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A Model Setup and Equilibrium
A.1 Equilibrium Concept
Strategies. In the no-delegation game, state i’s strategy is (i) a mapping from types to
signals

(
bND
i ,mND

i

)
: Θi → R+ × R+ and (ii) a mapping from state i’s type and state j’s

signals to decisions dND
i : Θi × R+ × R+ → R. In the delegation game, state i’s strategy

is a mapping from types to signals
(
bDi ,m

D
i

)
: Θi → R+ × R+; and for the IO it is a

mapping from the signals of both states to decisions
(
dD1 , d

D
2

)
with dDi : R2

+ × R2
+ → R.

Let µND
i (bj,mj) ∈ ∆(Θj) be state i’s posterior belief about state j’s type after observing

(bj,mj) and µD
IO (bi,mi, bj,mj) ∈ ∆(Θi)×∆(Θj) the IO’s posterior beliefs about states i and

j’s types after observing (bi,mi, bj,mj). Let bI =
(
bI1 , b

I
2

)
, mI =

(
mI

1 ,m
I
2

)
, dI =

(
dI1 , d

I
2

)
,

µND =
(
µND
1 , µND

2

)
and µD = µD

IO.

Equilibrium. Formally, a perfect Bayesian equilibrium (PBE), and from now on an equi-
librium, is a tuple

(
bI ,mI , dI , µI) where

(
bI ,mI , dI

)
is sequentially rational given µI and

µI is Bayesian consistent with
(
bI ,mI).

In the no-delegation game,
(
bND,mND, dND

)
is sequentially rational given µND if

For each θi,(
bND
i (θi),m

ND
i (θi)

)
∈ argmax(bi,mi)

E0
i

[
ui

(
dND
i

(
θi, b

ND
j (θj),m

ND
j (θj)

)
, dND

j

(
θj, bi,mi

)
, θi, bi

)]
.

For each θi, bj and mj,

dND
i (θi, bj,mj) ∈ argmaxdiEi

[
πi

(
di, d

ND
j

(
θj, b

ND
i (θi),m

ND
i (θi)

)
, θi

)
|bj,mj

]
.

In the delegation game, (bD,mD, dD) is sequentially rational given µD if

For each θi, (b
D
i (θi),m

D
i (θi)) ∈

argmax(bi,mi)
E0

i

[
ui

(
dDi
(
bi,mi, b

D
j (θj),m

D
j (θj)

)
, dDj

(
bDj (θj),m

D
j (θj), bi,mi

)
, θi, bi

)]
.

For each bi,mi, bj and mj,(
dDi (bi,mi, bj,mj), d

D
j (bj,mj, bi,mi)

)
∈ argmax(di,dj)EIO

[
uIO

(
di, dj, θi, θj

)
|bi,mi, bj,mj

]
.

µI is Bayesian consistent with (bI ,mI) if µI
i is the conditional probability distribution of θj

given (bj,mj) derived from the joint distribution over Θj × R+ × R+ that the prior distri-
bution and (bIj ,m

I
j ) : Θj → R+ ×R+ induce.

A.2 mD1-Refinement
We adopt the monotonic D1 refinement introduced by Bernheim and Severinov (2003).
According to the D1 criterion proposed by Cho and Kreps (1987), players should not believe
a deviation is made by type θi if there is some other type θ′i who would strictly prefer to
deviate for any response from the players that type θi would weakly prefer to deviate for. The
monotonicity requirement implies that higher types use signals that are weakly more costly
(or weakly less costly), and the posterior beliefs should exhibit a monotonic relationship with
respect to these signals, including out-of-equilibrium signals.
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The D1 refinement rules out the possibility of pooling intervals. The monotonicity require-
ment gives some order to posterior beliefs regarding signals. In summary, both conditions
allow for a unique equilibrium outcome in which information is fully transmitted. This focus
on fully informative equilibria is important for two reasons. First, we aim to understand
the negative consequences of states’ private information. A fully informative equilibrium
represents the worst-case scenario in terms of the amount of resources spent on transmitting
information. On the other extreme, when states do not incur any costs for transmitting in-
formation, information can only be conveyed through cheap talk, which may involve interval
equilibria as discussed by Crawford and Sobel (1982). Any other semi-separating equilibrium
lies between these two extremes. Second, the uniqueness of the equilibrium allows for a fair
comparison between the two games.

We may also consider imposing a cap on the amount of resources that a state can spend, as
suggested by Kartik (2009). In such a case, states would have fewer options to differentiate
themselves, leading to a pooling interval for extreme types in equilibrium. However, we do
not impose this restriction and instead interpret our equilibrium as one where the spending
cap is sufficiently high.

Let us consider an equilibrium
(
bI ,mI , dI , µI). To illustrate the refinement, we focus on

the no-delegation game, with similar implications extending to the delegation game. We
introduce the following definitions for clarity:

ν1

(
b̃1

)
≡ max

{ θ2
1 + β

+
θ1

1 + β
β, sup

θ1:bND
1 (θ1)≤b̃1

dND
2

(
θ2, b

ND
1 (θ1),m

ND
1 (θ1)

)}
,

ν1

(
b̃1

)
≡ min

{ θ2
1 + β

+
θ1

1 + β
β, inf

θ1:bND
1 (θ1)≥b̃1

dND
2

(
θ2, b

ND
1 (θ1),m

ND
1 (θ1)

)}
,

ν2

(
b̃2

)
≡ max

{ θ1
1 + β

+
θ2

1 + β
β, sup

θ2:bND
2 (θ2)≤b̃2

dND
1

(
θ1, b

ND
2 (θ2),m

ND
2 (θ2)

)}
,

ν2

(
b̃2

)
≡ min

{ θ1
1 + β

+
θ2

1 + β
β, inf

θ2:bND
2 (θ2)≥b̃2

dND
1

(
θ1, b

ND
2 (θ2),m

ND
2 (θ2)

)}
.

The function νi(b̃i) represents the lowest policy action that is chosen as an equilibrium
response to b̃i. If no type chooses b̃i, then it corresponds to the highest policy action chosen
as an equilibrium response to bi ≤ b̃i. In the event that no type chooses bi ≤ b̃i, νi(b̃i)
represents the highest rationalizable action. On the other hand, the function νi(b̃i) denotes
the highest policy action chosen as an equilibrium response to b̃i.

Let us denote

ûi (dj, θi, bi) ≡ E0
i

[
ui

(
dND
i

(
θi, b

ND
j (θj),m

ND
j (θj)

)
, dj, θi, bi

)]
.

