Online Appendix: Formal Proofs
We prove the formal statements in a slightly different order than they are presented in the

text. We use a single proof for propositions 1 and 5, because proving the former proposition
requires to proof the latter. We begin by proving several intermediary results.

INTERMEDIARY RESULTS

Lemma 1. A distribution of internal support p is feasible if and only if

WY [ (- 000 - 0) p@dFE) 21— (1) (1~ E)

a=0,1

Proof. We first prove the sufficiency by constructing an information structure from a
given distribution of support that satisfies (1). Then, we prove the necessity by showing
that any distribution of support induced by a subgame equilibrium under some information

structure must satisfy (1). To prove sufficiency, assume that p satisfies (1). Then, suppose
(M, o) is such that M = {0,1} and for each 6,

0(0,0[0) = po(0)
7(1,008) = 0(0,1/6) = S (0
o(1,1]0) = p2(6).
Let (¢, q5) be a strategy profile such that g;(m;) = m; for each m; = 0,1 and i = 1,2. We

now verify that (¢}, ¢3) is an equilibrium under (M, o). Consider the best response of an ally
¢ to the strategy of his peer ¢*,. If m; = 0, then the expected payoft from a; = 0 is

/ o(0,0(0)dF (6 +/ 0 ( 1—0) )0 (0, 1|0)dF (6)

—/po )AF (6 +/ 9—1—9) L(0)dF(0).

The latter expression can be rearranged to get

2031/ (1 = 1+ 8)(1=0)) pu(O)dF(O) + (1+ ) /01(1 ~6) (mo(6) + %pl(ﬁ)) dF(0)

>3 (5

a=0,1 1
>1—(1+k)

-1+ 9)) a(6)dF(0)
(1-E[g]) >0,

and so a; = 0 is optimal following m; = 0. Conversely, a; = 1 is optimal after m; = 1, since,



otherwise, by choosing a; = 0, the ally ¢ would expect to obtain

/1 (0 — (1 0)) o(1, 110)dF(0) +/1a 1,0[0)dF(0)

- / %) pa(8)dF(6) + / o (0)dF(6)
= [[ 6= =00 (1= ()~ 0) dF ) + [ Jm(0)aF(0)
1 (1+r)( Z / ( 1+Ii)(1—9)> pa(0)dF(0) < 0.

So ¢} is a best response of i given ¢*; and so (¢}, ¢5) constitutes a Bayesian Nash equilibrium
under (M, o). By construction, (g7, q2) induces p under (M, o), and so p is feasible.

To prove the necessity, suppose that p is feasible. If so, then by definition there exists
an information structure (M, o) and an equilibrium (gf, ¢5) under this information structure
that induces p. Because ¢j is a best response against ¢, if ally 1 observes any m; such that
¢;(mq) > 0, it must be true that he prefers to oppose the ruler and so

[ ] (0= (1= 0 g3tma) + 1 = 50m2)) s, dmal)F (0) < 0.
Integrating both sides with respect to m; implies that
[ i) [ [ (0= (= 0) aslma) + 1 = Ga(oma)) o il ) (6)
= [fa—a+m0-0) ([ aommotan, dnslo)) dFo)
[ ([ @itm) = g3 ma)asoma)) o, dmaj6)) dF(6) <.
Equivalent steps yield
[ a=a+ma=0) ([ gomaomotdm, dnlo)) dr o)
+ [ () @3ma) = a1 m)asma)) o (dims, dmaf0) ) dF (0) < 0,
Adding up the above two inequalities and dividing by 2 we get
[ =+ ma=0) ([ aomaom)otdm, dnlo)) dr o)
s 5 (] @im) + a30m2) — 265 (m)g3 m)) oo, dma)) i (0)
= [ 0= 0+ 00 = 0) )0 + 5 [ mO)F)

= (0= AR =0) (1= po(®) ~p <e>>dF<e>+§ [ m(®)are)
=1-(14r)( Z/(

a=0,1

(14 7)1 =0)) pa(6)dF(6) < 0,



as stated in the lemma. =

Lemma 2. The feasibility constraint (1) is binding for any optimal distribution of internal
support.

