Online Appendix Democracy and its Vulnerabilities: Dynamics of Democratic Backsliding

Formal Proofs

PROPOSITION 1

Proof of Proposition 1. Let U denote the citizen's expected payo in any period the incumbent is the leader with the fixed level of advantage p. Then,

$$U = p\left((1-\delta)x + \delta U\right) + (1-p)\left(\gamma + (1-\gamma)\max\left\{(1-\delta)x + \delta U, \delta w(\gamma)\right\}\right).$$

Assume $(1 - \delta)x + \delta U \ge \delta w(\gamma)$, then

$$U = p((1 - \delta)x + \delta U) + (1 - p)(\gamma + (1 - \gamma)(1 - \delta)x + \delta U),$$

so that

$$\begin{split} U &= \overline{U}_1(p,\gamma,x) := \frac{(1-\delta)\left(1-(1-p)\gamma\right)}{1-\delta\left(1-(1-p)\gamma\right)} x + \frac{(1-p)\gamma}{1-\delta\left(1-(1-p)\gamma\right)} \\ &= \frac{(1-\delta)\left(1-(1-p)\gamma\right)}{1-\delta\left(1-(1-p)\gamma\right)} x + 1 - \frac{(1-\delta)\left(1-(1-p)\gamma\right)}{1-\delta\left(1-(1-p)\gamma\right)}. \end{split}$$

But

$$(1-\delta)x + \delta \overline{U}_1(p,\gamma,x) = \frac{1-\delta}{1-\delta(1-(1-p)\gamma)}x + \frac{\delta(1-p)\gamma}{1-\delta(1-(1-p)\gamma)}$$
$$= \delta w(\gamma) + \frac{1-\delta}{1-\delta(1-(1-p)\gamma)}x + \frac{\delta(1-p)\gamma}{1-\delta(1-(1-p)\gamma)} - \delta w(\gamma)$$
$$= \delta w(\gamma) + \frac{1-\delta}{1-\delta(1-(1-p)\gamma)}(x-p\delta w(\gamma))$$
$$\ge \delta w(\gamma)$$

if and only if $p \leq \frac{x}{\delta w(\gamma)}$. Hence, $U = \overline{U}_1(p, \gamma, x)$ if and only if $p \leq \frac{x}{\delta w(\gamma)}$. Now assume $(1 - \delta)x + \delta U(p) < \delta w(\gamma)$, then

$$U = p\left((1-\delta)x + \delta U\right) + (1-p)w(\gamma),$$

so that

$$\begin{split} U &= \overline{U}_0(p,\gamma,x) := \frac{(1-\delta)p}{1-\delta p}x + \frac{1-p}{1-\delta p}w(\gamma) \\ &= \frac{(1-\delta)p}{1-\delta p}x + \left(1 - \frac{(1-\delta)p}{1-\delta p}\right)w(\gamma) \end{split}$$

But

$$\begin{split} (1-\delta)x + \delta \overline{U}_0(p,x,\gamma) &= \frac{1-\delta}{1-\delta p} x + \left(1 - \frac{(1-\delta)p}{1-\delta p}\right) \delta w(\gamma) \\ &= \delta w(\gamma) + \frac{1-\delta}{1-\delta p} \left(x - p \delta w(\gamma)\right) \\ &< \delta w(\gamma) \end{split}$$

if and only if $p > \frac{x}{\delta w(\gamma)}$. Hence, $U = \overline{U}_0(p, \gamma, x)$ if and only if $p > \frac{x}{\delta w(\gamma)}$.

LEMMA 1

Proof of Lemma 1. Let β be given and note that U_{β} is a fixed point of transformation T_{β} that maps each bounded function ϕ on $[0, \pi]$ to another bounded function $T_{\beta}\phi$ such that for each $p \in [0, \pi]$,

$$T_{\beta}\phi(p) = p\left((1-\delta) + \delta E_{\beta}(\phi|p)\right) + (1-p)\left(\gamma + (1-\gamma)\max\left\{(1-\delta) + \delta E_{\beta}(\phi|p), \delta w(\gamma)\right\}\right)$$

Clearly, T_{β} is a contraction mapping, so that U_{β} is its unique fixed point and for any sequence of bounded functions ϕ^n on $[0, \pi]$ such that $\phi^{n+1} = T_{\beta}\phi^n$, $\lim_{n\to\infty} \phi^n = U_{\beta}$.

Consider any function ϕ such that $\overline{U}(\pi, \gamma, x) \leq \phi(p) \leq \overline{U}(p, \gamma, x)$ for all $p \in [0, \pi]$. First,

$$T_{\beta}\phi(p) \geq \pi \left((1-\delta) + \delta E_{\beta}(\phi|p) \right) + (1-\pi) \left(\gamma + (1-\gamma) \max\left\{ (1-\delta) + \delta E_{\beta}(\phi|p), \delta w(\gamma) \right\} \right)$$

$$\geq \pi \left((1-\delta) + \delta E_{\beta} \left(\overline{U}(\pi, \gamma, x) | p \right) \right)$$

$$+ (1-\pi) \left(\gamma + (1-\gamma) \max\left\{ (1-\delta) + \delta E_{\beta} \left(\overline{U}(\pi, \gamma, x) | p \right), \delta w(\gamma) \right\} \right)$$

$$= \pi \left((1-\delta) + \delta \overline{U}(\pi, \gamma, x) \right) + (1-\pi) \left(\gamma + (1-\gamma) \max\left\{ (1-\delta) + \delta \overline{U}(\pi, \gamma, x), \delta w(\gamma) \right\} \right)$$