Now, we define

Ai

(
b̃i, θi

)
≡
[
νi

(
b̃i

)
, νi

(
b̃i

)]
∩
{
dj : ûi

(
dj, θi, b̃i

)
≥ ûi

(
dND
j

(
θj, b

ND
i (θi),m

ND
i (θi)

)
, θi, b

ND
i (θi)

)}
,
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Ai

(
b̃i, θi

)
≡
[
νi

(
b̃i

)
, νi

(
b̃i

)]
∩
{
dj : ûi

(
dj, θi, b̃i

)
> ûi

(
dND
j

(
θj, b

ND
i (θi),m

ND
i (θi)

)
, θi, b

ND
i (θi)

)}
.

Let us consider a fixed amount of burned money b̃i. We define two sets of responses within

the interval
[
νi

(
b̃i

)
, νi

(
b̃i

)]
that induce different incentives for type θi to deviate towards

b̃i. The first set Ai

(
b̃i, θi

)
comprises responses that provide type θi with a weak incentive to

deviate towards b̃i. The second set Ai

(
b̃i, θi

)
is a stricter version of the first set, including

only responses that strictly incentivize type θi to deviate towards b̃i. Let GND
i (·|bj,mj)

denote the cumulative distribution function of µND
i (bj,mj).

An equilibrium
(
bND,mND, dND, µND

)
satisfies the mD1 criterion if it fulfills the following

conditions:

i) bND
i is a monotonic function.

ii) 1. For all m1,m
′
1, θ1, and b1 > b′1, G

ND
2 (θ1|b1,m1) ≥ GND

2 (θ1|b′1,m′
1).

2. For all m2,m
′
2, θ2, and b2 > b′2, G

ND
1 (θ2|b2,m2) ≤ GND

1 (θ2|b′2,m′
2).

iii) Support
[
µND
i

(
b̃j, m̃j

)]
=
{
θ′j
}

for any θ′j and any out-of-equilibrium b̃j such that

Ai

(
b̃j, θj

)
⊆ Ai

(
b̃j, θ

′
j

)
for all θj ̸= θ′j and Ai

(
b̃j, θ

′
j

)
̸= ∅.

B Proofs for Baseline Model
B.1 Lemma 0
Lemma 0. There are infinite equilibria. Each equilibrium is characterized by a collection of
disjoint pooling intervals.

Proof. Based on the result from Austen-Smith and Banks (2000), all equilibria exhibit the
following structure: for each state i, there exists a partition(

B0 ≡ θi, A1, B1, . . . , AN , BN , AN+1 ≡ θi
)
,

where Bj−1 ≤ Aj < Bj ≤ Aj+1 for all j ∈ I = 1, . . . , N . Within each interval (Aj, Bj),
a state pools all types θi together by employing a constant amount of burned money and
sending the same message

(
bIi (θi),m

I
i (θi)

)
=
(
bIi (j),m

I
i (j)

)
. On the other hand, for types

θi ∈ (Bj, Aj+1), a state differentiates between them by employing distinct amounts of burned
money bIi (θi). Furthermore, for any equilibrium where θi, θ

′
i ∈ (Bj, Aj+1) and mI

i (θi) ̸=
mI

i (θi), there exists another equilibrium that is output-equivalent, except for the fact that
mI

i (θi) = mI
i (θi). Hence, for this set of types, the specific message they send in equilibrium

becomes irrelevant as they convey information through money burning. Exploiting this
property, there is no need to specify the equilibrium messages for any such set of types. The
partition is uniquely determined by its collection of pooling intervals P = {(Aj, Bj) |j ∈
I}. As highlighted by Austen-Smith and Banks (2000), the set of equilibria encompasses a
continuum of semi-separating equilibria, ranging from the separating equilibrium P = ∅ to
the pooling equilibrium P = Θi.
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B.2 Proof of Lemma 1
We provide a proof sketch that applies to both the no-delegation and delegation games.
Without loss of generality, we focus on state 1. Suppose there are two types, θ1 and θ′1,
with θ1 < θ′1, who burn the same amount of money but send different messages m1 and
m′

1, respectively, in equilibrium. In this case, it is profitable for type θ′1 to deviate and send
message m1, pretending to be a lower type, in order to induce a lower policy. Therefore,
in any equilibrium where different types burn the same amount of money, the posterior
beliefs after burning that amount must be the same regardless of the chosen message. We
demonstrate in Proposition 2 that bND

1 (the amount of money burned by type θ1 in the
no-delegation game) is a non-increasing function. Intuitively, lower types are willing to burn
more money because the benefits of misrepresenting and inducing a lower policy are greater
for them. Our refinement eliminates cases where types pool on the same amount of burned
money, ensuring that there is differentiation among the types in terms of the money burning
strategy.

Suppose, by contradiction, that bND
1 is not a one-to-one function. This implies the existence

of an interval [θ′, θ′′] ⊆ Θ1 such that bND
1 (θ) = b∗ ≥ 0 and mND(θ) = m∗ for every θ ∈ [θ′, θ′′],

while bND
1 (θ) ̸= b∗ for every θ /∈ [θ′, θ′′]. Considering the uniform prior belief, we have

E2[θ1|b∗,m∗] = (θ′′−θ′)
2

. Furthermore, for any b > b∗, it holds that E2[θ1|b,m] ≤ θ′. Hence,
we obtain the inequality:

E2 [θ1|b,m] ≤ θ′ <
(θ′′ − θ′)

2
= E2 [θ1|b∗,m∗] .

By invoking the fact that state 1’s strategy is sequentially rational, the previous inequality
implies that

lim
θ→θ′−

bND
1 (θ) > b∗.

Now, consider type (θ′ − ϵ) and a deviation to an off-path action b such that b∗ < b <
limθ→θ′− bND

1 (θ). For sufficiently small ϵ, this type has a profitable deviation by choosing
action b. Intuitively, this deviation is profitable because type (θ′− ϵ) burns a strictly smaller
amount b and signals that it is type θ′ (since the mD1 criterion restricts the posterior belief
after b to assign probability one to type θ′), which is ϵ close to their actual type. This creates
a contradiction with the sequential rationality condition for type (θ′−ϵ). Hence, we conclude
that bND

1 is a one-to-one mapping. Thus, the amount of money burned is fully informative of
a state’s type and is characterized by an ordinary differential equation (ODE) equation that
has a unique solution, which is a strictly monotone function (refer to the proof of Proposition
2 for further details). As a result, the equilibrium is fully informative and unique.

B.3 Proof of Proposition 1
First, we examine the decisions of the states in the no-delegation game. Then, we analyze the
decisions of the international organization (IO) in the delegation game. Finally, we compare
the decisions made in both games. Our aim is to demonstrate that in the no-delegation
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game, state i selects

dND
i = (1− β)θi + β

[
1

1 + β
Ei[θj|bj] +

β

1 + β
Ej[θi|bi]

]
.