Proof. Given Lemma 1, we can write the ruler’s optimization problem as
1
max V(p) =1+ | (M1 =0) = 1)pi(6) = po(6)) dF (6)

(2) 1
st. ¥ [ ( ! (14 m)(1 = 0) ) pa(O)dF(6) = 1~ (1+ ) (1 - E[f]).

a=0,1 1 ta

The Lagrangian of problem (2) is

(0,1, 0,10) = <A<1—9>—1>p1—po+ﬂ(_z (1ia—<1+m><1—e>)pa—c),

where p > 0 is the multiplier of the feasibility constraint (1) and ¢:=1— (1 + &) (1 — E[0])
is a constant. Let

{0(Bun) = e, Bup) = —L+ (L= (14 1)(1 =)

00, ) = a%apo,pl,e,u) =M1 -0~ 145 (G- (4RI -6)).

Consider any optimal distribution of internal support p*. Clearly, for a = 0,1 and 6 € [0, 1],

3) pi(0) = { Lol > a0 0u(0.0)

a(0, 1) <max{0,0,_,(0, )} °

Assume p = 0. Then, {y(0,0) = —1 < 0 for all 0, so that pj(#) = 0 for all §. Moreover,
((6,0) = A(1=0) =1 > 0 if and only if 6 < 1 -}, so that pj(0) =1 (6 <1 —}). But then,

> [ (1 - 0 +00-0) 5o

a=0,1 l+a N
_ /01‘X (% (R 9)) dF ()
</01_‘<1—<1+m)(1—9))dF<9)
<1—(1+4k)(1-E[#]),

where the last inequality is because [j (1 — (1+ x)(1—6))dF(0) is strictly convex in t,
equals to 1 — (1 + k) (1 —E[f]) at t = 1, and equals to 0 < 1 — (1 + &) (1 — E[f]) at t = 0.
This is a contradiction to the feasibility constraint (1). Hence, it must be true that © > 0
and, as a result, (1) must be binding for p*. =



Lemma 3. Any optimal distribution of support p* takes one in three possibilities:
1. p5(0) =1(0 > x) and p;(0) = 0 for all O, where x € (1+n7 1) is the unique positive root
of equation

0 [ = (U R = 0) dF(8) =1~ (1+ ) (1~ E[6));

2. p5(0) =1(0 > t) for somet € (ﬁ,x) and pi(0) =1 (0 < a(t)), where a(t) € (0,t) is

strictly decreasing in t and o(t) < {%;

3. p§(0) =1(0 > t) for somet € (1;, ) andp’{(@) =1(8(t) <0 <t), where B(t) € (0,1)

is strictly increasing in t and f(t) <1 — (HE)

Proof. We first show that (4) has a unique positive root. The left hand side of (4) is
strlctly quasi-concave in z, strictly increasing in x < strictly decreasing in x > #=-. At
T —

Tor
I—Hi’

/1 (1= (14 5)(1—0)dF(0) > /1(1—(1+m)(1—9))dF(9):1—(1+/£)(1—IE[9]).

K
1+k 0

At x =1,

/1(1—(1“)( —0)dF(0) =0 < 1— (1+x)(1—E[f]).

1

Hence, other than 0, (4) admits another root = € (1+m 1).

