
Proposition 1

Proof of Proposition 1. Let U denote the citizen’s expected payo
 in any period the incumbent is the leader with the fixed level of advantage p. Then,

U = p ((1− δ)x+ δU) + (1− p) (γ + (1− γ) max {(1− δ)x+ δU, δw(γ)}) .

Assume (1− δ)x+ δU ≥ δw(γ), then

U = p ((1− δ)x+ δU) + (1− p) (γ + (1− γ)(1− δ)x+ δU) ,

so that

U = U1(p, γ, x) := (1− δ) (1− (1− p)γ)
1− δ (1− (1− p)γ) x+ (1− p)γ

1− δ (1− (1− p)γ)

= (1− δ) (1− (1− p)γ)
1− δ (1− (1− p)γ) x+ 1− (1− δ) (1− (1− p)γ)

1− δ (1− (1− p)γ) .

But

(1− δ)x+ δU1(p, γ, x) = 1− δ
1− δ (1− (1− p)γ)x+ δ(1− p)γ

1− δ (1− (1− p)γ)

= δw(γ) + 1− δ
1− δ (1− (1− p)γ)x+ δ(1− p)γ

1− δ (1− (1− p)γ) − δw(γ)

= δw(γ) + 1− δ
1− δ (1− (1− p)γ) (x− pδw(γ))

≥ δw(γ)

if and only if p ≤ x
δw(γ) . Hence, U = U1(p, γ, x) if and only if p ≤ x

δw(γ) .
Now assume (1− δ)x+ δU(p) < δw(γ), then

U = p ((1− δ)x+ δU) + (1− p)w(γ),

so that

U = U0(p, γ, x) := (1− δ)p
1− δp x+ 1− p

1− δpw(γ)

= (1− δ)p
1− δp x+

(
1− (1− δ)p

1− δp

)
w(γ).
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But

(1− δ)x+ δU0(p, x, γ) = 1− δ
1− δpx+

(
1− (1− δ)p

1− δp

)
δw(γ)

= δw(γ) + 1− δ
1− δp (x− pδw(γ))

< δw(γ)

if and only if p > x
δw(γ) . Hence, U = U0(p, γ, x) if and only if p > x

δw(γ) .

Lemma 1

Proof of Lemma 1. Let β be given and note that Uβ is a fixed point of transformation
Tβ that maps each bounded function φ on [0, π] to another bounded function Tβφ such that
for each p ∈ [0, π],

Tβφ(p) = p ((1− δ) + δEβ(φ|p)) + (1− p) (γ + (1− γ) max {(1− δ) + δEβ(φ|p), δw(γ)}) .

Clearly, Tβ is a contraction mapping, so that Uβ is its unique fixed point and for any sequence
of bounded functions φn on [0, π] such that φn+1 = Tβφ

n, limn→∞ φ
n = Uβ.

Consider any function φ such that U(π, γ, x) ≤ φ(p) ≤ U(p, γ, x) for all p ∈ [0, π]. First,

Tβφ(p) ≥ π ((1− δ) + δEβ(φ|p)) + (1− π) (γ + (1− γ) max {(1− δ) + δEβ(φ|p), δw(γ)})
≥ π

(
(1− δ) + δEβ

(
U(π, γ, x)|p

))
+ (1− π)

(
γ + (1− γ) max

{
(1− δ) + δEβ

(
U(π, γ, x)|p

)
, δw(γ)

})
= π

(
(1− δ) + δU(π, γ, x)

)
+ (1− π)

(
γ + (1− γ) max

{
(1− δ) + δU(π, γ, x), δw(γ)

})
= U(π, γ, x)

holds for all p ∈ [0, π]. Hence, Tβφ ≥ U(π, γ, x). Second, because U(p, γ, x) is strictly
deceasing in p,

Tβφ(p) ≤ p
(
(1− δ) + δEβ

(
U(·, γ, x)|p

))
+ (1− p)

(
γ + (1− γ) max

{
(1− δ) + δEβ

(
U(·, γ, x)|p

)
, δw(γ)