In the final stage, state i has observed its own type θi and the amount of money burned bj by
the other state. To simplify notation, let us denote Ei[·] ≡ Ei[·|bj] as the expected value with
respect to θj using state i’s beliefs induced by bj. State i solves the following optimization
problem:

max
di

Ei

[
−(1− β)(di − θi)

2 − β (di − dj(θj))
2] .

By calculating the first-order condition, we obtain the following expression:

0 = −2(1− β) (di − θi)− 2βEi (di − dj(θj)) .

This expression leads to the following result:

di = (1− β)θi + βEi[dj(θj)].

Similarly, for state j, we obtain the following expression:

dj = (1− β)θj + βEj[di(θi)].

Taking the expected values of both expressions, we have:

Ei[dj(θj)] = Ei [(1− β)θj + βEj[di(θi)]] = (1− β)Ei[θj] + βEj[di(θi)],

Ej[di(θi)] = Ej [(1− β)θi + βEi[dj(θj)]] = (1− β)Ej[θi] + βEi[dj(θj)].

By solving the previous system of equations, we obtain the following result:

Ej[di(θi)] =
1

1 + β
Ej[θi] +

β

1 + β
Ei[θj],

Ei[dj(θj)] =
1

1 + β
Ei[θj] +

β

1 + β
Ej[θi].

By substituting these expected values into the expressions, we obtain that:

dND
i = (1− β)θi + β

[
1

1 + β
Ei[θj] +

β

1 + β
Ej[θi]

]
,

dND
j = (1− β)θj + β

[
1

1 + β
Ej[θi] +

β

1 + β
Ei[θj]

]
.

Next, we examine the delegation game. Let EIO[·] ≡ EIO[·|bi, bj] denote the expected value
with respect to θi and θj given the IO’s beliefs induced by bi and bj, respectively. Our
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objective is to demonstrate that in the delegation game, the IO selects

dDi =
1 + β

1 + 3β
EIO[θi] +

2β

1 + 3β
EIO[θj].

The IO solves the following optimization problem:

max
di,dj

1

2
· EIO

[
−(1− β)

(
(di − θi)

2 + (dj − θj)
2
)
− β

(
(di − dj)

2 + (dj − di)
2
)]

.

By calculating the first-order condition for di, we obtain the following expression:

0 = −(1− β) (di − EIO[θi])− 2β (di − dj) .

Similarly, we obtain the following expression for dj by calculating the first-order condition:

0 = −(1− β) (dj − EIO[θj])− 2β (dj − di) .

By solving the previous system of equations, we obtain the following solutions:

dDi =
1 + β

1 + 3β
EIO[θi] +

2β

1 + 3β
EIO[θj],

dDj =
1 + β

1 + 3β
EIO[θj] +

2β

1 + 3β
EIO[θi].

Using the previous expressions, we can calculate the coordination term in equilibrium for
each game.

∆dND =
(
dND
j − dND

i

)
= (1− β) (θj − θi) +

β − β2

1 + β
· (Ej[θi]− Ei[θj]) ,

∆dD =
(
dDj − dDi

)
=

1− β

1 + 3β
· (EIO[θj]− EIO[θi]) .

In a fully informative equilibrium, when EIO[θi] = Ej[θi] = θi and EIO[θj] = Ei[θj] = θj,
we can simplify the expressions and analyze the comparative results. After some algebraic
manipulations, we find that ∆dND > ∆dD, dDi > dND

i , and dDj < dND
j when θi < θj.

This implies that delegation improves coordination but worsens adaptation compared to no
delegation. Moreover, each state benefits from delegation.

B.4 Proof of Proposition 2
In this section, we analyze the money-burning strategies employed by each state in the dif-
ferent game scenarios. Additionally, we demonstrate that a state tends to burn more money
in the delegation game compared to the non-delegation game. Let di (θi, θ

′
i, θj) represent the

decision made by state i when the following conditions are met: (i) state i has type θi, (ii)
state i signals that its type is θ′i, and (iii) state i believes with probability one that state j
is of type θj. Similarly, we denote state i’s political payoff under the assumption that state
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j truthfully signals its type.

π̃i (θi, θ
′
i, θj) ≡ πi (di (θi, θ

′
i, θj) , dj (θj, θj, θ

′
i) , θi) .

Let’s consider that state i expends an amount of bi(θ
′
i) in order to signal its type as θ′i. As

a result of this signaling strategy, state i achieves the following payoff:

π̃i (θi, θ
′
i, θj)− bi(θ

′
i).

A function bi(θi) is considered incentive-compatible and fully reveals state i’s type if the
following condition holds:

θi ∈ arg maxθ′iE
0
i [π̃i (θi, θ

′
i, θj)]− bi(θ

′
i), and

bi(θi) is a strictly monotone function.

The first requirement implies that when θ′i = θi, the following first-order condition must be
satisfied:

∂bi(θ
′
i)

∂θ′i
= E0

i

[
∂π̃i(θi, θ

′
i, θj)

∂θ′i

]
.

The right-hand side of the equation depends on the prior distribution only through the

expected value of θj, denoted as E0
i [θj]. This can be observed by noting that

∂π̃i(θi,θ′i,θj)
∂θ′i

is a

linear function of θj. Hence,

E0
i

[
∂π̃i (θi, θ

′
i, θj)

∂θ′i

]
=

∂π̃i (θi, θ
′
i,E0

i [θj])

∂θ′i
.

Hence, the slope of the money burning functions is solely determined by the expected value of
the prior. The specific expressions on the right-hand side vary depending on the institution
and state being considered. By integrating these expressions with respect to θi, we obtain
the following:

• In the case of no delegation, we have the following expressions for the money burning
functions:

i) State 1 burns bND
1 (θ1) =

2(1−β)β2

(1+β)2

(
θ21
2
− θ1

)
+ C,

ii) State 2 burns bND
2 (θ2) =

2(1−β)β2

(1+β)2

(
θ22
2
+ θ2

)
+ C.

• In the case of delegation, we have the following expressions for the money burning
functions:

i) State 1 burns bD1 (θ1) =
2(1−β)β
(1+3β)

(
θ21
2
− θ1

)
+ C,

ii) State 2 burns bD2 (θ2) =
2(1−β)β
(1+3β)

(
θ22
2
+ θ2

)
+ C,

where C is a constant term. These functions exhibit strict convexity and are centered around
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1 for state 1 and around −1 for state 2. In order for these functions to be equilibrium
strategies, the type that burns the lowest amount for each state and institution must burn
zero. Hence, we have the conditions: bI1

(
min{θ1, 1}

)
= 0 and bI2 (max{θ2,−1}) = 0 for any

institution I ∈ {D,ND}. Taking these restrictions into account, we obtain the following
expressions:

• In the case of no delegation, we have the following expressions for the money burning
functions:

i) State 1 burns bND
1 (θ1) =

2(1−β)β2

(1+β)2

(
θ1 −min{θ1, 1}

) ( θ1+min{θ1,1}
2

− 1
)
,

ii) State 2 burns bND
2 (θ2) =

2(1−β)β2

(1+β)2
(θ2 −max{θ2,−1})

(
θ2+max{θ2,−1}

2
+ 1
)
.