Let p* be optimal. We first characterize pj§. To do so, we show that p§(0) =1 (6 > t) for
some ¢t > ++—. Then, we show that ¢ < z.
First, because w>0, (0, 1) = —,u(l + /s)(l —0) 4+ p — 1 is strictly increasing in 6 and

lo(0, 1) > 0 if and only 1f 0>1-— m > 11.- Moreover, note that

1
00, 1) = L0, 1) = A1 = 0) = 5> 0

if and only if 6 < 1 — 4. Therefore, pj(¢) = 0 for all § < 1 — 25 and pj(#) = 0 for all

0>1-45 Lett:=1- m1n{%,ﬂé‘1+1,€)}ifu>1andt.—11fu§1. Note that ¢ > 13-

Then, KO(Q,M) > max {0, 0;(6, 1)} if and only if 6 > ¢, which implies that p§(6) =1(6 > t).
Second, assume that pi(6) > 0 for some 6 > 1 — m Because pj(f) = 0 for all

0 > 1 — 4%, it must be true that (1+n) > a5 and so A — pu(1 4+ x) > 0. This implies that

GO, p) = (A— ,u( —|— k)) (1 —0) + 2p — 1 is strictly decreasing in 6 and ¢,(0, ) > 0 if and

1
m Let ¢/ :=1 —max{%,m} then €1<9 ,LL) > maX{O fo(e /,L)}
it

if and only if 8 < ' and so pj(0) =1{0 < t'}. Then, as pj(#) > 0 for some § > 1 —

only if § < 1—

2(1+n)’



must be true that ¢/ > 1 — Moreover, by definition, t' <1 — 4% <¢. But then,

(1+/€)

) [ (5 — 000 - 0)) pi(0)ar )
:/t (1—(1+/£)(1—9))dF(0)+/0t/ (%—(1%)(1—9)) AP (6)
</tl(l—(1+m)(1—0))dF(0)+/0t/ (1= (14 %)(1— 0)) dF(8)

< /t1 (1—(1+n)(1—9))dF(0)+/0t(1— (14 #)(1 — 0)) dF(6)
1 () (1 - Ef),

where the third inequality is due to ¢’ > 1 — ﬁ > 1 - m = 14 and the fact that
JU (1 = (1 + K)(1 — 0)) dF(6) is strictly increasing in #/ > —%. This contradlcts the feasibility

constraint (1). Hence, it must be true that p*{(@) =0 for all >1-—
But because pi(0) =0 for all > 1 —

(1+n)
(1+/$)

[ (G- 0+n0-0)s@are <o
so that
[ = (w1 - 0) dr (o)
= [ 0=+ 00 - 0) 5 (0)aF )
> [0 -+ 00 -0)s@dFe) + [ (5 - 0+R0-0)p0)dre)
= 3 [ (g5 - e ma=0)iwar

where the last inequality is due to the feasibility constraint (1). By the deﬁnition of z and
the fact that [ (1 — (1 + k)(1 —6)) dF(6) is strictly decreasing in ¢ > . It must be true
that ¢t < x.

Now we characterize p;. Suppose t = x. Because pj(0) =0 forall > 1—
p;(0) > 0 in a set of positive measure, then

py) [ (- 000 -0) noare

(1 - Assume

:/x (1—(1+n)(1—6’))dF(9)+/0 s <;—(1+/€)(1—9)> dF (8)

:1—<1+f<)(1—1€[e])+/01_m (;—(1+/{)(1—9)) dF(6)
<1-(1+k)(1—E[f])),



where the last inequality is due to 3 — (1+£)(1—60) < 0forall§ < 1— ( - This contradicts

the feasibility constraint (1). Therefore, it must be true that pj(f) = 0 almost everywhere.
Suppose t < x. The same steps above shows that pf(¢) > 0 must hold in a set of positive
measure to bind the feasibility constraint (1). Because ¢1(6, ) is linear in € and because
py(0) =1(0 > t), p} takes one in two possible forms: either pi(0) =1(0 < t’) for some ' < t
or pi(0) =1(t' <6 <t) for some ' < t.
Consider the first possibility, pi(f) = 1(0 < t') for some ' < t. Because the feasibility
constraint (1) must be binding, it must be true that

