\kappa)$ and $x > 1 - \frac{1}{2(1+\kappa)}$. In this case,

$$W_{\beta}\left(1 - \frac{1}{2(1+\kappa)}\right) = 1 - \frac{1 - \beta\left(1 - \frac{1}{2(1+\kappa)}\right) - \frac{1}{\lambda}}{1 - \beta\left(1 - \frac{1}{2(1+\kappa)}\right) - \frac{1}{2(1+\kappa)}}$$

and

$$W_{\beta}\left(\frac{\kappa}{1+\kappa}\right) = 2 - \frac{1-\beta\left(\frac{\kappa}{1+\kappa}\right) - \frac{1}{\lambda}}{1-\beta\left(\frac{\kappa}{1+\kappa}\right) - \frac{1}{2(1+\kappa)}}$$
$$> 2 - \frac{1-\beta\left(\frac{\kappa}{1+\kappa}\right) - \frac{1}{2(1+\kappa)}}{1-\beta\left(\frac{\kappa}{1+\kappa}\right) - \frac{1}{2(1+\kappa)}} = \frac{1-\beta\left(\frac{\kappa}{1+\kappa}\right) - \frac{1}{1+\kappa}}{1-\beta\left(\frac{\kappa}{1+\kappa}\right) - \frac{1}{2(1+\kappa)}} > 0,$$

so that there exists a unique $\overline{z} \in \left(\frac{\kappa}{1+\kappa}, 1 - \frac{1}{2(1+\kappa)}\right) \subseteq \left(\frac{\kappa}{1+\kappa}, x\right)$ that satisfies $W_{\beta}(\overline{z}) = 0$ and, thus, maximizes $V_{\beta}(t)$. If $\kappa \leq \kappa^*$, $\lambda^*(\kappa) = \lambda_{\beta}^*(\kappa)$ and $x \leq 1 - \frac{1}{2(1+\kappa)}$. In this case,

$$W_{\beta}(x) = \frac{1}{1 - x - \frac{1}{2(1+\kappa)}} \left(\frac{1}{\lambda} - 2\left(1 - (1+\kappa)(1-x)\right)(1-x) \right) < 0$$

and similarly with the previous case, $W_{\beta}\left(\frac{\kappa}{1+\kappa}\right) > 0$. Hence, there exists a unique $\overline{z} \in \left(\frac{\kappa}{1+\kappa}, x\right) \subseteq \left(\frac{\kappa}{1+\kappa}, 1 - \frac{1}{2(1+\kappa)}\right)$ that satisfies $W_{\beta}(\overline{z}) = 0$ and, thus, maximizes $V_{\beta}(t)$. Let $\underline{z} := \beta(\overline{z})$. As a result, p^* such that $p_0^*(\theta) = \mathbb{1}(\theta > \overline{z})$ and $p_1^*(\theta) = \mathbb{1}(\underline{z} < \theta \leq \overline{z})$ is optimal.

Propositions 1 and 5 now follow directly from the three claims:

- 1. If $\lambda \leq \lambda^*(\kappa)$, then $\lambda \leq \lambda^*_{\alpha}(\kappa)$ in the case when $\lambda < 2(1+\kappa)$ and $\lambda \leq \lambda^*_{\beta}(\kappa)$ in the case when $\lambda \geq 2(1+\kappa)$. In either case, by part 1 of Claim 2 and by part 1 of Claim 3, $p_0^*(\theta) = \mathbb{I}(\theta > x)$ and $p_1^*(\theta) = 0$ for all θ is optimal.
- 2. If $\lambda^*(\kappa) < \lambda < 2(1+\kappa)$, then it must be that $\kappa > \kappa^*$, and so $\lambda^*_{\alpha}(\kappa) = \lambda^*(\kappa) < \lambda < 2(1+\kappa)$. By part 2 of Claim 2, $p_0^*(\theta) = \mathbb{1}(\theta > \overline{y})$ and $p_1^*(\theta) = \mathbb{1}(\theta \le y)$ is optimal.
- 3. Suppose $\lambda \geq 2(1+\kappa)$ and $\lambda > \lambda^*(\kappa)$. When $\kappa > \kappa^*$, these two conditions can be reduced to $\lambda \geq 2(1+\kappa)$, because $\lambda^*(\kappa) = \lambda_{\alpha}^*(\kappa) < 2(1+\kappa)$. When $\kappa \leq \kappa^*$, these two conditions can be reduced to $\lambda > \lambda^*(\kappa)$, because $\lambda^*(\kappa) = \lambda_{\beta}^*(\kappa) \geq 2(1+\kappa)$. In either case, by part 2 of Claim 3, $p_0^*(\theta) = \mathbb{1}(\theta > \overline{z})$ and $p_1^*(\theta) = \mathbb{1}(\underline{z} < \theta \leq \overline{z})$ is optimal.