$$= \overline{U}(\pi, \gamma, x)$$

holds for all $p \in [0, \pi]$. Hence, $T_{\beta}\phi \geq \overline{U}(\pi, \gamma, x)$. Second, because $\overline{U}(p, \gamma, x)$ is strictly deceasing in p,

$$\begin{aligned} T_{\beta}\phi(p) &\leq p\left((1-\delta) + \delta E_{\beta}\left(\overline{U}(\cdot,\gamma,x)|p\right)\right) \\ &+ (1-p)\left(\gamma + (1-\gamma)\max\left\{(1-\delta) + \delta E_{\beta}\left(\overline{U}(\cdot,\gamma,x)|p\right), \delta w(\gamma)\right\}\right) \\ &\leq p\left((1-\delta) + \delta E_{\beta}\left(\overline{U}(p,\gamma,x)|p\right)\right) \\ &+ (1-p)\left(\gamma + (1-\gamma)\max\left\{(1-\delta) + \delta E_{\beta}\left(\overline{U}(p,\gamma,x)|p\right), \delta w(\gamma)\right\}\right) \\ &= p\left((1-\delta) + \delta \overline{U}(p,\gamma,x)\right) + (1-p)\left(\gamma + (1-\gamma)\max\left\{(1-\delta) + \delta \overline{U}(p,\gamma,x), \delta w(\gamma)\right\}\right) \\ &= \overline{U}(p,\gamma,x) \end{aligned}$$

holds for all $p \in [0,\pi]$. Hence, $T_{\beta}\phi \leq \overline{U}(\cdot,\gamma,x)$. Define $\phi^1 = \overline{U}(\cdot,\gamma,x)$ and $\phi^{n+1} = T_{\beta}\phi^n$.

Because $\overline{U}(\pi, \gamma, x) \leq \phi^1 \leq \overline{U}(\cdot, \gamma, x)$ and because $\overline{U}(\pi, \gamma, x) \leq \phi^n \leq \overline{U}(\cdot, \gamma, x)$ implies that

$$\overline{U}(\pi,\gamma,x) \le T_{\beta}\phi^n = \phi^{n+1} \le \overline{U}(\cdot,\gamma,x),$$

it can be proved inductively that $\overline{U}(\pi, \gamma, x) \leq \phi^n \leq \overline{U}(\cdot, \gamma, x)$ for all n. Therefore,

$$\overline{U}(\pi,\gamma,x) \le \lim_{n \to \infty} \phi^n = U_\beta \le \overline{U}(\cdot,\gamma,x).$$

It follows that

$$\overline{U}(\pi,\gamma,x) \le U_{\beta}(p) \le \overline{U}(p,\gamma,x)$$

holds for all $p \in [0, \pi]$.

PROPOSITION 2

Proof of Proposition 2.

Backsliding with support. First, suppose $x \ge \pi \delta w(\gamma)$, or equivalently, $\pi \le \frac{x}{\delta w(\gamma)}$. Then, according to Proposition 1, $(1 - \delta)x + \delta \overline{U}(\pi, \gamma, x) \ge \delta w(\gamma)$. In turn, according to Lemma 1,

$$(1-\delta)x + \delta E_{\beta}(U_{\beta}|p) \ge (1-\delta)x + \delta E_{\beta}\left(\overline{U}(\pi,\gamma,x)|p\right) = (1-\delta)x + \delta\overline{U}(\pi,\gamma,x) \ge \delta w(\gamma)$$

holds for all β and all $p \in [0, \pi]$. This implies that in any equilibrium the citizen's strategy is κ^* such that $\kappa^*(p) = 1$ for all $p \in [0, \pi]$.

 L_{κ^*} is a fixed point of transformation \overline{R} that maps each bounded function ϕ on $[0, \pi]$ to another bounded function $\overline{R}\phi$ such that for each $p \in [0, \pi]$,

$$\overline{R}\phi(p) = (1 - (1 - p)\gamma) \left(1 - \delta + \delta \int_p^{\pi} \max\left\{\phi(q), \phi(p)\right\} dF_p(q)\right).$$

Clearly, \overline{R} is a contraction mapping, so that L_{κ^*} is its unique fixed point and for any sequence of bounded functions ϕ^n on $[0, \pi]$ such that $\phi^{n+1} = \overline{R}\phi^n$, $\lim_{n\to\infty} \phi^n = L_{\kappa^*}$.

Consider any function ϕ that is increasing on $[0, \pi]$ and p, p' such that p < p'. Then,

$$\overline{R}\phi(p) = (1 - (1 - p)\gamma) \left(1 - \delta + \delta \int_{p}^{\pi} \max\left\{\phi(q), \phi(p)\right\} dF_{p}(q)\right)$$

$$< (1 - (1 - p')\gamma) \left(1 - \delta + \delta \int_{p'}^{\pi} \max\left\{\phi(q), \phi(p)\right\} dF_{p'}(q)\right)$$

$$\leq (1 - (1 - p')\gamma) \left(1 - \delta + \delta \int_{p'}^{\pi} \max\left\{\phi(q), \phi(p')\right\} dF_{p'}(q)\right)$$

$$= \overline{R}\phi(p').$$

Define $\phi^1(p) = \frac{(1-\delta)(1-(1-p)\gamma)}{1-\delta(1-(1-p)\gamma)}$ for each $p \in [0,\pi]$, which is strictly increasing in p, and

 $\phi^{n+1} = \overline{R}\phi^n$. Because $\phi^1(p) < \phi^1(p')$ and because $\phi^n(p) \le \phi^n(p')$ implies that

$$\phi^{n+1}(p) = \overline{R}\phi^n(p) < \overline{R}\phi^n(p') = \phi^{n+1}(p')$$

it can be proved inductively that $\phi^n(p) < \phi^n(p')$ for all n. Hence,

$$L_{\kappa^*}(p) = \lim_{n \to \infty} \phi^n(p) \le \lim_{n \to \infty} \phi^n(p') = L_{\kappa^*}(p')$$

and, in turn,

$$L_{\kappa^*}(p) = \overline{R}L_{\kappa^*}(p) < \overline{R}L_{\kappa^*}(p') = L_{\kappa^*}(p').$$

It follows that $L_{\kappa^*}(p)$ is strictly increasing in p, so that $L_{\kappa^*}(q) > L_{\kappa^*}(p)$ for any p and q > p. This implies that given that the citizen has κ^* , it is optimal for the leader to pursue a strategy of backsliding at p = 0.