(5) /tl (1= (1+r)(1-0))dF() + /Ot/ G —(1+r)(1— 0)) dF(6)
=1—(1+x)(1—E[f).
Because the left hand side of the above equation is strictly quasi-convex in ¢,
/tl (1-(1+4+r)(1—-0)dF)>1—(1+k)(1— E[f)])
at ! =0ast <ux, and
/tl(l— (1+r)(1 —9))dF(9)+/0t (% _
< [a-a+ma-odre -+ |
=1—(1+r)(1-E[0])

at t' = t, there exists a unique «(t) € (0,t) that solves (5). It follows that ¢ = «(t). Note
that the left hand side of (5) is strictly increasing in t € {1 -, },

strictly bounded below 1 — (1 + k) (1 — E[0]) for all ¢’ € [L t]. As a result, a(t) < £

(14 r)(1— 9)) dF(6)
Y0 = (14 8)(1 — 0)) dF(6)

which implies that it is

1+ 1+Ii
By the implicit function theorem,
1—-(1 1-—1 t
PR Y R CE R (VN
3~ (L+R) (1 =a)) f(al))
where the second inequality is due to ¢t > %, so that 1 — (1 + £)(1 —¢) > 0, and a(t) <
e <1- (H)sothatl (14+ k) (1—a(t)) <O0.

Now consider the second possibility that pj(6) =1 (¢ < 6 <) for some t' < t. Because
the feasibility constraint (1) must be binding, it must be true that

/tl(l—(1+m)(1—9))dF(9)+;(; (14 1)(1 = 0)) dE(6)
1= (1+5)(1—E[]).

(6)

The left hand side of the above equation is strictly quasi-concave in t’,

/1 (1= (14 #)(1—0))dF(0) + /Ot (% (4R - 9)) dF(6)

< /t1 (1= (14 %)(1— 0)) dF(6) +/Ot(1 — (14 )(1 — 0)) dF(6)
11— (1+r)(1-E[)



at t' =0, and
/t1 (1= (14 8)(1—0)dF(©O) > 1 — (1+x) (1— E[])

at t' = t due to t < x, there exists a unique fS(t) € (0,t) that solves (6). It follows
that ¢ = [(t). When t > 1 — the left hand side of (6) is strictly decreasing in

(1+r§
t e {1 - m, t], which implies that it is strlctly bounded above 1 — (1 + &) (1 — ]E[O]) for
allt’ € [1 - m,t] Asaresult, A(t) < 1— 1+K Whent < 1— (1+n) ,B(t) <t <1— (1+n)
By the implicit function theorem,
1
2 ft)
B(t) = — = >0,
5 — (L+r) (1=51)) f(B(1))

where the second inequality is due to S(t) < 1 — so that 1 — (14 &) (1 —a(t)) < 0.

(1+n)

PROOFS OF PROPOSITIONS

Propositions 1 and 5

According to Lemma 3, there are three possible optimal distributions of support:
1. p§(0) =1(6 < x) and p;j(d) = 0 for all 8, which generates the expected payoff of F(x);

2. p§(0) =1(0 > t) for some t € (ﬁ,x) and pi(€) =1 (6 < a(t)), which generates the
expected payoff of

Va(t) i= F(t) + /Oa(t) (A(1 = 0) — 1) dF(0);

3. p5(8) =1(0 > t) for some t € (

) and p;(0) =1 (B(t) < § <t), which generates
the expected payoff of

T4k

Vs(t) == F(t) + ;(t) (M1 —0)—1)dF(h).

We compare the expected payoffs under three above options through claims 1, 2, and 3.
Claim 1. For anyt € (H—n x) Va(t) > Vi(t) if and only if X < 2(1 + k).
Proof. Fixt € (ﬁ,x) Then,

t

Va(t) — Via(t) = /Oa(t) (1—\(1—0))dF(8) — /ﬁ(t) (1= A(1 = 0))dF(8) =: h(t, \).



We prove the lemma by showing that A(t,\) is strictly increasing in A and that
h(xz,2(1+4 k)) = 0. First, note that

o t a(t)
At = /B(t)(l — 0)dF(6) —/O (1 = 0)dE(®).