It only remains to show that $\overline{z} < \overline{y}$. As shown in the proof of Claim 2,

$$\overline{y} > \frac{\kappa}{1+\kappa} + \frac{1}{\lambda} > 1 - \frac{1}{2(1+\kappa)}.$$

As shown in the proof of Claim 3, either

$$\overline{z} < 1 - \frac{1}{2(1+\kappa)} < x$$

in the case when $\kappa > \kappa^*$ or

$$\overline{z} < x \le 1 - \frac{1}{2(1+\kappa)}$$

in the case when $\kappa \leq \kappa^*$. Therefore,

$$\overline{z} < 1 - \frac{1}{2(1+\kappa)} < \overline{y}.$$

Proposition 2

It is sufficient to prove that there exists no public information structure that induces a divisive ruling style. Assume that there exists such a public information structure (M, σ) . For each ally i and each action a, let M_i^a denote the set of messages m_i for which ally i would choose action a.

First, assume that $b(M_1^1) \cap M_2^0 \neq \varnothing$. Consider $m_2 \in b(M_1^1) \cap M_2^0$. Suppose ally 1 receives $b^{-1}(m_2) \in M_1^1$. Receiving $b^{-1}(m_2)$, ally 1 infers that ally 2 must have received $m_2 \in M_2^0$ and therefore would oppose the ruler. But given that ally 2 would oppose the ruler, ally 1 gets 1 by opposing ruler and 0 < 1 by supporting the ruler, so that he prefers to oppose the ruler. This contradicts the fact that $b^{-1}(m_2) \in M_1^1$. Therefore, it must be true that $b(M_1^1) \cap M_2^0 = \varnothing$. Similarly, one can prove that $b(M_1^0) \cap M_2^1 = \varnothing$.

It follows that $b(M_1^1) = M_2^1$ and $b(M_1^0) = M_2^0$. But given this, either the two allies receive $(m_1, b(m_1)) \in (M_1^1, M_2^1)$ for which they both support the ruler or they receive $(m_1, b(m_1)) \in (M_1^0, M_2^0)$ for which they both oppose the ruler. As a result, $p_1(\theta) = 0$ for all θ . This contradicts the induced ruling style being divisive. Therefore, it must be true that no public information structure can induce a divisive ruling style.

Proposition 3

First, consider unite-and-lead. Note that given σ such that $m_1 = m_2 = \mathbb{1}(\theta \le x)$,

$$p_0(\theta) = \mathbb{1}(\theta > x)$$
$$p_1(\theta) = 0$$

for all θ . Hence, σ induces unite-and-lead.

Second, consider divide-and-conquer. Note that given σ such that $m_1 = \mathbb{1}(\hat{y} < \theta \leq \overline{y})$ and $m_2 = \mathbb{1}(\underline{y} < \theta \leq \overline{y}) + \mathbb{1}(\theta \leq \hat{y})$,

$$p_0(\theta) = \mathbb{1}(\theta > \overline{y})$$

$$p_1(\theta) = \mathbb{1}(\hat{y} < \theta \le y) + \mathbb{1}(\theta \le \hat{y}) = \mathbb{1}(\theta \le y)$$

for all θ . Hence, σ induces divide-and-conquer.

Third, consider divide-and-crumble. Note that given σ such that $m_1 = \mathbb{1}(\theta \leq \hat{z})$ and $m_2 = \mathbb{1}(\theta \leq \underline{z}) + \mathbb{1}(\hat{z} < \theta \leq \overline{z})$,

$$p_0(\theta) = \mathbb{1}(\theta > \overline{z})$$

$$p_1(\theta) = \mathbb{1}(\underline{z} < \theta \le \hat{z}) + \mathbb{1}(\hat{z} < \theta \le \overline{z}) = \mathbb{1}(\underline{z} < \theta \le \overline{z})$$

for all θ . Hence, σ induces divide-and-crumble.