})
≤ p

(
(1− δ) + δEβ

(
U(p, γ, x)|p

))
+ (1− p)

(
γ + (1− γ) max

{
(1− δ) + δEβ

(
U(p, γ, x)|p

)
, δw(γ)

})
= p

(
(1− δ) + δU(p, γ, x)

)
+ (1− p)

(
γ + (1− γ) max

{
(1− δ) + δU(p, γ, x), δw(γ)

})
= U(p, γ, x)

holds for all p ∈ [0, π]. Hence, Tβφ ≤ U(·, γ, x). Define φ1 = U(·, γ, x) and φn+1 = Tβφ
n.
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Because U(π, γ, x) ≤ φ1 ≤ U(·, γ, x) and because U(π, γ, x) ≤ φn ≤ U(·, γ, x) implies that

U(π, γ, x) ≤ Tβφ
n = φn+1 ≤ U(·, γ, x),

it can be proved inductively that U(π, γ, x) ≤ φn ≤ U(·, γ, x) for all n. Therefore,

U(π, γ, x) ≤ lim
n→∞

φn = Uβ ≤ U(·, γ, x).

It follows that

U(π, γ, x) ≤ Uβ(p) ≤ U(p, γ, x)

holds for all p ∈ [0, π].

Proposition 2

Proof of Proposition 2.
Backsliding with support. First, suppose x ≥ πδw(γ), or equivalently, π ≤ x

δw(γ) . Then,
according to Proposition 1, (1− δ)x+ δU(π, γ, x) ≥ δw(γ). In turn, according to Lemma 1,

(1− δ)x+ δEβ(Uβ|p) ≥ (1− δ)x+ δEβ
(
U(π, γ, x)|p

)
= (1− δ)x+ δU(π, γ, x) ≥ δw(γ)

holds for all β and all p ∈ [0, π]. This implies that in any equilibrium the citizen’s strategy
is κ∗ such that κ∗(p) = 1 for all p ∈ [0, π].

Lκ∗ is a fixed point of transformation R that maps each bounded function φ on [0, π] to
another bounded function Rφ such that for each p ∈ [0, π],

Rφ(p) = (1− (1− p)γ)
(

1− δ + δ
∫ π

p
max {φ(q), φ(p)} dFp(q)

)
.

Clearly, R is a contraction mapping, so that Lκ∗ is its unique fixed point and for any sequence
of bounded functions φn on [0, π] such that φn+1 = Rφn, limn→∞ φ

n = Lκ∗ .
Consider any function φ that is increasing on [0, π] and p, p′ such that p < p′. Then,

Rφ(p) = (1− (1− p)γ)
(

1− δ + δ
∫ π

p
max {φ(q), φ(p)} dFp(q)

)
< (1− (1− p′)γ)

(
1− δ + δ

∫ π

p′
max {φ(q), φ(p)} dFp′(q)

)
≤ (1− (1− p′)γ)

(
1− δ + δ

∫ π

p′
max {φ(q), φ(p′)} dFp′(q)

)
= Rφ(p′).

Define φ1(p) = (1−δ)(1−(1−p)γ)
1−δ(1−(1−p)γ) for each p ∈ [0, π], which is strictly increasing in p, and
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φn+1 = Rφn. Because φ1(p) < φ1(p′) and because φn(p) ≤ φn(p′) implies that

φn+1(p) = Rφn(p) < Rφn(p′) = φn+1(p′)

it can be proved inductively that φn(p) < φn(p′) for all n. Hence,

Lκ∗(p) = lim
n→∞

φn(p) ≤ lim
n→∞

φn(p′) = Lκ∗(p′)

and, in turn,

Lκ∗(p) = RLκ∗(p) < RLκ∗(p′) = Lκ∗(p′).

It follows that Lκ∗(p) is strictly increasing in p, so that Lκ∗(q) > Lκ∗(p) for any p and
q > p. This implies that given that the citizen has κ∗, it is optimal for the leader to pursue
a strategy of backsliding at p = 0.

Therefore, when x ≥ πδw(γ), there is a unique equilibrium (β∗, κ∗), in which β∗ is a
strategy of backsliding at p = 0 and κ∗(p) = 1 for all p.