• In the case of delegation, we have the following expressions for the money burning
functions:

i) State 1 burns bD1 (θ1) =
2(1−β)β
(1+3β)

(
θ1 −min{θ1, 1}

) ( θ1+min{θ1,1}
2

− 1
)
,

ii) State 2 burns bD2 (θ2) =
2(1−β)β
(1+3β)

(θ2 −max{θ2,−1})
(

θ2+max{θ2,−1}
2

+ 1
)
.

If s ≤ 2, these functions are strictly monotonic, implying the existence of a fully informative
equilibrium. However, if s > 2, these functions become non-monotonic but still strictly
convex, allowing for the possibility that multiple types from the same state may burn the
same amount of money. To ensure full information revelation, we can assume that each of
these types sends a distinct message. For instance, considering state 1, we can assume that
types θ1 < 1 send the signal ml, while types θ1 > 1 send the signal mr, where ml ̸= mr.
Consequently, a fully informative equilibrium still exists. Moreover, it is direct to see check
that bDi (θi) > bND

i (θi), i ∈ {1, 2}. Consequently, for a fixed state and type, the amount of
money burned under delegation is higher compared to the no delegation scenario.

B.5 Proof of Proposition 3 (Ex-ante Delegation)
For any institution I ∈ {D,ND}, denote ΠI

i ≡ E0[πI
i (θ)] and BI

i ≡ E0[bIi (θi)]. States’
payoffs are symmetric so

ΠI ≡ ΠI
1 = ΠI

2 ,

BI ≡ BI
1 = BI

2 .

Using the previous results, after some algebra we obtain

• In case of no delegation:

ΠND = −2

3

(1− β)β(6 + s2)

(1 + β)2
,

BND =
1

3

(1− β)β2(9 + s2 − 3max{−1, 1− s}2 − 6max{−1, 1− s})
(1 + β)2

.
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• In case of delegation:

ΠD = −2

3

(1− β)β(6 + s2)

(1 + 3β)
,

BD =
1

3

(1− β)β(9 + s2 − 3max{−1, 1− s}2 − 6max{−1, 1− s})
(1 + 3β)

.

It is direct that ΠD > ΠND and BD > BND.

We need to compare (ΠND −BND) and (ΠD −BD). After some algebra we obtain:

(ΠND −BND)− (ΠD −BD) =

2
3

(1−β)2β(s2+12β+12)
(β+1)2(1+3β)

if s ≥ 2

4
3

(1−β)2β[(6−s)s−3β(s2−4s+2)]
(1+β)2(1+3β)

if s < 2.

The term [(6− s)s− 3β (s2 − 4s+ 2)] is increasing in s and has one zero whenever s < 2.
Let ŝ be the value in s that makes zero the last term. Then we have the following:

If s ≤ ŝ, then (ΠND −BND) ≤ (ΠD −BD),

If s > ŝ, then (ΠND −BND) > (ΠD −BD).

Thus, delegation is beneficial only if the level of uncertainty is sufficiently low

s ≤ ŝ(β) ≡ 3 + 6β − (9 + 30β + 18β2)
1
2

1 + 3β
.

B.6 Proof of Corollary 1 (Interim Comparison)

Define s̃ ≡ 2(2+3β)
β

− 4
(

1+3β+2β2

β2

) 1
2
. We show the following: (i) There exists a cutoff θ̂2 such

that if θ2 ≤ θ̂2, state 2 prefers delegation, and if θ2 > θ̂2, the state prefers no delegation. (ii)

If s > s̃, then θ2 < θ̂2 < θ2. In this case, ∂θ̂2
∂s

< 0 and ∂θ̂2
∂β

> 0. (iii) If s ≤ s̃, then θ̂2 = θ2.

Consider the difference in ex-post utilities for state 2 between the no-delegation and delega-
tion game in equilibrium:

∆u ≡
[
−(1− β)

(
dND
2 − θ2

)2 − β
(
∆dND

)2 − bND
2 (θ2)

]
−
[
−(1− β)

(
dD2 − θ2

)2 − β
(
∆dD

)2 − bD2 (θ2)
]
.

Here, ∆dND =
(
dND
2 − dND

1

)
and ∆dD =

(
dD2 − dD1

)
. After simplification, we obtain the

following:

∂∆u

∂θ2
=

2(1− β)2β

(1 + β)2(1 + 3β)
(1 + θ2β (2 + θ1 + θ2)) .
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The term above is linear in θ1. Taking the expected value with respect to θ1, we get:

2(1− β)2β

(1 + β)2 (1 + 3β)
(1 + θ2β (1 + θ2)) ,

which is strictly positive. Hence, if a type θ2 prefers no delegation, any type θ′2 with θ′2 > θ2
strictly prefers no delegation. Since θ2 strictly prefers delegation, there exists a cut-off value
θ̂2 > θ2 such that if θ2 ≤ θ̂2, state 2 prefers delegation, and if θ2 > θ̂2, the state prefers no
delegation.

The cut-off is defined by the unique solution of E0
2 [∆u] = 0 when the solution is strictly

lower than θ2, and it is equal to θ2 when E0
2 [∆u] ≤ 0 for every θ2 ∈ [θ2, θ2]. After some

algebra, we obtain that θ̂2 < θ2 is equivalent to s > s̃.

If s > s̃, we find that ∂θ̂2
∂s

< 0 and ∂θ̂2
∂β

> 0. These results imply that Pr
(
θ2 ≤ θ̂2

)
= Fs

(
θ̂2

)
decreases with s and increases with β when Fs is a symmetric distribution. Note that as
we change s, we must consider a different distribution function to represent a probability
measure. Hence, we explicitly indicate the dependence of the distribution on the value of
s.

B.7 Proof of Proposition 4 (Endogenous ex-interim Delegation)
In describing cut-points on s (s and s), we omit the description of its dependence on β.

Proof. We prove the following statement: When uncertainty is sufficiently low (0 < s <
s), there is an equilibrium where every state’s type prefers to delegate. In the case of
intermediate values of uncertainty (s < s < s), there is an equilibrium where a state prefers
to delegate if and only if that state’s type is sufficiently moderate. Furthermore, in this
intermediate case, the ex-ante probability that a state delegates is (i) decreasing as the level
of uncertainty s increases, and (ii) increasing as the relative value of coordination β increases.