Proposition 4

First, we prove (a). Because $\alpha(t)$ is strictly decreasing in t and because $\overline{z} < \overline{y}$,

$$\underline{y} = \alpha(\overline{y}) < \alpha(\overline{z}),$$

so that

$$F(y) < F(\alpha(\overline{z}))$$
.

As shown in (8) in the proof of Claim 1, $F(t) - F(\beta(t)) > F(\alpha(t))$ holds for all $t \in \left(\frac{\kappa}{1+\kappa}, x\right)$. As a result,

$$F(\alpha(\overline{z})) < F(\overline{z}) - F(\beta(\overline{z})) = F(\overline{z}) - F(\underline{z}).$$

It follows that

$$F(y) < F(\alpha(\overline{z})) < F(\overline{z}) - F(\underline{z}).$$

Hence, (a) holds.

Now we prove (b). As shown in Lemma 3, $\alpha(t) < \frac{\kappa}{1+\kappa}$ for all $t \in \left(\frac{\kappa}{1+\kappa}, x\right)$. Hence,

$$\underline{y} = \alpha(\overline{y}) < \frac{\kappa}{1+\kappa} < \overline{z}.$$

It follows that

$$\mathbb{E}[1 - \theta | \underline{z} < \theta \le \overline{z}] < \mathbb{E}[1 - \theta | \theta \le \overline{z}] < \mathbb{E}[1 - \theta | \theta \le y],$$

so that (b) holds.

At last, we prove (c). Because $\alpha(t)$ is strictly decreasing in t and because $\overline{z} < \overline{y}$, $\underline{y} = \alpha(\overline{y}) < \alpha(\overline{z})$, so that

$$\int_{0}^{\underline{y}} (1-\theta) dF(\theta) < \int_{0}^{\alpha(\overline{z})} (1-\theta) dF(\theta)$$

and

$$\int_{\underline{z}}^{\overline{z}} (1-\theta) dF(\theta) - \int_{0}^{\underline{y}} (1-\theta) dF(\theta) > \int_{\underline{z}}^{\overline{z}} (1-\theta) dF(\theta) - \int_{0}^{\alpha(\overline{z})} (1-\theta) dF(\theta).$$

Due to (7), for all $t \in \left(\frac{\kappa}{1+\kappa}, x\right)$

$$\int_{\beta(t)}^{t} \left(\frac{1}{2} - (1+\kappa)(1-\theta) \right) dF(\theta) = \int_{0}^{\alpha(t)} \left(\frac{1}{2} - (1+\kappa)(1-\theta) \right) dF(\theta),$$

which implies that

$$\int_{\beta(t)}^{t} (1 - \theta) dF(\theta) - \int_{0}^{\alpha(t)} (1 - \theta) dF(\theta) = \frac{F(t) - F(\beta(t)) - F(\alpha(t))}{2(1 + \kappa)}$$

holds for all $t \in \left(\frac{\kappa}{1+\kappa}, x\right)$. As a result,

$$\int_{\underline{z}}^{\overline{z}} (1 - \theta) dF(\theta) - \int_{0}^{\alpha(\overline{z})} (1 - \theta) dF(\theta) = \int_{\beta(\overline{z})}^{\overline{z}} (1 - \theta) dF(\theta) - \int_{0}^{\alpha(\overline{z})} (1 - \theta) dF(\theta) \\
= \frac{F(\overline{z}) - F(\beta(\overline{z})) - F(\alpha(\overline{z}))}{2(1 + \kappa)}.$$

As shown in the proof of (a), $F(\overline{z}) - F(\beta(\overline{z})) - F(\alpha(\overline{z})) > 0$. Hence,

$$\int_{\underline{z}}^{\overline{z}} (1-\theta) dF(\theta) - \int_{0}^{\underline{y}} (1-\theta) dF(\theta) > \frac{F(\overline{z}) - F(\beta(\overline{z})) - F(\alpha(\overline{z}))}{2(1+\kappa)} > 0.$$

This proves (c).