Backsliding against opposition. Now suppose x < πδw(γ), or equivalently, x
δw(γ) < π, and

let (β∗, κ∗) be any equilibrium. Due to Proposition 1, (1 − δ)x + δU
(

x
δw(γ) , γ, x

)
= δw(γ).

In turn, according to Lemma 1, for any p > x
δw(γ)

(1− δ)x+ Eβ∗(Uβ∗ |p) ≤ (1− δ)x+ Eβ∗
(
U(·, γ, x)|p

)
≤ (1− δ)x+ Eβ∗

(
U(p, γ, x)| x

δw(γ)

)
= (1− δ)x+ δU(p, γ, x)

< (1− δ)x+ δU

(
x

δw(γ) , γ, x
)

= δw(γ).

This implies that κ∗(p) = 0 for all p > x
δw(γ) .

Now let p > x
δw(γ) be given. Then, restricting on [p, π], Lκ∗ is a fixed point of

transformation R that maps each bounded function φ on [p, π] to another bounded
function Rφ such that for each p′ ∈ [p, π],

Rφ(p′) = p′
(

1− δ + δ
∫ π

p′
max {φ(q), φ(p′)} dFp′(q)

)
.

R s a contraction mapping, so that the restriction of Lκ∗ on [p, π] is its unique fixed point and
for any sequence of bounded functions φn on [p, π] such that φn+1 = Rφn, limn→∞ φ

n = Lκ∗ .

4



Consider any function φ that is increasing on [p, π] and p′, p′′ such that p′ < p′′. Then,

Rφ(p′) = p′
(

1− δ + δ
∫ π

p′
max {φ(q), φ(p′)} dFp′(q)

)
< p′′

(
1− δ + δ

∫ π

p′′
max {φ(q), φ(p′)} dFp′′(q)

)
≤ p′′

(
1− δ + δ

∫ π

p′′
max {φ(q), φ(p′′)} dFp′′(q)

)
= Rφ(p′′).

Define φ1(p′) = (1−δ)p′
1−δp′ for each p′ ∈ [p, π], which is strictly increasing in p′, and φn+1 = Rφn.

Because φ1(p′) < φ1(p′′) and because φn(p′) ≤ φn(p′′) implies that

φn+1(p′) = Rφn(p′) < Rφn(p′′) = φn+1(p′′)

it can be proved inductively that φn(p′) < φn(p′′) for all n. Hence,

Lκ∗(p′) = lim
n→∞

φn(p′) ≤ lim
n→∞

φn(p′′) = Lκ∗(p′′)

and, in turn,

Lκ∗(p′) = RLκ∗(p′) < RLκ∗(p′′) = Lκ∗(p′′).

It follows that Lκ∗(p′) is strictly increasing in p′ ∈ [p, π], so that Lκ∗(q) > Lκ∗(p′) for any
p′ ≥ p and q > p′. This implies that given that the citizen has κ∗, it is optimal for the leader
to pursue a strategy of backsliding at p.

Therefore, when x < πδw(γ), for any equilibrium (β∗, κ∗) and any p > x
δw(γ) , β

∗ is a
strategy of backsliding at p and κ∗(p) = 0.

Proposition 3

Proof of Proposition 3. Let (β∗, κ∗) be an equilibrium that sustains democracy with
β∗ being a strategy of stopping at a given p∗ < π. Proposition 2 has two implications. First,
it must be true that x < πδw(γ), because otherwise β∗ has to be a strategy of backsliding
at p = 0. Second, it must be true that p∗ ≤ x

δw(γ) , because β∗ is a strategy of backsliding at
any p > x

δw(γ) . This, according to Lemma 1, implies that (1− δ)x+ δU(p∗, γ, x) ≥ δw(γ).
Consider any function φ such that φ(p) ≥ U(p∗, γ, x) for each p ∈ [0, p∗]. Because