Define s ≡ 3(3β2+3β+2)
2(1−β)β

−
√

3(23β4+62β3+59β2+36β+12)

2(1−β)β
and s ≡ 1−

√
1+3β
2(1+β)

. We begin by proving

the following: if the value of s lies between s and s, there exists an equilibrium where
the following conditions hold: There exist cutoff types θ̂1 and θ̂2 satisfying θ̂1 = −θ̂2 and
1− s < θ̂2 < 1+ s. Under this equilibrium, if a state’s type is less than or equal to θ̂1 (or its
type is greater than or equal to θ̂2), the state prefers delegation. On the other hand, if the
state’s type is greater than θ̂1 (or its type is less than θ̂2), the state prefers not to delegate.
Let us define the following intervals: ΘD

1 = [θ̂1,−1+ s], ΘND
1 = [−1− s, θ̂1], Θ

D
2 = [1− s, θ̂2],

and ΘND
2 = [θ̂2, 1 + s].

We now consider the scenario where states adhere to the aforementioned strategy. We can
utilize our previous findings to comprehend the outcomes following each history once the
decision to establish an IO has been made. Assuming an IO is formed, the subsequent game
resembles our baseline model, with the exception that the types of state 1 are believed to be
drawn from the set ΘD

1 , while the types of state 2 are believed to be drawn from the set ΘD
2 .

This modification impacts our construction in a single aspect: the expected value of state

1’s type is θ̂1+(−1+s)
2

, while the expected value of state 2’s type is θ̂2+(1−s)
2

.
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In the scenario where an IO is not created, there are three possible histories leading to this
outcome:

(i) Both states choose not to delegate, in which case the types are known to be drawn from
ΘND

1 and ΘND
2 .

(ii) State 1 delegates while state 2 does not delegate, in which case the types are known to
be drawn from ΘD

1 and ΘND
2 .

(iii) State 1 does not delegate while state 2 delegates, in which case the types are known to
be drawn from ΘND

1 and ΘD
2 .

In each of these cases, the subsequent game follows a similar structure to our baseline model,
as discussed previously. However, our construction introduces an additional consideration:
the determination of the most moderate type for each state is influenced by the specific
history that led to the non-creation of the IO.

In all of these continuation games, it is important to note that the equilibrium behavior is
unique, and the history only influences the money-burning behavior. Along the equilibrium
path, information is perfectly transmitted, and decisions are made without any uncertainty
regarding the types of states.

To demonstrate that the delegating behavior is indeed an equilibrium strategy, let’s concen-
trate our analysis on state 1. We calculate the expected payoff for a type θ1 when choosing
not to delegate.

EuND
1 (θ1) =

∫ 1+s

1−s

(
−(1− β)β(θ1 − θ2)

2

(1 + β)2

)
× dθ2

2s

−
∫ θ̂2

1−s

bND
1

(
θ1|E [θ2] =

θ̂2 + (1− s)

2

)
× dθ2

2s

−
∫ 1+s

θ̂2

bND
1

(
θ1|E [θ2] =

θ̂2 + (1 + s)

2

)
× dθ2

2s
.

Similarly, let’s consider the expected payoff for a type θ1 when choosing delegation.

EuD
1 (θ1) =

∫ θ̂2

1−s

(
−(1− β)β(θ1 − θ2)

2

1 + 3β
− bD1

(
θ1|E [θ2] =

θ̂2 + (1− s)

2

))
× dθ2

2s

+

∫ 1+s

θ̂2

(
−(1− β)β(θ1 − θ2)

2

(1 + β)2
− bND

1

(
θ1|E [θ2] =

θ̂2 + (1 + s)

2

))
× dθ2

2s
.

After performing the algebraic calculations, we obtain the expression:

∂
(
EuD

1 (θ1)− EuND
1 (θ1)

)
∂θ1

=
(1− β)2β

2(1 + β)(1 + 3β)

(
3θ̂2 + 1− s

)(
θ̂2 − 1 + s

)
.
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This expression is positive because 1 − s < θ̂2 < 1 + s. Hence, there exists a unique value
θ1, denoted as θ̂1, such that EuND

1 (θ1) = EuD
1 (θ1). We can directly calculate the value of θ̂1

from the condition EuD
1 (θ̂1) = uND

1 (θ̂1) when θ̂1 = −θ̂2. The expression for θ̂1 is as follows:

θ̂1 = −β (β(7s+ 2) + 5s− 2)

5β2 + β − 6

−

√
β4 (8s2 + 56s+ 23) + 10β3(6s− 1) + β2 (4s2 − 32s− 37) + 12β (2s2 − 5s+ 1) + 12(s− 1)2

(5β2 + β − 6)2 /3
.

We observe that θ̂1 < −1 + s is equivalent to s < s. On the other hand, θ̂1 > −1 − s is
equivalent to s > s. Therefore, when s < s < s, types θ1 ≥ θ̂1 (θ2 ≤ θ̂2) prefer to delegate,
while types θ1 < θ̂1 (θ2 > θ̂2) prefer not to delegate.

To prove that if 0 < s ≤ s, there exists an equilibrium where every state’s type prefers to
delegate, let’s consider the case where states adhere to the previous strategy. For a state 1
type θ1 who proposes delegation, the expected payoff obtained is given by:

EuD
1 (θ1) =

∫ 1+s

1−s

(
−(1− β)β(θ1 − θ2)

2

1 + 3β
− bD1 (θ1|E [θ2] = 1)

)
× dθ2

2s
.

Now, suppose that after choosing not to delegate, the other state believes that state 1 is of
type θ′1 with probability 1. The expected payoff for a type θ1 in the case of choosing not to
delegate is given by:

EuND
1 (θ1) =

∫ 1+s

1−s

(
−(1− β)β(θ1 + β(θ1 − θ′1)− θ2)

2

(1 + β)2

)
× dθ2

2s
.

Let’s consider the case where θ′1 = −1− s. In this scenario, we find that

∂(EuD
1 (θ1)− EuND

1 (θ1))

∂θ1
=

2(1− β)βs2 (3β2(s+ θ1 + 1) + β(s+ 2θ1)− θ1 + 1)

(1 + β)(1 + 3β)
> 0.

Hence, it is sufficient to examine whether the type −1 − s prefers delegation or not. After
performing some algebraic calculations, we obtain that:

EuD
1 (−1− s)− EuND

1 (−1− s) = −4(1− β)βs2 (β2 (s2 + 9s+ 3)− β (s2 − 9s+ 3) + 6s)

3(1 + β)2(1 + 3β)
.