Therefore, when $x \ge \pi \delta w(\gamma)$, there is a unique equilibrium (β^*, κ^*) , in which β^* is a strategy of backsliding at p = 0 and $\kappa^*(p) = 1$ for all p.

Backsliding against opposition. Now suppose $x < \pi \delta w(\gamma)$, or equivalently, $\frac{x}{\delta w(\gamma)} < \pi$, and let (β^*, κ^*) be any equilibrium. Due to Proposition 1, $(1 - \delta)x + \delta \overline{U}\left(\frac{x}{\delta w(\gamma)}, \gamma, x\right) = \delta w(\gamma)$. In turn, according to Lemma 1, for any $p > \frac{x}{\delta w(\gamma)}$

$$(1-\delta)x + E_{\beta^*}(U_{\beta^*}|p) \leq (1-\delta)x + E_{\beta^*}\left(\overline{U}(\cdot,\gamma,x)|p\right)$$
$$\leq (1-\delta)x + E_{\beta^*}\left(\overline{U}(p,\gamma,x)|\frac{x}{\delta w(\gamma)}\right)$$
$$= (1-\delta)x + \delta\overline{U}(p,\gamma,x)$$
$$< (1-\delta)x + \delta\overline{U}\left(\frac{x}{\delta w(\gamma)},\gamma,x\right)$$
$$= \delta w(\gamma).$$

This implies that $\kappa^*(p) = 0$ for all $p > \frac{x}{\delta w(\gamma)}$.

Now let $p > \frac{x}{\delta w(\gamma)}$ be given. Then, restricting on $[p, \pi]$, L_{κ^*} is a fixed point of transformation <u>R</u> that maps each bounded function ϕ on $[p, \pi]$ to another bounded function <u>R</u> ϕ such that for each $p' \in [p, \pi]$,

$$\underline{R}\phi(p') = p'\left(1 - \delta + \delta \int_{p'}^{\pi} \max\left\{\phi(q), \phi(p')\right\} dF_{p'}(q)\right).$$

<u>R</u> s a contraction mapping, so that the restriction of L_{κ^*} on $[p, \pi]$ is its unique fixed point and for any sequence of bounded functions ϕ^n on $[p, \pi]$ such that $\phi^{n+1} = \underline{R}\phi^n$, $\lim_{n\to\infty} \phi^n = L_{\kappa^*}$. Consider any function ϕ that is increasing on $[p, \pi]$ and p', p'' such that p' < p''. Then,

$$\underline{R}\phi(p') = p'\left(1 - \delta + \delta \int_{p'}^{\pi} \max\left\{\phi(q), \phi(p')\right\} dF_{p'}(q)\right)$$
$$< p''\left(1 - \delta + \delta \int_{p''}^{\pi} \max\left\{\phi(q), \phi(p')\right\} dF_{p''}(q)\right)$$
$$\leq p''\left(1 - \delta + \delta \int_{p''}^{\pi} \max\left\{\phi(q), \phi(p'')\right\} dF_{p''}(q)\right)$$
$$= \underline{R}\phi(p'').$$

Define $\phi^1(p') = \frac{(1-\delta)p'}{1-\delta p'}$ for each $p' \in [p, \pi]$, which is strictly increasing in p', and $\phi^{n+1} = \underline{R}\phi^n$. Because $\phi^1(p') < \phi^1(p'')$ and because $\phi^n(p') \le \phi^n(p'')$ implies that

$$\phi^{n+1}(p') = \underline{R}\phi^n(p') < \underline{R}\phi^n(p'') = \phi^{n+1}(p'')$$

it can be proved inductively that $\phi^n(p') < \phi^n(p'')$ for all n. Hence,

$$L_{\kappa^*}(p') = \lim_{n \to \infty} \phi^n(p') \le \lim_{n \to \infty} \phi^n(p'') = L_{\kappa^*}(p'')$$

and, in turn,

$$L_{\kappa^*}(p') = \underline{R}L_{\kappa^*}(p') < \underline{R}L_{\kappa^*}(p'') = L_{\kappa^*}(p'').$$

It follows that $L_{\kappa^*}(p')$ is strictly increasing in $p' \in [p, \pi]$, so that $L_{\kappa^*}(q) > L_{\kappa^*}(p')$ for any $p' \ge p$ and q > p'. This implies that given that the citizen has κ^* , it is optimal for the leader to pursue a strategy of backsliding at p.

Therefore, when $x < \pi \delta w(\gamma)$, for any equilibrium (β^*, κ^*) and any $p > \frac{x}{\delta w(\gamma)}$, β^* is a strategy of backsliding at p and $\kappa^*(p) = 0$.

PROPOSITION 3

Proof of Proposition 3. Let (β^*, κ^*) be an equilibrium that sustains democracy with β^* being a strategy of stopping at a given $p^* < \pi$. Proposition 2 has two implications. First, it must be true that $x < \pi \delta w(\gamma)$, because otherwise β^* has to be a strategy of backsliding at p = 0. Second, it must be true that $p^* \leq \frac{x}{\delta w(\gamma)}$, because β^* is a strategy of backsliding at any $p > \frac{x}{\delta w(\gamma)}$. This, according to Lemma 1, implies that $(1 - \delta)x + \delta \overline{U}(p^*, \gamma, x) \geq \delta w(\gamma)$.