β∗(q, p) = 0 for all p ≤ p∗ and q > p∗,

Eβ∗(φ|p) =
∫ p∗

p
((1− β∗(q, p))φ(p) + β∗(q, p)φ(q)) dFp(q) + (1− Fp(p∗))φ(p) ≥ U(p∗, γ, x)
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holds for all p ∈ [0, p∗]. Hence, for all p ∈ [0, p∗],

Tβ∗φ(p) ≥ p∗ ((1− δ)x+ δEβ∗(φ|p)) + (1− p∗) (γ + (1− γ) max {(1− δ)x+ δEβ∗(φ|p), δw(γ)})
≥ p∗

(
(1− δ)x+ δU(p∗, γ, x)

)
+ (1− p∗)

(
γ + (1− γ) max

{
(1− δ)x+ δU(p∗, γ, x), δw(γ)

})
= U(p∗, γ, x).

Define φ1 = U(·, γ, x) and φn+1 = Tβ∗φ
n. Because φ1 ≥ U(p∗, γ, x) and because φn ≥

U(p∗, γ, x) implies that φn+1 = Tβ∗φ
n, it can be proved inductively that φn ≥ U(p∗, γ, x) for

all n. Hence,

Uβ∗ = lim
n→∞

Tβ∗φ
n ≥ U(p∗, γ, x).

Therefore, for all p ≤ p∗,

Eβ∗(Uβ∗ |p) =
∫ p∗

p
((1− β∗(q, p))Uβ∗(p) + β∗(q, p)Uβ∗(q)) dFp(q) + (1− Fp(p∗))Uβ∗(p)

≥ U(p∗, γ, x),

so that

(1− δ)x+ δEβ∗(Uβ∗|p) ≥ (1− δ)x+ δU(p∗, γ, x) ≥ δw(γ),

which in turn implies that κ∗(p) = 1.
Because κ∗(p) = 1 for all p ≤ p∗, the restriction of Lκ∗ on [0, p∗] is the unique fixed

point of R, which is strictly increasing on [0, p∗] (see the proof of Proposition 2). Therefore,
for any p, q such that p < q ≤ p∗, Lκ∗(q) > Lκ∗(p), so that β∗(q, p) = 1.

Lemma 2 and Lemma 3

Proof of Lemma 2 and Lemma 3. First, because L is the unique fixed point of
R, it must be strictly increasing on [0, π] (see the proof of Proposition 2). L∗(·, γ|p∗) is a
fixed point of transformation R̂p∗ that maps each bounded function φ on [0, p∗] to another
bounded function R̂p∗φ such that for each p ∈ [0, p∗],

R̂p∗φ(p) = (1− (1− p)γ)
(

1− δ + δ

(∫ p∗

p
φ(q)dFp(q) + (1− Fp(p∗))φ(p)

))

= (1− (1− p)γ)
(

1− δ + δ

(
φ(p) +

∫ p∗

p
(φ(q)− φ(p)) dFp(q)

))

Note that R̂p∗ is a contraction mapping, so that L∗(·, γ|p∗) is its unique fixed point and for any
sequence of bounded functions φn on [0, p∗] such that φn+1 = R̂p∗φ

n, limn→∞ φ
n = L∗(·, γ|p∗).
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Consider any function φ that is increasing on [0, p∗] and p, p′ ≤ p∗ such that p < p′. Then,

φ(p′) +
∫ p∗

p′
(φ(q)− φ(p′)) dFp′(q)−

(
φ(p′) +

∫ p∗

p′
(φ(q)− φ(p′)) dFp(q)

)

=
∫ p∗

p′
(φ(q)− φ(p′)) dFp′(q)−

∫ p∗

p′
(φ(q)− φ(p′)) dFp(q)

= (φ(q)− φ(p′))Fp′(q)|p
∗

p′ −
∫ p∗

p′
Fp′(q)dφ(q)−

(
(φ(q)− φ(p′))Fp(q)|p

∗

p′ −
∫ p∗

p′
Fp(q)dφ(q)

)

= (φ(p∗)− φ(p′))Fp′(p∗)−
∫ p∗

p′
Fp′(q)dφ(q)−

(
(φ(p∗)− φ(p′))Fp(p∗)−

∫ p∗

p′
Fp(q)dφ(q)