Thus, EuD
1 (−1− s) > EuND

1 (−1− s) if and only if s < s. Therefore, when s < s, every type
θ1 prefers to delegate. Next, let’s justify why θ′1 = −1 − s. Note that when 0 < s < s, we

observe that
∂(EuD

1 (θ1)−EuND
1 (θ1))

∂θ1
> 0 for any θ′1. Thus, based on the D1 refinement, we can

conclude that θ′1 = −1 − s. Consequently, when 0 < s < s, there is an equilibrium where
every type prefers to delegate.
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C Proofs of Extensions
C.1 Proof of Proposition 5 (Costly Deviations)
We restate Proposition 5 formally:

Proposition 5. In every equilibrium, the IO proposes

d =


(
dND
1 +

√
c

1+β
, dND

2 −
√
c

1+β

)
if c ≤ (1−β)2β2EIO[θ1−θ2]

2

(1+3β)2
,(

dD1 , d
D
2

)
if c > (1−β)2β2EIO[θ1−θ2]

2

(1+3β)2
.

Additionally, the money burning functions bci exhibit the following properties for a fixed θi:

i) bND
i (θi) ≤ bci(θi) ≤ bDi (θi),

ii) For c ≤ c ≡ (1−β)2β2

(1+3β)2

(
max{θ2 − θ1, 0}

)2
, bci(θi) = bND

i (θi),

iii) For c ≥ c ≡ (1−β)2β2

(1+3β)2
(2 + 2s)2, bci(θi) = bDi (θi),

iv) bci(θi) is weakly increasing in c.

Proof. Given the IO’s proposal (d1, d2), let dbri (dj) denote state i’s best response policy to
dj, defined as the solution to:

dbri (dj) ∈ argmaxdi − (1− β) (di − θi)
2 − β (di − dj)

2 .

Note that by construction, dbri (d
ND
j ) = dND

i . Furthermore, we have dbri (dj) = (1−β)θi+βdj.
State i deviates to dbri (dj) if the following condition is satisfied:

−(1− β)
(
dbri (dj)− θi

)2 − β
(
dbri (dj)− dj

)2 − c > −(1− β) (di − θi)
2 − β (di − dj)

2 .

This condition defines the policies for each state given the IO’s recommendation (d1, d2).

We define the updated policies as:

d′i (d1, d2) =

{
dbri (dj) if state i deviates,

di if state i does not deviate.

In the analysis of the IO’s proposed policies, we consider two extreme cases and then draw
conclusions for the intermediate case. If we consider the IO’s most preferred policies without
potential deviations, which correspond to the solution of the delegation model, we find that
state i does not deviate if and only if:

c ≥ (1− β)2β2

(1 + 3β)2
(θi − θj)

2 .

The maximum value that the right-hand side (RHS) can take is

c ≡ (1− β)2β2

(1 + 3β)2
(
θ2 − θ1

)2
=

(1− β)2β2

(1 + 3β)2
(2 + 2s)2 > 0.
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The minimum value that the RHS can take is

c ≡ (1− β)2β2

(1 + 3β)2
(
max{θ2 − θ1, 0}

)2
=

(1− β)2β2

(1 + 3β)2
(max{2− 2s, 0})2 ≥ 0.

If c ≥ c, both states do not deviate for any possible types. The IO will propose its most
preferred policies, which are derived in the delegation game, and these policies are accepted:

d1 =
1 + β

1 + 3β
EIO [θ1] +

2β

1 + 3β
EIO [θ2] ,

d2 =
1 + β

1 + 3β
EIO [θ2] +

2β

1 + 3β
EIO [θ1] .

Suppose c ≤ c. If the IO were to propose its most preferred policies, both states would have a
profitable deviation for any type. In this case, the IO will optimally propose policies to make
both states indifferent between the proposed policies and their most profitable deviations.

EIO

[
−(1− β)(d1 − θ1)

2 − β(d1 − d2)
2
]
= EIO

[
−(1− β)(d′1(d2)− θ1)

2 − β(d′1(d2)− d2)
2
]
− c,

EIO

[
−(1− β)(d2 − θ2)

2 − β(d1 − d2)
2
]
= EIO

[
−(1− β)(d′2(d1)− θ2)

2 − β(d′2(d1)− d2)
2
]
− c.

These conditions yield the following policies:

d1 =
1

1 + β
EIO [θ1] +

β

1 + β
EIO [θ2] +

√
c

1 + β
,

d2 =
1

1 + β
EIO [θ2] +

β

1 + β
EIO [θ1]−

√
c

1 + β
.

Note that d1 = dND
1 +

√
c

1+β
and d2 = dND

2 −
√
c

1+β
.

Consider now the incentives for money burning. If c ≥ c, each state always anticipates that
the IO will propose its most preferred policies. Therefore, the money burning functions in
this case remain the same as in the delegation game.

b1(θ1) =
2(1− β)β

1 + 3β
f1(θ1), b2(θ2) =

2(1− β)β

1 + 3β
f2(θ2).

If c ≤ c, each state anticipates that the IO will always strive to make both states indifferent
between the proposal and their optimal deviations. Therefore, the money burning functions
are given by:

b1(θ1) =
2(1− β)β2

(1 + β)2
f1(θ1)−

2(1− β)(1 + 2β)

(1 + β)2
θ1
√
c = bND

1 (θ1)−
2(1− β)(1 + 2β)

(1 + β)2
θ1
√
c,

b2(θ2) =
2(1− β)β2

(1 + β)2
f2(θ2) +

2(1− β)(1 + 2β)

(1 + β)2
θ2
√
c = bND

2 (θ2) +
2(1− β)(1 + 2β)

(1 + β)2
θ2
√
c.

Note that for a fixed θi, bi is increasing in c.

In general, state 1 anticipates that the IO proposes its most preferred policies if and only if
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the following condition holds:

c ≥ (1− β)2β2

(1 + 3β)2
(θ2 − θ′1)

2
,

which is equivalent to the condition:

θ2 < θ̂2(θ
′
1) ≡ θ′1 +

(1 + 3β)

(1− β)β

√
c.

Let Û i(θi, θ
′
i, θj) denote the ex-ante payoff U i when the IO proposes its most preferred policies,

and let U i
c(θi, θ

′
i, θj) denote the ex-ante payoff U i when the IO proposes its restricted policies.

Define

P
(
θj < θ̂j(θ

′
i)
)
≡ min{max{1 + s− θ̂j(θ

′
i), 0}, 1}

2s
.