Consider any function ϕ such that $\phi(p) \geq \overline{U}(p^*, \gamma, x)$ for each $p \in [0, p^*]$. Because $\beta^*(q, p) = 0$ for all $p \leq p^*$ and $q > p^*$,

$$E_{\beta^*}(\phi|p) = \int_p^{p^*} \left((1 - \beta^*(q, p)) \,\phi(p) + \beta^*(q, p)\phi(q) \right) dF_p(q) + (1 - F_p(p^*)) \,\phi(p) \ge \overline{U}(p^*, \gamma, x)$$

holds for all $p \in [0, p^*]$. Hence, for all $p \in [0, p^*]$,

$$T_{\beta^*}\phi(p) \ge p^* \left((1-\delta)x + \delta E_{\beta^*}(\phi|p) \right) + (1-p^*) \left(\gamma + (1-\gamma) \max\left\{ (1-\delta)x + \delta E_{\beta^*}(\phi|p), \delta w(\gamma) \right\} \right)$$

$$\ge p^* \left((1-\delta)x + \delta \overline{U}(p^*, \gamma, x) \right)$$

$$+ (1-p^*) \left(\gamma + (1-\gamma) \max\left\{ (1-\delta)x + \delta \overline{U}(p^*, \gamma, x), \delta w(\gamma) \right\} \right)$$

$$= \overline{U}(p^*, \gamma, x).$$

Define $\phi^1 = \overline{U}(\cdot, \gamma, x)$ and $\phi^{n+1} = T_{\beta^*} \phi^n$. Because $\phi^1 \geq \overline{U}(p^*, \gamma, x)$ and because $\phi^n \geq \overline{U}(p^*, \gamma, x)$ implies that $\phi^{n+1} = T_{\beta^*} \phi^n$, it can be proved inductively that $\phi^n \geq \overline{U}(p^*, \gamma, x)$ for all n. Hence,

$$U_{\beta^*} = \lim_{n \to \infty} T_{\beta^*} \phi^n \ge \overline{U}(p^*, \gamma, x).$$

Therefore, for all $p \leq p^*$,

$$E_{\beta^*}(U_{\beta^*}|p) = \int_p^{p^*} \left((1 - \beta^*(q, p)) U_{\beta^*}(p) + \beta^*(q, p) U_{\beta^*}(q) \right) dF_p(q) + (1 - F_p(p^*)) U_{\beta^*}(p)$$

$$\geq \overline{U}(p^*, \gamma, x),$$

so that

$$(1-\delta)x + \delta E_{\beta^*}(U_{\beta^*}|p) \ge (1-\delta)x + \delta \overline{U}(p^*,\gamma,x) \ge \delta w(\gamma),$$

which in turn implies that $\kappa^*(p) = 1$.

Because $\kappa^*(p) = 1$ for all $p \leq p^*$, the restriction of L_{κ^*} on $[0, p^*]$ is the unique fixed point of \overline{R} , which is strictly increasing on $[0, p^*]$ (see the proof of Proposition 2). Therefore, for any p, q such that $p < q \leq p^*$, $L_{\kappa^*}(q) > L_{\kappa^*}(p)$, so that $\beta^*(q, p) = 1$.

LEMMA 2 AND LEMMA 3

Proof of Lemma 2 and Lemma 3. First, because \underline{L} is the unique fixed point of \underline{R} , it must be strictly increasing on $[0, \pi]$ (see the proof of Proposition 2). $L^*(\cdot, \gamma | p^*)$ is a fixed point of transformation \widehat{R}_{p^*} that maps each bounded function ϕ on $[0, p^*]$ to another bounded function $\widehat{R}_{p^*}\phi$ such that for each $p \in [0, p^*]$,

$$\hat{R}_{p^*}\phi(p) = (1 - (1 - p)\gamma) \left(1 - \delta + \delta \left(\int_p^{p^*} \phi(q) dF_p(q) + (1 - F_p(p^*)) \phi(p) \right) \right)$$
$$= (1 - (1 - p)\gamma) \left(1 - \delta + \delta \left(\phi(p) + \int_p^{p^*} (\phi(q) - \phi(p)) dF_p(q) \right) \right)$$

Note that \widehat{R}_{p^*} is a contraction mapping, so that $L^*(\cdot, \gamma | p^*)$ is its unique fixed point and for any sequence of bounded functions ϕ^n on $[0, p^*]$ such that $\phi^{n+1} = \widehat{R}_{p^*}\phi^n$, $\lim_{n\to\infty} \phi^n = L^*(\cdot, \gamma | p^*)$.