)

=
∫ p∗

p′
(Fp′(p∗)− Fp′(q)) dφ(q)−

∫ p∗

p′
(Fp(p∗)− Fp(q)) dφ(q)

=
∫ p∗

p′

F (p∗)− F (q)
1− F (p′) dφ(q)−

∫ p∗

p′

F (p∗)− F (q)
1− F (p) dφ(q)

> 0

and

φ(p′) +
∫ p∗

p′
(φ(q)− φ(p′)) dFp(q)−

(
φ(p) +

∫ p∗

p
(φ(q)− φ(p)) dFp(q)

)

= (1− Fp(p∗) + Fp(p′))φ(p′)− (1− Fp(p∗))φ(p)−
∫ p′

p
φ(q)dFp(q)

= (1− Fp(p∗)) (φ(p′)− φ(p)) +
∫ p′

p
(φ(p′)− φ(p)) dFp(q)

> 0.

It follows that

R̂p∗φ(p′) = (1− (1− γ)p′)
(

1− δ + δ

(
φ(p′) +

∫ p∗

p′
(φ(q)− φ(p′)) dFp′(q)

))

> (1− (1− γ)p)
(

1− δ + δ

(
φ(p′) +

∫ p∗

p′
(φ(q)− φ(p′)) dFp′(q)

))

> (1− (1− p)γ)
(

1− δ + δ

(
φ(p) +

∫ p∗

p
(φ(q)− φ(p)) dFp(q)

))
= R̂p∗φ(p).

Define φ1(p) = (1−δ)(1−(1−p)γ)
1−δ(1−(1−p)γ) for each p ∈ [0, p∗], which is strictly increasing in p, and

φn+1 = R̂p∗φ
n. Because φ1(p) < φ1(p′) and because φn(p) ≤ φn(p′) implies that

φn+1(p) = R̂p∗φ
n(p) < R̂p∗φ

n(p′) = φn+1(p′)
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it can be proved inductively that φn(p) < φn(p′) for all n. Hence,

L∗(p, γ|p∗) = lim
n→∞

φn(p) ≤ lim
n→∞

φn(p′) = L∗(p′, γ|p∗)

and, in turn,

L∗(p, γ|p∗) = R̂p∗L
∗(p, γ|p∗) < R̂p∗L

∗(p′, γ|p∗) = L∗(p′, γ|p∗).

This implies that L∗(p, γ|p∗) is strictly increasing in p ∈ [0, π].
Second, U(·, γ, x) is a fixed point of transformation T that maps each bounded function

φ on [0, π] to another bounded function Tφ such that for each p ∈ [0, π],

Tφ(p) = p
(

(1− δ)x+ δ
∫ π

p
φ(q)dFp(q)

)
+ (1− p)w(γ).

Let V be a function such that for each p ∈ [0, π],

V (p) = L(p)x+ (1− L(p))w(γ),

so that

TV (p) = p
(

(1− δ)x+ δ
(∫ π

p
L(q)dFp(q)x+

(
1−

∫ π

p
L(q)dFp(q)

)
w(γ)

))
+ (1− p)w(γ)

= p
(

1− δ + δ
∫ π

p
L(q)dFp(q)

)
x+

(
1− p

(
1− δ + δ

∫ π

p
L(q)dFp(q)

))
w(γ)

= L(p)x+ (1− L(p))w(γ)
= V (p).

Hence, V is also a fixed point of T . Because T is a contraction mapping, it has a unique
fixed point, which implies that V = U(·, γ, x).

At last, similarly to the previous arguments, U∗(·, γ, x|p∗) is the unique fixed point of
contraction mapping T̂p∗ that maps each bounded function φ on [0, p∗] to another bounded
function T̂p∗φ such that for each p ∈ [0, p∗],

T̂p∗φ(p) = (1− (1− p)γ)
(

(1− δ)x+ δ

(∫ p∗

p
φ(q)dFp(q) + (1− Fp(p∗))φ(p)

))
+ (1− p)γ.