By the definition of 5(t) in (6) and that of a(t) in (5),

. /;m (; (1+1)(1 - 0)) dF(0) = /Ot (14 £)(1 — 0)) dF(6)
/Oa ( (1 + r)( e>) dF(6),

so that

DN —

(14 ) </;(t)(1 _0)dF(0) - /Oa(t)u - 9)dF(6)> _

This implies that

Moreover, because

/;@ (% —(1+r)(1— 9)) dF(0) = (F(t) — F(8(1)))E E —(1+8)(1—0)B(t) <0< t]
and

[ (3~ 0+ m)01-0) dFO) = F o) E[L ~ 1481 -9 < alh)]

(7) can be rewritten as

S~

(F(t) ~ FBONE 3~ (1401 - 0)|30) < 0 < 1] =

— F(a(t)E [% C(+m)1—0)0 < a(t)] |

(1= (1+k&)(1—0))dF(0)

Due to t <z, J3 (1 — (14 &)(1 —6))dF(0) < 0, so that
1 1
E {5 1+ R)1-0)< a(t)} <E b 1+ R)(1—0)|B() <0< t} <0,
where the first inequality is due to a(t) < t. It follows that

F) -F(3(t)  —E[f-(0+r)1-0)0<a(t)
F(af(t)) —E[-—(1+m)(1—9)|5<><egt]

> 1.

8



Hence,

(8) E(t) = F(5(t) > F (a(t))
which implies that Zh(t, \) = HOLEOIEO) > ¢

At last, again due to (7),

h(t,2(1+n))=2</oa(t>(; (14 )1 0))dF(9) /;(t) (%—(1+n)(1—9))dp(9)>
([a-a+ma-ayare) - [(a-a+r0-6)are)

2
0.
Therefore, h(t,\) < 0 and so V,(t) > V(t) if A < 2(1 + k) while h(t,\) > 0 and so
Vo(t) > Va(t) if A >2(1+kK). m

Claim 2. Suppose A\ < 2(1 + k). There exists a unique optimal distribution of internal
support p*, for which

1. if

. 1 2(1+rk)—1
A Aalk) _1+§1—(1+m)(1—x)’

p(0) =1(0 > z) and p;(0) = 0 for all 0;

2. if Noy(k) < A< 21+ k), py(0) =1(0 >7) and p1(0) =1(0 < y), wherey <7 < .

Moreover, \i(k) < 2(1 + k) if and only if k > K*, where K* € (O, E][gge])'

Proof. We first prove the last argument Note that the definition of A’ (k) implies that
N(k) <2(1+4k)ifand only if x > 1 — (1+ 7- By the definition of z in (4), E[f|0 < z] =
which by the implicit function theorem implies that

1+/£

ox 1 1

ok (1+k)2LE[G]0 < 2]

Because F' has a log-concave density, -LE[0]0 < z] < 1, so that

In turn,

L R N S N B R N
o \" 20+k))) Ok 2(1+k)?2 = 2(1+k)? ’



Then, because

lim (
rk—0
hm (
]E[G
T—E[6]

there exists a unique k* € (O, IE[EQ[]G]> such that z > 1 —
and only if Kk > Kk*.
Because A < 2(1 + k), V,(t) > V;(t) for all t € (1%& x) Note that

Valt) = () + (A (1 = a(t)) = 1) f (a(t) &/ (t)

ol 1= (R
— 10 (1- 00— a) - ) TS S0,

(1 1+n>> _%<O
(o)) = o

so that A (k) < 2(1 + k), if

2(1+ )’

which has the same sign with

Wa(t) = (1+£) (1 —a(t) - % A0 —a@) -1 - (1+r)1-1)
_ % 04+ R)(1 =) = (1 —a®) A1 = (1 +r)(1—1) = (1+ &)
Because A < 2(1 + k),

Wa(t) > ; 4R (1= 1) = (1= a(t) 21+ ) (1= (14 &)1 = 1)) = (1 + &)
:2(%-(1%)(1—@@))) (%—(1+ﬁ;)(1—t)>.