Consider any function ϕ that is increasing on $[0, p^*]$ and $p, p' \leq p^*$ such that p < p'. Then,

$$\begin{split} \phi(p') &+ \int_{p'}^{p^*} \left(\phi(q) - \phi(p')\right) dF_{p'}(q) - \left(\phi(p') + \int_{p'}^{p^*} \left(\phi(q) - \phi(p')\right) dF_p(q)\right) \\ &= \int_{p'}^{p^*} \left(\phi(q) - \phi(p')\right) dF_{p'}(q) - \int_{p'}^{p^*} \left(\phi(q) - \phi(p')\right) dF_p(q) \\ &= \left(\phi(q) - \phi(p')\right) F_{p'}(q)|_{p'}^{p^*} - \int_{p'}^{p^*} F_{p'}(q) d\phi(q) - \left(\left(\phi(q) - \phi(p')\right) F_p(q)|_{p'}^{p^*} - \int_{p'}^{p^*} F_p(q) d\phi(q)\right) \\ &= \left(\phi(p^*) - \phi(p')\right) F_{p'}(p^*) - \int_{p'}^{p^*} F_{p'}(q) d\phi(q) - \left(\left(\phi(p^*) - \phi(p')\right) F_p(p^*) - \int_{p'}^{p^*} F_p(q) d\phi(q)\right) \\ &= \int_{p'}^{p^*} \left(F_{p'}(p^*) - F_{p'}(q)\right) d\phi(q) - \int_{p'}^{p^*} \frac{F(p^*) - F(q)}{1 - F(p)} d\phi(q) \\ &= \int_{p'}^{p^*} \frac{F(p^*) - F(q)}{1 - F(p')} d\phi(q) - \int_{p'}^{p^*} \frac{F(p^*) - F(q)}{1 - F(p)} d\phi(q) \\ &> 0 \end{split}$$

and

$$\begin{split} \phi(p') &+ \int_{p'}^{p^*} \left(\phi(q) - \phi(p') \right) dF_p(q) - \left(\phi(p) + \int_p^{p^*} \left(\phi(q) - \phi(p) \right) dF_p(q) \right) \\ &= \left(1 - F_p(p^*) + F_p(p') \right) \phi(p') - \left(1 - F_p(p^*) \right) \phi(p) - \int_p^{p'} \phi(q) dF_p(q) \\ &= \left(1 - F_p(p^*) \right) \left(\phi(p') - \phi(p) \right) + \int_p^{p'} \left(\phi(p') - \phi(p) \right) dF_p(q) \\ &> 0. \end{split}$$

It follows that

$$\begin{aligned} \widehat{R}_{p^*}\phi(p') &= (1 - (1 - \gamma)p') \left(1 - \delta + \delta \left(\phi(p') + \int_{p'}^{p^*} (\phi(q) - \phi(p')) \, dF_{p'}(q) \right) \right) \\ &> (1 - (1 - \gamma)p) \left(1 - \delta + \delta \left(\phi(p') + \int_{p'}^{p^*} (\phi(q) - \phi(p')) \, dF_{p'}(q) \right) \right) \\ &> (1 - (1 - p)\gamma) \left(1 - \delta + \delta \left(\phi(p) + \int_{p}^{p^*} (\phi(q) - \phi(p)) \, dF_{p}(q) \right) \right) \\ &= \widehat{R}_{p^*}\phi(p). \end{aligned}$$

Define $\phi^1(p) = \frac{(1-\delta)(1-(1-p)\gamma)}{1-\delta(1-(1-p)\gamma)}$ for each $p \in [0, p^*]$, which is strictly increasing in p, and $\phi^{n+1} = \widehat{R}_{p^*}\phi^n$. Because $\phi^1(p) < \phi^1(p')$ and because $\phi^n(p) \le \phi^n(p')$ implies that

$$\phi^{n+1}(p) = \hat{R}_{p^*}\phi^n(p) < \hat{R}_{p^*}\phi^n(p') = \phi^{n+1}(p')$$

it can be proved inductively that $\phi^n(p) < \phi^n(p')$ for all n. Hence,

$$L^*(p,\gamma|p^*) = \lim_{n \to \infty} \phi^n(p) \le \lim_{n \to \infty} \phi^n(p') = L^*(p',\gamma|p^*)$$

and, in turn,

$$L^{*}(p,\gamma|p^{*}) = \widehat{R}_{p^{*}}L^{*}(p,\gamma|p^{*}) < \widehat{R}_{p^{*}}L^{*}(p',\gamma|p^{*}) = L^{*}(p',\gamma|p^{*}).$$

This implies that $L^*(p, \gamma | p^*)$ is strictly increasing in $p \in [0, \pi]$.

Second, $\underline{U}(\cdot, \gamma, x)$ is a fixed point of transformation \underline{T} that maps each bounded function ϕ on $[0, \pi]$ to another bounded function $\underline{T}\phi$ such that for each $p \in [0, \pi]$,

$$\underline{T}\phi(p) = p\left((1-\delta)x + \delta \int_p^{\pi} \phi(q)dF_p(q)\right) + (1-p)w(\gamma).$$

Let V be a function such that for each $p \in [0, \pi]$,

$$V(p) = \underline{L}(p)x + (1 - \underline{L}(p))w(\gamma)$$

so that

$$\underline{T}V(p) = p\left((1-\delta)x + \delta\left(\int_{p}^{\pi} \underline{L}(q)dF_{p}(q)x + \left(1-\int_{p}^{\pi} \underline{L}(q)dF_{p}(q)\right)w(\gamma)\right)\right) + (1-p)w(\gamma)$$

$$= p\left(1-\delta + \delta\int_{p}^{\pi} \underline{L}(q)dF_{p}(q)\right)x + \left(1-p\left(1-\delta + \delta\int_{p}^{\pi} \underline{L}(q)dF_{p}(q)\right)\right)w(\gamma)$$

$$= \underline{L}(p)x + (1-\underline{L}(p))w(\gamma)$$

$$= V(p).$$

Hence, V is also a fixed point of <u>T</u>. Because <u>T</u> is a contraction mapping, it has a unique fixed point, which implies that $V = \underline{U}(\cdot, \gamma, x)$.