Let V be a function that for each p ∈ [0, p∗],

V (p) = L∗(p, γ|p∗)x+ 1− L∗(p, γ|p∗)
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and note that ∫ p∗

p
V (q)dFp(q) + (1− Fp(p∗))V (p)

=
(∫ p∗

p
L∗(q, γ|p∗)dFp(q) + (1− Fp(p∗))L∗(p, γ|p∗)

)
x

+ Fp(p∗)−
∫ p∗

p
L∗(q, γ|p∗)dFp(q) + (1− Fp(p∗)) (1− L∗(p, γ|p∗))

=
(∫ p∗

p
L∗(q, γ|p∗)dFp(q) + (1− Fp(p∗))L∗(p, γ|p∗)

)
x

+ 1−
(∫ p∗

p
L∗(q, γ|p∗)dFp(q) + (1− Fp(p∗))L∗(p, γ|p∗)

)
.

Then,

T̂p∗V (p) = (1− (1− p)γ)
(

(1− δ)x+ δ

(∫ p∗

p
V (q)dFp(q) + (1− Fp(p∗))V (p)

))
+ (1− p)γ

= (1− (1− p)γ)
(

1− δ + δ

(∫ p∗

p
L∗(q, γ|p∗)dFp(q) + (1− Fp(p∗))L∗(p, γ|p∗)

))
x

+ (1− (1− p)γ)
(
δ − δ

(∫ p∗

p
L∗(q, γ|p∗)dFp(q) + (1− Fp(p∗))L∗(p, γ|p∗)

))
+ (1− p)γ

= (1− (1− p)γ)
(

1− δ + δ

(∫ p∗

p
L∗(q, γ|p∗)dFp(q) + (1− Fp(p∗))L∗(p, γ|p∗)

))
x

+ 1− (1− (1− p)γ)
(

1− δ + δ

(∫ p∗

p
L∗(q, γ|p∗)dFp(q) + (1− Fp(p∗))L∗(p, γ|p∗)

))
= L∗(p, γ|p∗)x+ 1− L∗(p, γ|p∗)
= V (p)

holds for each p ∈ [0, p∗]. Therefore, the uniqueness of U∗(·, γ, x|p∗) indicates that
V = U∗(·, γ, x|p∗).

Proposition 4

Proof of Proposition 4.
Defining thresholds. Because L∗(p, γ|p∗) is strictly decreasing in p, first

L∗(0, γ|p∗) = (1− γ)
(

1− δ + δ

(∫ p∗

0
L∗(q, γ|p∗)dF (q) + (1− F (p∗))L∗(0, γ|p∗)

))
≥ (1− γ) (1− δ + δL∗(0, γ|p∗))

≥ (1− δ)(1− γ)
1− δ(1− γ) ,
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which implies that

L∗(0, 1− π|p∗) ≥ (1− δ)π
1− δπ ;

second,

L∗(0, γ|p∗) ≤ L∗(p∗, γ|p∗)
= (1− (1− p∗)γ) (1− δ + δL∗(p∗, γ|p∗))

≤ (1− δ) (1− (1− p∗)γ)
1− δ (1− (1− p∗)γ) ,

which implies that

L∗
(

0, 1− π
1− p∗ |p

∗
)
≤ (1− δ)π

1− δπ ,

where the equality holds if and only if p∗ = 0. Hence, because L∗(0, γ|p∗) is strictly decreasing
in γ, there exists a unique g(p∗) ∈

[
1− π, 1−π

1−p∗
]

such that

L∗ (0, g(p∗)|p∗) = (1− δ)π
1− δπ

and L∗(0, γ|p∗) ≥ (1−δ)π
1−δπ if and only if γ ≤ g(p∗). By definition, g(0) = 1 − π, and for any

p∗ > 0, because L∗
(
0, 1−π

1−p∗ |p
∗
)
< (1−δ)π

1−δπ , g(p∗) < 1−π
1−p∗ . Moreover, because L∗(0, γ|p∗) is

strictly increasing in p∗, it must be true that g(p∗) is strictly increasing in p∗.
Clearly from the text, (1− δ)x+