Forany t <1 — (H—fi)

5~ (L %) (1= () <%—(1+H)(1_t) <0,
so that
W) > 2 <; (R (1— a(t))> (; 1+ m)(1— t)> > 0.
First, suppose A < N\ (k). Then,
1

AL=(1+r)(A =)= (1+r)

<AR) (L= (1 +x)(1=1) = (1+k)

B 1 (14+r)—1

(1 L. (1“)(1_%))(1—(1%)(1—15))—(1“)
< <1+%1 2%:3&1”)(1—(1—1—&)(1—1&))—(1—1—/1)
:;—<1+f<)(1—t)

10



In turn, for any t > 1 — ma

Walt) > 5 = (14+)(1—0) = (1= a(®) (5~ 1+ 91 - 1)
:<%—G+KKM%0Q@
> 0.
Therefore, V() > 0 for any t € (%, 2). This implies that
F(a) = Va(x) > Vo (t) = max {Vi(t), Va(t)}

for all t € (ﬁ,:ﬂ) As a result, p* such that p§(d) = 1(0 > z) and pj(f) = 0 for all 0 is
optimal.
Second, suppose A5 (k) < A < 2(1 + k). This condition necessitates x > k*, so that

z>1-— ﬁ Remember that W, (t) > O forall t <1 — ﬁ Because A < 2(1 + k),
<t<

iy L>1- 50T )Then for any 1 — —|—§,

2(1+n) 1+/$

—(1+r)(1-t)>0
A1-(1+r)(1-1)—(1+rk) <0,
so that
—1+r)A=-t)—(1—-—al) N1=->04+r)(1A—=1t)—(1+k))

> - — (1+r)(1—t)

But for ¢t > —i—/\,

Wo(t) = (1+r) (1 ( (t))) AA=A+r)1=1) = (1+r)a'(t)

<(1+x)(1 a(t))
1
<(1+=r ( T n
where the last inequality is due to a(t) < ;3. Note that
1 2 1
A>N(k) =1+~ s > 1+ k.

21— (1+k)(1—2)

Hence,




holds for all ¢ > = + % This implies that V() is strictly quasi-concave in t € {1%{ + %, w}

Moreover, W, (1%{ + %) > 0 and because a(z) = 0,

Wale) = 5~ (14 8)(1—2) — (A(1 = (L4 R)(1 —2)) — (1+ 1)

e
= (1= 1+ R - 2)) (A= ALR) <O,

Therefore, there exists a unique 7 € (1%@ + %,x) that satisfies W, (7) 0 and, thus,

maximizes Vo(t). Let y = a(y). As a result, p* such that pj(f) = 1(¢ > 7) and
pi(0) =1(0 < y) is optimal. m

Claim 3. Suppose A > 2(1 4+ k). There exists a unique optimal distribution of internal
support p*, for which

1 if2(1+ k) < X < X\*(k), where
A" (k) := min {)\Z(Fa), )\Z(n)}
(k) =

21— (1+r)(1—2))(1—2)
then pi(0) =1(0 > x) and pi(0) =0 for all 6;
2. 9f A > XN (k), p5(0) =1(0 >Z) and p;(0) =1(2 < 0 <Z), where z < Z < x.
Moreover, N, (x) < Ng(x) if and only if k > K*.
Proof. We first prove the last statement. Note that A\5(x) — A% (%) has the same sign as

L RO -Rm-a)r20 4R 1) = —

—(1+2(1+kK)x),

1—=x 1—=x

which in turn has the same sign with
1
1 - (1—2) =201+ r)z(l—2) = 2 (5 —(1%)(1-@).
The above expression is positive if and only if z > 1 — ﬁ or, equivalently, kK > xr*.