At last, similarly to the previous arguments, $U^*(\cdot, \gamma, x|p^*)$ is the unique fixed point of contraction mapping \hat{T}_{p^*} that maps each bounded function ϕ on $[0, p^*]$ to another bounded function $\hat{T}_{p^*}\phi$ such that for each $p \in [0, p^*]$,

$$\widehat{T}_{p^*}\phi(p) = (1 - (1 - p)\gamma)\left((1 - \delta)x + \delta\left(\int_p^{p^*}\phi(q)dF_p(q) + (1 - F_p(p^*))\phi(p)\right)\right) + (1 - p)\gamma.$$

Let V be a function that for each $p \in [0, p^*]$,

$$V(p) = L^{*}(p, \gamma | p^{*})x + 1 - L^{*}(p, \gamma | p^{*})$$

and note that

$$\begin{split} &\int_{p}^{p^{*}} V(q) dF_{p}(q) + (1 - F_{p}(p^{*})) V(p) \\ &= \left(\int_{p}^{p^{*}} L^{*}(q, \gamma | p^{*}) dF_{p}(q) + (1 - F_{p}(p^{*})) L^{*}(p, \gamma | p^{*}) \right) x \\ &+ F_{p}(p^{*}) - \int_{p}^{p^{*}} L^{*}(q, \gamma | p^{*}) dF_{p}(q) + (1 - F_{p}(p^{*})) (1 - L^{*}(p, \gamma | p^{*})) \\ &= \left(\int_{p}^{p^{*}} L^{*}(q, \gamma | p^{*}) dF_{p}(q) + (1 - F_{p}(p^{*})) L^{*}(p, \gamma | p^{*}) \right) x \\ &+ 1 - \left(\int_{p}^{p^{*}} L^{*}(q, \gamma | p^{*}) dF_{p}(q) + (1 - F_{p}(p^{*})) L^{*}(p, \gamma | p^{*}) \right). \end{split}$$

Then,

$$\begin{split} \widehat{T}_{p^*}V(p) &= (1 - (1 - p)\gamma) \left((1 - \delta)x + \delta \left(\int_p^{p^*} V(q)dF_p(q) + (1 - F_p(p^*)) V(p) \right) \right) + (1 - p)\gamma \\ &= (1 - (1 - p)\gamma) \left(1 - \delta + \delta \left(\int_p^{p^*} L^*(q, \gamma | p^*)dF_p(q) + (1 - F_p(p^*)) L^*(p, \gamma | p^*) \right) \right) x \\ &+ (1 - (1 - p)\gamma) \left(\delta - \delta \left(\int_p^{p^*} L^*(q, \gamma | p^*)dF_p(q) + (1 - F_p(p^*)) L^*(p, \gamma | p^*) \right) \right) + (1 - p)\gamma \\ &= (1 - (1 - p)\gamma) \left(1 - \delta + \delta \left(\int_p^{p^*} L^*(q, \gamma | p^*)dF_p(q) + (1 - F_p(p^*)) L^*(p, \gamma | p^*) \right) \right) x \\ &+ 1 - (1 - (1 - p)\gamma) \left(1 - \delta + \delta \left(\int_p^{p^*} L^*(q, \gamma | p^*)dF_p(q) + (1 - F_p(p^*)) L^*(p, \gamma | p^*) \right) \right) \\ &= L^*(p, \gamma | p^*)x + 1 - L^*(p, \gamma | p^*) \\ &= V(p) \end{split}$$

holds for each $p \in [0, p^*]$. Therefore, the uniqueness of $U^*(\cdot, \gamma, x | p^*)$ indicates that $V = U^*(\cdot, \gamma, x | p^*)$.

Proposition 4

Proof of Proposition 4. Defining thresholds. Because $L^*(p, \gamma | p^*)$ is strictly decreasing in p, first

$$\begin{split} L^*(0,\gamma|p^*) &= (1-\gamma) \left(1 - \delta + \delta \left(\int_0^{p^*} L^*(q,\gamma|p^*) dF(q) + (1 - F(p^*)) L^*(0,\gamma|p^*) \right) \right) \\ &\geq (1-\gamma) \left(1 - \delta + \delta L^*(0,\gamma|p^*) \right) \\ &\geq \frac{(1-\delta)(1-\gamma)}{1 - \delta(1-\gamma)}, \end{split}$$

which implies that

$$L^*(0, 1 - \pi | p^*) \ge \frac{(1 - \delta)\pi}{1 - \delta\pi};$$

second,

$$\begin{split} L^*(0,\gamma|p^*) &\leq L^*(p^*,\gamma|p^*) \\ &= (1-(1-p^*)\gamma) \left(1-\delta + \delta L^*(p^*,\gamma|p^*)\right) \\ &\leq \frac{(1-\delta) \left(1-(1-p^*)\gamma\right)}{1-\delta \left(1-(1-p^*)\gamma\right)}, \end{split}$$

which implies that

$$L^*\left(0, \frac{1-\pi}{1-p^*}|p^*\right) \le \frac{(1-\delta)\pi}{1-\delta\pi},$$

where the equality holds if and only if $p^* = 0$. Hence, because $L^*(0, \gamma | p^*)$ is strictly decreasing in γ , there exists a unique $g(p^*) \in \left[1 - \pi, \frac{1-\pi}{1-p^*}\right]$ such that

$$L^{*}(0, g(p^{*})|p^{*}) = \frac{(1-\delta)\pi}{1-\delta\pi}$$

and $L^*(0,\gamma|p^*) \geq \frac{(1-\delta)\pi}{1-\delta\pi}$ if and only if $\gamma \leq g(p^*)$. By definition, $g(0) = 1 - \pi$, and for any $p^* > 0$, because $L^*\left(0, \frac{1-\pi}{1-p^*}|p^*\right) < \frac{(1-\delta)\pi}{1-\delta\pi}$, $g(p^*) < \frac{1-\pi}{1-p^*}$. Moreover, because $L^*(0,\gamma|p^*)$ is strictly increasing in p^* , it must be true that $g(p^*)$ is strictly increasing in p^* .