∫ π
p∗ U(q, γ, x)dFp(q) ≤ δw(γ) if and only if(

1−
(

1−
∫ π

p∗
L(q)dFp∗(q)

)
δ
)
x+

(
1−

∫ π

p∗
L(q)dFp∗(q)

)
δw(γ) ≤ δw(γ),

which is equivalent to

x ≤ h(p∗)δw(γ),

where

h(p∗) :=
∫ π
p∗ L(q)dFp∗(q)

1− δ
(
1−

∫ π
p∗ L(q)dFp∗(q)

) .
Because L(p) is strictly increasing in p, so is

∫ π
p∗ L(q)dFp∗(q), which implies that h(p∗) is

strictly increasing in p∗ and is bounded below

h(π) =
(1−δ)π
1−δπ

1− δ
(
1− (1−δ)π

1−δπ

) = π.
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At last, because L(p) is strictly increasing in p,

L(p) = p
(

1− δ + δ
∫ π

p
L(q)dFp(q)

)
> p (1− δ + δL(p))

>
(1− δ)p
1− δp

holds for all p < π∗, which in turn implies that

h(p∗) >
(1−δ)p∗
1−δp∗

1− δ
(
1− (1−δ)p∗

1−δp∗
) = p∗

Sufficiency. Let p∗ < π be given and suppose γ ≤ g(p∗) and p∗δw(γ) ≤ x ≤ h(p∗)δw(γ).
It has been established in the text that (β∗, κ∗) defined as below constitutes an equilibrium:

1. for all p ≤ p∗, κ∗(p) = 1 and β∗(q, p) = 1 for q ≤ p∗ and β∗(q, p) = 0 for q > p∗;

2. for all p > p∗, κ∗(p) = 0 and β∗(q, p) = 1 for all q > p.

In this equilibrium, β∗ is a strategy of stopping at p∗.
Necessity. Let (β∗, κ∗) be an equilibrium in which β∗ is a strategy of stopping at p∗.

According to Proposition 3, β∗(q, p) = 1 for all p < q ≤ p∗ and κ∗(p) = 1 for all p ≤ p∗.
First, according to Proposition 2, β∗(q, p) = 1 for all p, q if x ≥ πδw(γ), so that β∗ being

a stopping strategy necessitates x < πδw(γ). Moreover, because κ∗(p) = 0 for all p > x
δw(γ) ,

κ∗(p∗) = 1 necessitates that p∗ ≤ x
δw(γ) , or equivalently, x ≥ p∗δw(γ).

Second, for each p ≤ p∗,

Lκ∗(p) = (1− (1− p)γ)
(

1− δ + δ

( ∫ p∗
p Lκ∗(q)dFp(q)

+
∫ π
p∗ max {Lκ∗(q), Lκ∗(p)} dFp(q)

))
.

Because β∗ is a strategy of stopping at p∗, it must be true that Lκ∗(p) ≥ Lκ∗(q) for all p, q
such that p ≤ p∗ and q > p∗. This implies that

Lκ∗(p) = (1− (1− p)γ)
(

1− δ + δ

(∫ p∗

p
Lκ∗(q)dFp(q) + (1− Fp(p∗))Lκ∗(p)

))
= R̂p∗Lκ∗(p)

for all p ∈ [0, p∗]. Due to the uniqueness of the fixed point of R̂p∗ , Lκ∗ = L∗(·, γ|p∗). Note
that because π > x

δw(γ) , κ
∗(π) = 0, so that Lκ∗(π) = π (1− δ + δLκ∗(π)) = (1−δ)π

1−δπ . Therefore,
because Lκ∗(0) ≥ Lκ∗(π),

L∗(0, γ|p∗) = Lκ∗(0) ≥ Lκ∗(π) = (1− δ)π
1− δπ ,

which in turn implies that γ ≤ g(p∗).
Third, assume x > h(p∗)δw(γ), so that (1−δ)x+δ

∫ π
p∗ U(q, γ, x)dFp∗(q) > δw(γ). Consider

any p′ > p∗. Restricting on [p′, π], Uβ∗ is the unique fixed point of Tβ∗ . Because U(p, γ, x) is