Because A > 2(1 + k), Va(t) > V,(t) for all t € (HLH,:L’) Note that

Vi(t) = A1 =) f(t) = (A (1= B(t)) = 1) f (B(1)) B'(t)

= f(t) (A(l —1 - (AA=8) =1) 5a775 <11— B(t) — 1)
B Af(t) (1 — f) — 1—5(75)_%
s (200 5l )

12



which has the same sign with

1—B(t) - &

Wi(t) =201+ k)(1 —t) — e

Because

1 _1

Wi(t) = =201+ k) + —2>—20__g/(4) < —2(1+ &) <0,
(1 =80 = 375)

Vs(t) is strictly quasi-concave in ¢, where the second inequality is due to f'(t) > 0 and
A>2(1+ k).

Now consider the first case when 2(1 + k) < A < M*(k). Note that this case necessitates
A (k) > 2(1 4+ k), which according to Lemma 2 requires x < x*. Because 1 < k¥, © <
1 — 57i—. Then, because A < A5(x) and because 3(z) = z,

2(14k)
Wp(z) :2(1+ﬁ)(1—x)—1i;fﬁ
1 ] .
1 1
:ﬁ(x—2<1—<1+f€><1—x>>(1—x>) > 0,

where the last inequality is due to A < Nj(k) = 2(17(1%)(11%))(1%). It follows that Ws(t) > 0,

so that Vj(t) > 0, for all ¢ € (HLH, x) This implies that
F(x) = Vs(x) > Vs(t) = max {Va(t), Va(t)}

for all ¢ € (ﬁ,m) As a result, p* such that p§(6) = 1(0 > z) and pj(f) = 0 for all 0 is
optimal.
At last, consider the second case when A > A (k). If kK > r*, A (k) = N:.(k) and
1

z>1-— S In this case,
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so that there exists a unique z € (1%{, 1-— m) - (lﬁ, ) that satisfies W;3(Z) = 0 and,

thus, maximizes Vy(t). If kK < &%, A*(k) = Mj(k) and o < 1 — . In this case,

(1+

1 1
Wﬂ@zl_x_ﬂﬁg(A—ﬂ1—0+@ﬂ—x»0—@)<0

and similarly with the previous case, Wj (HLH) > (0. Hence, there exists a unique

€ (Hn,x) C (1+n’ 1- m) that satisfies Wg(Z) = 0 and, thus, maximizes Vj(t). Let
:= [(Z). As a result, p* such that p§(f) =1(0 > z) and pj(f) =1(z < 0§ < Z) is optimal.

| INIS IR

Propositions 1 and 5 now follow directly from the three claims:

L. If A < A*(k), then A < A} (k) in the case when A < 2(1 + k) and A < Aj(x) in the case
when A > 2(1 + k). In either case, by part 1 of Claim 2 and by part 1 of Claim 3,
py(0) =1(0 > x) and p;(#) = 0 for all @ is optimal.

2. If M(k) < A < 2(1 + k), then it must be that x > &*, and so N\ (k) = M(k) < A <
2(1 + k). By part 2 of Claim 2, pj§(0) =1(0 > 7) and p1(9) 1(0 <y) is optimal.

3. Suppose A > 2(1 4+ k) and A > A*(k). When x > x*, these two conditions can be
reduced to A > 2(1 + k), because \*(k) = A5 (k) < 2(1 + k). When x < k*, these two
conditions can be reduced to A > \*(x), because \*(k) = Aj(k) > 2(1 + «). In either
case, by part 2 of Claim 3, p§(€) =1(0 > %) and pj(d) =1(z < 0 < %) is optimal.

It only remains to show that Z < 7. As shown in the proof of Claim 2,

g>— 4yl L
(A T 21+ )
As shown in the proof of Claim 3, either
z<1 L <
Z —_— <z
2(1+ k)
in the case when x > k* or
z<xr<l1 1
zZ<T -
- 2(1+ k)
in the case when k < k*. Therefore,
z<1 1 <y
Z - )
21+r) 7
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Proposition 2

It is sufficient to prove that there exists no public information structure that induces a
divisive ruling style. Assume that there exists such a public information structure (M, o).
For each ally ¢ and each action a, let M denote the set of messages m; for which ally 7
would choose action a.