Clearly from the text, $(1 - \delta)x + \int_{p^*}^{\pi} U(q, \gamma, x) dF_p(q) \leq \delta w(\gamma)$ if and only if

$$\left(1 - \left(1 - \int_{p^*}^{\pi} \underline{L}(q) dF_{p^*}(q)\right) \delta\right) x + \left(1 - \int_{p^*}^{\pi} \underline{L}(q) dF_{p^*}(q)\right) \delta w(\gamma) \le \delta w(\gamma),$$

which is equivalent to

$$x \le h(p^*)\delta w(\gamma),$$

where

$$h(p^*) := \frac{\int_{p^*}^{\pi} \underline{L}(q) dF_{p^*}(q)}{1 - \delta \left(1 - \int_{p^*}^{\pi} \underline{L}(q) dF_{p^*}(q)\right)}.$$

Because $\underline{L}(p)$ is strictly increasing in p, so is $\int_{p^*}^{\pi} \underline{L}(q) dF_{p^*}(q)$, which implies that $h(p^*)$ is strictly increasing in p^* and is bounded below

$$h(\pi) = \frac{\frac{(1-\delta)\pi}{1-\delta\pi}}{1-\delta\left(1-\frac{(1-\delta)\pi}{1-\delta\pi}\right)} = \pi.$$

At last, because $\underline{L}(p)$ is strictly increasing in p,

$$\underline{L}(p) = p \left(1 - \delta + \delta \int_{p}^{\pi} \underline{L}(q) dF_{p}(q) \right)$$

$$> p \left(1 - \delta + \delta \underline{L}(p) \right)$$

$$> \frac{(1 - \delta)p}{1 - \delta p}$$

holds for all $p < \pi^*$, which in turn implies that

$$h(p^*) > \frac{\frac{(1-\delta)p^*}{1-\delta p^*}}{1-\delta\left(1-\frac{(1-\delta)p^*}{1-\delta p^*}\right)} = p^*$$

Sufficiency. Let $p^* < \pi$ be given and suppose $\gamma \leq g(p^*)$ and $p^* \delta w(\gamma) \leq x \leq h(p^*) \delta w(\gamma)$. It has been established in the text that (β^*, κ^*) defined as below constitutes an equilibrium:

- 1. for all $p \leq p^*$, $\kappa^*(p) = 1$ and $\beta^*(q, p) = 1$ for $q \leq p^*$ and $\beta^*(q, p) = 0$ for $q > p^*$;
- 2. for all $p > p^*$, $\kappa^*(p) = 0$ and $\beta^*(q, p) = 1$ for all q > p.

In this equilibrium, β^* is a strategy of stopping at p^* .

Necessity. Let (β^*, κ^*) be an equilibrium in which β^* is a strategy of stopping at p^* . According to Proposition 3, $\beta^*(q, p) = 1$ for all $p < q \le p^*$ and $\kappa^*(p) = 1$ for all $p \le p^*$.

First, according to Proposition 2, $\beta^*(q, p) = 1$ for all p, q if $x \ge \pi \delta w(\gamma)$, so that β^* being a stopping strategy necessitates $x < \pi \delta w(\gamma)$. Moreover, because $\kappa^*(p) = 0$ for all $p > \frac{x}{\delta w(\gamma)}$, $\kappa^*(p^*) = 1$ necessitates that $p^* \le \frac{x}{\delta w(\gamma)}$, or equivalently, $x \ge p^* \delta w(\gamma)$.

Second, for each $p \leq p^*$,

$$L_{\kappa^*}(p) = (1 - (1 - p)\gamma) \left(1 - \delta + \delta \left(\begin{array}{c} \int_p^{p^*} L_{\kappa^*}(q) dF_p(q) \\ + \int_{p^*}^{\pi} \max \left\{ L_{\kappa^*}(q), L_{\kappa^*}(p) \right\} dF_p(q) \end{array} \right) \right)$$

Because β^* is a strategy of stopping at p^* , it must be true that $L_{\kappa^*}(p) \ge L_{\kappa^*}(q)$ for all p, q such that $p \le p^*$ and $q > p^*$. This implies that

$$L_{\kappa^*}(p) = (1 - (1 - p)\gamma) \left(1 - \delta + \delta \left(\int_p^{p^*} L_{\kappa^*}(q) dF_p(q) + (1 - F_p(p^*)) L_{\kappa^*}(p) \right) \right) = \hat{R}_{p^*} L_{\kappa^*}(p)$$

for all $p \in [0, p^*]$. Due to the uniqueness of the fixed point of \widehat{R}_{p^*} , $L_{\kappa^*} = L^*(\cdot, \gamma | p^*)$. Note that because $\pi > \frac{x}{\delta w(\gamma)}$, $\kappa^*(\pi) = 0$, so that $L_{\kappa^*}(\pi) = \pi (1 - \delta + \delta L_{\kappa^*}(\pi)) = \frac{(1 - \delta)\pi}{1 - \delta \pi}$. Therefore, because $L_{\kappa^*}(0) \ge L_{\kappa^*}(\pi)$,

$$L^*(0,\gamma|p^*) = L_{\kappa^*}(0) \ge L_{\kappa^*}(\pi) = \frac{(1-\delta)\pi}{1-\delta\pi},$$

which in turn implies that $\gamma \leq g(p^*)$.