Thus

E0
i

[
∂U i(θi, θ

′
i, θj)

∂θ′i

]
= E0

i

[
∂Û i(θi, θ

′
i, θj)

∂θ′i

∣∣∣∣∣θj < θ̂j(θ
′
i)

]
P
(
θj < θ̂j(θ

′
i)
)

+ E0
i

[
∂U i

c(θi, θ
′
i, θj)

∂θ′i

∣∣∣∣θj > θ̂j(θ
′
i)

](
1− P

(
θj < θ̂j(θ

′
i)
))

=

∫ θ̂j(θ
′
i)

1−s

∂Û i(θi, θ
′
i, θj)

∂θ′i

1

2s
dθj

+

∫ 1+s

θ̂j(θ′i)

∂U i
c(θi, θ

′
i, θj)

∂θ′i

1

2s
dθj.

Also,
∂

∂c
E0

1

[
∂U1(θ1, θ

′
1, θ2)

∂θ′1

]
=

∫ 1+s

θ̂2(θ′1)

∂

∂c

∂U1
c (θ1, θ

′
1, θ2)

∂θ′1

1

2s
dθ2 < 0,

and
∂

∂c
E0

2

[
∂U2(θ2, θ

′
2, θ1)

∂θ′2

]
=

∫ 1+s

θ̂1(θ′2)

∂

∂c

∂U2
c (θ2, θ

′
2, θ1)

∂θ′2

1

2s
dθ1 > 0.

The money burning function satisfies the following expression when θ′i = θi:

∂bi(θ
′
i)

∂θ′i
= E0

i

[
∂U i(θi, θ

′
i, θj)

∂θ′i

]
.

Then, the slope of the function bi(θi) at θi becomes more pronounced as c increases. Addi-
tionally, since b1(θi) = 0 and b2(θi) = 0, for a fixed θi, the value bi(θi) increases as c increases.
Now, suppose that

c ≤ (1− β)2β2EIO [θ1 − θ2]
2

(1 + 3β)2
.
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Consider the difference in ex-post utilities in equilibrium for state j between the no-delegation
and delegation game:

∆u =
[
−(1− β)(dND

j − θj)
2 − β

(
∆dND

)2 − bND
j (θj)

]
︸ ︷︷ ︸

No delegation

−

[
−(1− β)(dc,Dj − θj)

2 − β
(
∆dc,D

)2 − bDj (θj)
]

︸ ︷︷ ︸
Delegation

,

where ∆dND =
(
dND
j − dND

i

)
and ∆dc,D =

(
dc,Dj − dc,Di

)
. After some algebraic manipula-

tion, we obtain:

∂2∆u

∂c∂θj
=

c1/2 + β
(
3c1/2 − 1 + θi − θj

)
+ β2 (1− θj − θi)

(1 + β)2c1/2
+

∂2bc,Dj

∂c∂θj
.

C.2 Proof of Proposition 6 (International Bargaining)
Let UND

i ≡ −(1−β)(dND
i − θi)

2−β(dND
i −dND

j )2 denote the outside option of state i. First,
we will prove the following lemma.

Lemma 1. In the equilibrium of the international bargaining game, state i = 1, 2 proposes
the following policy:

dIBi =
1 + β

1 + 3β
θi +

2β

1 + 3β
Ei[θj],

dIBj =
1 + β

1 + 3β
Ei[θj] +

2β

1 + 3β
θi,

T IB = EiEj

[
−(1− β)(dIBj − θj)

2 − β(dIBi − dIBj )2
]
− EiEj

[
UND
j

]
.

State i accepts a proposal (di, dj, T ) if and only if

Ei

[
−(1− β)(di − θi)

2 − β(di − dj)
2
]
− T ≥ Ei

[
UND
i

]
.

Proof. We limit our analysis to strategies where states accept an offer when they are indif-
ferent. If this is not the case, the maximization problem may not have a solution.

When state i is the proposer, it solves the following problem:

max
di,dj ,T

Ei

[
−(1− β)(di − θi)

2 − β(di − dj)
2 + T

]
s.t. EiEj

[
−(1− β)(dj − θj)

2 − β(di − dj)
2 − T

]
≥ EiEj

[
UND
j

]
.
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In the optimum, the restriction is binding. The problem can be formulated as follows:

max
di,dj

Ei

[
−(1− β)(di − θi)

2 − β(di − dj)
2 + Ej

[
−(1− β)(dj − θj)

2 − β(di − dj)
2
]]

− EiEj

[
UND
j

]
with

T = EiEj

[
−(1− β)(dj − θj)

2 − β(di − dj)
2
]
− EiEj

[
UND
j

]
.

The optimum is given by the following solution:

dIBi =
1 + β

1 + 3β
θi +

2β

1 + 3β
Ei [θj] ,

dIBj =
1 + β

1 + 3β
Ei [θj] +

2β

1 + 3β
θi,

T IB = EiEj

[
−(1− β)(dIBj − θj)

2 − β(dIBi − dIBj )2
]
− EiEj

[
UND
j

]
.

The proposal is accepted because state j is indifferent between the offer and his outside
option.

We can now formally restate Proposition 6, incorporating explicit money burning functions:

Proposition 6. In the equilibrium of the international bargaining game, states 1 and 2 burn
the following amounts of money, respectively:

bIB1 (θ1) =
2(1− β)β [(1 + β) + 2((1− p)β2 + pβ)]

(1 + β)2(1 + 3β)
f1(θ1),

bIB2 (θ2) =
2(1− β)β [(1 + β) + 2(pβ2 + (1− p)β)]

(1 + β)2(1 + 3β)
f2(θ2).

Moreover, if p = 1/2, bIBi (θi) = bDi (θi). For any value of p, bIBi (θi) > bND
i (θi). Finally, since

β > β2, bIBi (θi) is increasing in state i’s proposing probability.

Proof. Let us denote the expected utility that state i receives when it proposes as follows:

U i
i ≡Ei

[
−(1− β)(dIBi − θi)

2 − β(dIBi − dIBj )2 + Ej

[
−(1− β)(dIBj − θj)

2 − β(dIBi − dIBj )2
]]

− EiEj

[
UND
j

]
.

Let us denote the expected utility that state i receives when state j proposes as follows:

U j
i ≡Ei

[
−(1− β)(dIBi − θi)

2 − β(dIBi − dIBj )2
]
− EjEi

[
−(1− β)(dIBi − θi)

2 − β(dIBi − dIBj )2
]

+ EjEi

[
UND
i

]
.

From an ex-ante perspective, before knowing who is going to be the proposer, state i’s payoff
can be denoted as follows:

U i ≡ pU i
i + (1− p)U j

i .
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Suppose state i is of type θi, signals his type as θ
′
i, and believes that the other state is of type

θj with probability one. Let U i(θi, θ
′
i, θj) denote the ex-ante payoff U i when these conditions

hold.

Suppose that state i burns bi(θ
′
i) in order to signal his type as θ′i. Then, it obtains the

following payoff:
U i (θi, θ

′
i, θj)− bi(θ

′
i).