First, assume that b(M]) N MY # &. Consider my € b(M])N M. Suppose ally 1 receives
b=1(my) € M. Receiving b=1(my), ally 1 infers that ally 2 must have received my € MY
and therefore would oppose the ruler. But given that ally 2 would oppose the ruler, ally 1
gets 1 by opposing ruler and 0 < 1 by supporting the ruler, so that he prefers to oppose
the ruler. This contradicts the fact that b='(my) € M]. Therefore, it must be true that
b(M}) N MY = @. Similarly, one can prove that b(M?) N M) = &.

It follows that b(M) = My and b(M?Y) = MY. But given this, either the two allies receive
(my,b(my)) € (M}, MJ) for which they both support the ruler or they receive (my,b(my)) €
(MY, MY) for which they both oppose the ruler. As a result, pi(6) = 0 for all §. This
contradicts the induced ruling style being divisive. Therefore, it must be true that no public
information structure can induce a divisive ruling style.

Proposition 3
First, consider unite-and-lead. Note that given o such that m; = my =1(0 < z),

po(0) =1(6 > z)
pi(#) =0
for all #. Hence, o induces unite-and-lead.

Second, consider divide-and-conquer. Note that given ¢ such that m; = 1(g < 0 < 7)
andmy =1(y <0 <7)+1(0 <79),

po(0) =1(0 > 7)
@) =1(G<0<y+10<9) =1(0<y)

for all #. Hence, o induces divide-and-conquer.
Third, consider divide-and-crumble. Note that given o such that m; = 1(0 < 2) and
me=100<z)+1(2<6<7%),

Po(e)
p1(0)

for all #. Hence, o induces divide-and-crumble.

1(0 > %)
1(z<0<2)+1(2<0<z)=1(2<60<7%)

Proposition 4

First, we prove (a). Because a(t) is strictly decreasing in ¢ and because z < 7,

y=a(y) <a(z),
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so that
F(y) < F(a(z)).

As shown in (8) in the proof of Claim 1, F'(t) — F' (5(t)) > F («(t)) holds for all ¢ € (HLH, x)
As a result,

F(a(z) < F(z) = F(B(z) = F(z) = F(2).

It follows that
F(y) < F(a(z)) < F(z) = F(2).
Hence, (a) holds.
Now we prove (b). As shown in Lemma 3, a(t) < 1% for all t € (Hﬁ,x) Hence,

K
1+k

y=a@) <

< Z.
It follows that
E[1-0lz<0<z <E[l-0]0 <7 <E[1—9]9§g],

so that (b) holds.
At last, we prove (c). Because «(t) is strictly decreasing in ¢ and because Z < 7, y =
a(g) < a(z), so that

a(Zz)

/0 (1= 0)dF(0) < /0 (1— 6)dF(6)

and

/z(1 —0)dF(0) — /gu —0)dF(0) > /

z 0 z

(1 - 0)ir (o) - | "0~ 0)ar)

Due to (7), for all t € (Hiﬁ,x)

[, G-a+ma=o)are = [ (5 -0+ n0-0)aro)

which implies that

/ﬁit)(l —0)dF(0) — /Oa(t)<1 — 0)dF(0) = F(t) — F(B(t)) — F (a(t))

2(1+ k)
holds for all ¢ € (1%« x) As a result,
/ (1= 0)dF(9) / "D oyar) = ;_)(1 — 0)dF(6) — Oa@u — 0)dF(0)
_ _F(z) - F(8(z)) - F (a(2)
2(1+ k)
As shown in the proof of (a), FI(z) — F (5(%Z)) — F' (a(z)) > 0. Hence,
/Z (1— 6)dF(0) — /Ogu _oyar(e) > LB = F;?f?ﬁ; I

This proves (c).
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