11



strictly decreasing in p,

Eβ∗ (U(·, γ, x)|p) =
∫ π

p
((1− β(q, p))U(p, γ, x) + β(q, p)U(q, γ, x)) dFp(q)

≥
∫ π

p
U(q, γ, x)dFp(q),

so that

Tβ∗U(p, γ, x) ≥ p
(

(1− δ)x+ δ
∫ π

p
U(q, γ, x)dFp(q)

)
+ (1− p)

(
γ + (1− γ) max

{
(1− δ)x+ δ

∫ π

p
U(q, γ, x)dFp(q), δw(γ)

})
≥ p

(
(1− δ)x+ δ

∫ π

p
U(q, γ, x)dFp(q)

)
+ (1− p)w(γ)

= U(p, γ, x)

holds for all p ∈ [p′, π]. Letting φ1 = U(·, γ, x) and φn+1 = Tβ∗φ
n, this inductively implies

that φn ≥ U(·, γ, x) for all n, so that

Uβ∗(p) = lim
n→∞

φn(p) ≥ U(p, γ, x)

for all p ∈ [p′, π]. It follows that

(1− δ)x+ δEβ∗ (Uβ∗|p′) ≥ (1− δ)x+ δEβ∗ (U(·, γ, x)|p′) ≥ (1− δ)x+ δ
∫ π

p′
U(q, γ, x)dFp′(q).

Because (1− δ)x+ δ
∫ π
p∗ U(q, γ, x)dFp∗(q) > δw(γ), there exists a p† > p∗ sufficiently close to

p∗, so that

(1− δ)x+ δ
∫ π

p
U(q, γ, x)dFp(q) > δw(γ)

for all p ∈ (p∗, p†]. Hence, for all p ∈ (p∗, p†]

(1− δ)x+ δEβ∗ (Uβ∗|p) ≥ (1− δ)x+ δ
∫ π

p
U(q, γ, x)dFp(q) > δw(γ),

which in turn implies that κ∗(p) = 1. As a result, κ∗(p) = 1 for all p ≤ p†. As shown in the
proof of Proposition 3, this implies that β∗(q, p) = 1 for all p < q ≤ p†. Because p† > p∗,
this contradicts the fact that β∗ is a strategy of stopping at p∗. Therefore, it must be true
that x ≤ h(p∗)δw(γ).

General conditions for sustainability. Democracy is sustainable if and only if there exists
a p∗ < π such that

γ ≤ g(p∗)
p∗δw(γ) ≤ x ≤ h(p∗)δw(γ)

12



Note that this condition is equivalent to

x < πδw(γ)

γ ≤ g

(
x

δw(γ)

)
.

To establish necessity, first suppose x ≥ πδw(γ), then because h(p∗) < π for all p∗ < π,
x > h(p∗)δw(γ) for all p∗ < π. Second, suppose γ > g

(
x

δw(γ)

)
, then for all p∗ ≤ x

δw(γ) ,
γ > g

(
x

δw(γ)

)
≥ g(p∗). This implies that for any p∗, either p∗ > x

δw(γ) , so that x < p∗δw(γ),
or γ > g(p∗), or both. In any case, the condition for sustainable democracy fails.

To establish sufficiency, let p∗ = x
δw(γ) and note that p∗ < π because x < πδw(γ). First,

g(p∗) = g

(
x

δw(γ)

)
≥ γ.

Second,

h(p∗)δw(γ) > p∗δw(γ) = x.

Therefore, democracy is sustained in an equilibrium in which the leader has a strategy of
stopping at p∗ = x

δw(γ) .
At last, because g is strictly increasing, γ ≤ g

(
x

δw(γ)

)
is equivalent to x ≥ g−1(γ)δw(γ),

so that the condition for sustainable democracy can be rewritten as

g−1(γ)δw(γ) ≤ x < πδw(γ).

The range for x is non-empty if and only if g−1(γ) < π, or equivalently, γ < g(π).

Proposition 5

Proved in the text.
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