Third, assume $x > h(p^*)\delta w(\gamma)$, so that $(1-\delta)x + \delta \int_{p^*}^{\pi} \underline{U}(q,\gamma,x)dF_{p^*}(q) > \delta w(\gamma)$. Consider any $p' > p^*$. Restricting on $[p',\pi]$, U_{β^*} is the unique fixed point of T_{β^*} . Because $\underline{U}(p,\gamma,x)$ is strictly decreasing in p,

$$E_{\beta^*}\left(\underline{U}(\cdot,\gamma,x)|p\right) = \int_p^{\pi} \left(\left(1 - \beta(q,p)\right)\underline{U}(p,\gamma,x) + \beta(q,p)\underline{U}(q,\gamma,x)\right) dF_p(q)$$
$$\geq \int_p^{\pi} \underline{U}(q,\gamma,x) dF_p(q),$$

so that

$$T_{\beta^*}\underline{U}(p,\gamma,x) \ge p\left((1-\delta)x + \delta \int_p^{\pi} \underline{U}(q,\gamma,x)dF_p(q)\right) \\ + (1-p)\left(\gamma + (1-\gamma)\max\left\{(1-\delta)x + \delta \int_p^{\pi} \underline{U}(q,\gamma,x)dF_p(q), \delta w(\gamma)\right\}\right) \\ \ge p\left((1-\delta)x + \delta \int_p^{\pi} \underline{U}(q,\gamma,x)dF_p(q)\right) + (1-p)w(\gamma) \\ = \underline{U}(p,\gamma,x)$$

holds for all $p \in [p', \pi]$. Letting $\phi^1 = \underline{U}(\cdot, \gamma, x)$ and $\phi^{n+1} = T_{\beta^*} \phi^n$, this inductively implies that $\phi^n \geq \underline{U}(\cdot, \gamma, x)$ for all n, so that

$$U_{\beta^*}(p) = \lim_{n \to \infty} \phi^n(p) \ge \underline{U}(p, \gamma, x)$$

for all $p \in [p', \pi]$. It follows that

$$(1-\delta)x + \delta E_{\beta^*}\left(U_{\beta^*}|p'\right) \ge (1-\delta)x + \delta E_{\beta^*}\left(\underline{U}(\cdot,\gamma,x)|p'\right) \ge (1-\delta)x + \delta \int_{p'}^{\pi} \underline{U}(q,\gamma,x)dF_{p'}(q)dF_{p'}$$

Because $(1 - \delta)x + \delta \int_{p^*}^{\pi} \underline{U}(q, \gamma, x) dF_{p^*}(q) > \delta w(\gamma)$, there exists a $p^{\dagger} > p^*$ sufficiently close to p^* , so that

$$(1-\delta)x + \delta \int_{p}^{\pi} \underline{U}(q,\gamma,x) dF_{p}(q) > \delta w(\gamma)$$

for all $p \in (p^*, p^{\dagger}]$. Hence, for all $p \in (p^*, p^{\dagger}]$

$$(1-\delta)x + \delta E_{\beta^*}(U_{\beta^*}|p) \ge (1-\delta)x + \delta \int_p^{\pi} \underline{U}(q,\gamma,x) dF_p(q) > \delta w(\gamma),$$

which in turn implies that $\kappa^*(p) = 1$. As a result, $\kappa^*(p) = 1$ for all $p \leq p^{\dagger}$. As shown in the proof of Proposition 3, this implies that $\beta^*(q, p) = 1$ for all $p < q \leq p^{\dagger}$. Because $p^{\dagger} > p^*$, this contradicts the fact that β^* is a strategy of stopping at p^* . Therefore, it must be true that $x \leq h(p^*)\delta w(\gamma)$.

General conditions for sustainability. Democracy is sustainable if and only if there exists a $p^* < \pi$ such that

$$\begin{split} \gamma &\leq g(p^*) \\ p^* \delta w(\gamma) &\leq x \leq h(p^*) \delta w(\gamma) \end{split}$$

Note that this condition is equivalent to

$$x < \pi \delta w(\gamma)$$

$$\gamma \le g\left(\frac{x}{\delta w(\gamma)}\right).$$

To establish necessity, first suppose $x \ge \pi \delta w(\gamma)$, then because $h(p^*) < \pi$ for all $p^* < \pi$, $x > h(p^*)\delta w(\gamma)$ for all $p^* < \pi$. Second, suppose $\gamma > g\left(\frac{x}{\delta w(\gamma)}\right)$, then for all $p^* \le \frac{x}{\delta w(\gamma)}$, $\gamma > g\left(\frac{x}{\delta w(\gamma)}\right) \ge g(p^*)$. This implies that for any p^* , either $p^* > \frac{x}{\delta w(\gamma)}$, so that $x < p^* \delta w(\gamma)$, or $\gamma > g(p^*)$, or both. In any case, the condition for sustainable democracy fails. To establish sufficiency, let $p^* = \frac{x}{\delta w(\gamma)}$ and note that $p^* < \pi$ because $x < \pi \delta w(\gamma)$. First,

$$g(p^*) = g\left(\frac{x}{\delta w(\gamma)}\right) \geq \gamma$$

Second,

$$h(p^*)\delta w(\gamma) > p^*\delta w(\gamma) = x.$$

Therefore, democracy is sustained in an equilibrium in which the leader has a strategy of stopping at $p^* = \frac{x}{\delta w(\gamma)}$.

At last, because g is strictly increasing, $\gamma \leq g\left(\frac{x}{\delta w(\gamma)}\right)$ is equivalent to $x \geq g^{-1}(\gamma)\delta w(\gamma)$, so that the condition for sustainable democracy can be rewritten as

$$g^{-1}(\gamma)\delta w(\gamma) \le x < \pi \delta w(\gamma).$$

The range for x is non-empty if and only if $g^{-1}(\gamma) < \pi$, or equivalently, $\gamma < g(\pi)$.

PROPOSITION 5

Proved in the text.