A function bi(θi) is incentive-compatible and fully reveals state i’s type if the following
condition holds:

θi ∈ arg maxθ′iE
0
i

[
U i(θi, θ

′
i, θj)

]
− bi(θ

′
i).

bi(θi) is a strictly monotone function.

The first requirement implies that θ′i = θi satisfies the following first-order condition:

∂bi(θ
′
i)

∂θ′i
= E0

i

[
∂U i(θi, θ

′
i, θj)

∂θ′i

]
.

Integrating with respect to θi and considering the initial condition yields the following ex-
pression for each state:

bIB1 (θ1) =
2(1− β)β [(1 + β) + 2((1− p)β2 + pβ)]

(1 + β)2(1 + 3β)
f1(θ1),

bIB2 (θ2) =
2(1− β)β [(1 + β) + 2(pβ2 + (1− p)β)]

(1 + β)2(1 + 3β)
f2(θ2).

D Other Extensions: Discussions and Proofs
D.1 Coordination Sensitivity and Proposition 7
In this extension, we consider an alternative delegation game in which the IO proposes
(d1, d2, T ), which has to be accepted by both states for it to pass. If it is rejected, states play
the no-delegation game. We let the IO’s policy payoff be the following (except for transfers):

uIO(d1, d2, θ1, θ2) = −α (d1 − d2)
2 .

The parameter α > 0 measures the IO’s coordination motive. We study how this affects
states’ signaling incentives. We obtain the following:

Proposition 1. In equilibrium, bαi (θi) is increasing in the IO’s coordination motive α.

Proof. Denote as UND
i ≡ −(1−β)

(
dND
i − θi

)2−β
(
dND
i − dND

j

)2
the outside option of state
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i. The IO solves

max
di,dj ,Ti,Tj

EIO

[
−α(di − dj)

2
]
+ Ti + Tj

s.t.

EIOEi

[
−(1− β)(di − θi)

2 − β(di − dj)
2
]
− Ti ≥ EIOEi

[
UND
i

]
EIOEj

[
−(1− β)(dj − θj)

2 − β(di − dj)
2
]
− Tj ≥ EIOEj

[
UND
j

]
.

In the optimum the restrictions are binding. The problem becomes:

max
di,dj

EIO

[
−(1− β)((di − θi)

2 + (dj − θj)
2)− (α + 2β)(di − dj)

2
]

− EIO

[
Ei

[
UND
i

]
+ Ej

[
UND
j

]]
,

with
Ti = EIOEi

[
−(1− β)(di − θi)

2 − β(di − dj)
2
]
− EIOEi

[
UND
i

]
Tj = EIOEj

[
−(1− β)(dj − θj)

2 − β(di − dj)
2
]
− EIOEj

[
UND
j

]
.

The optimum is the following:

dIOi =
1 + α + β

1 + 2α + 3β
EIO [θi] +

α + 2β

1 + 2α + 3β
EIO [θj] ,

dIOj =
1 + α

1 + 2α + 3β
EIO [θj] +

α + 2β

1 + 2α + 3β
EIO [θi] ,

T IO
i = EIOEi

[
−(1− β)(dIOi − θi)

2 − β(dIOi − dIOj )2
]
− EIOEi

[
UND
i

]
,

T IO
j = EIOEj

[
−(1− β)(dIOj − θj)

2 − β(dIOi − dIOj )2
]
− EIOEj

[
UND
j

]
.

The proposal is accepted by each state since both are indifferent between the offer and
outside option. In this case

bαi (θi) =
2(1− β)(α + β + β2 + αβ2 + 2β3)

(1 + β)2(1 + 2α + 3β)
fi(θi).

Note that bαi (θi) is increasing in α. Also bαi (θi) > bND
i (θi).

D.2 Limited Discretion and Proposition 8
How does limiting the IO’s discretion affects states’ gains from delegation? We assume
states delegate a symmetric interval [−ℓ/2, ℓ/2], which has length ℓ ≥ 0 in which discretion
is parameterized by ℓ.1 The IO is restricted to choose the same decision for both states
d = d1 = d2.

The IO’s ideal policy based on its beliefs is equal to d̂IO ≡ 1
2
[EIO(θ1|b1,m1) + EIO(θ2|b2,m2)].

If this ideal policy falls within the IO’s delegation interval, then it is the outcome, otherwise
the policy is its lower (−ℓ/2) or upper bound (ℓ/2).

1Without discretion (ℓ = 0), the IO is forced to select d = 0, while if ℓ = ∞, the IO has unlimited discretion.
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Changing the IO’s discretion not only alters decisions but also countries’ signals. When
the IO has relatively more discretion, signals have a greater influence on decisions, which
increases incentives to burn money. In selecting the IO’s level of discretion, there is a trade-
off between getting decisions that are more tailored to countries’ domestic circumstances,
and incurring money burning costs to transmit information.

The results further emphasize our earlier findings about how IOs negatively impact signaling.
With even more coordination after delegation, incentives to burn money are even stronger
than in the baseline model. This makes it necessary to limit the IO’s discretion to dampen
money burning incentives. Further, we show that each state’s most preferred length of the
delegation interval increases in s because it increases the potential for both countries to have
the same type θ1 = θ2. When type spaces do not overlap (s < ∆/2), it is never optimal to
give the IO any discretion. Also, as shown earlier, greater disagreement (a great disagreement
between the states’ types’ expected value) makes money burning incentives stronger because
there is more to gain from influencing the IO’s decision, further increasing the benefits of
limited discretion. Formally:

Proposition 2. In each state’s ex ante most preferred institution, the length of the delegation
interval ℓ increases in the level of uncertainty s and decreases in the amount of disagreement
∆, where

ℓ (s,∆) =

{
0 if 0 ≤ s ≤

√
3(∆/2),

s
3
− ∆2

4s
if
√
3(∆/2) < s ≤ ∆.

Proof. We impose the restriction that ℓ ∈ [0, 2s], because when ℓ > 2s, policies are the same
as with ℓ = 2s. The reason is that the highest and lowest policy the IO ever takes are

dmax =
max θ1 +max θ2

2
=

−∆+ s+∆+ s

2
,

dmin =
min θ1 +min θ2

2
=

−∆− s+∆− s

2
.

The difference between the two is the set of policies that the IO possibly takes in equilibrium,
which equals ℓ = dmax − dmin = 2s. Further, taking expected values we obtain the following
ex ante political payoff for both states:

ΠD = −1

3
(1− β)

(
3

4

(
ℓ2 +∆2

)
− ℓs+ s2

)
.

The money burning functions are the following

bD1 (θ1) =
(1− β)ℓ

2s

[
θ21 −min{−∆/2 + s, 0}2

]
,

bD2 (θ2) =
(1− β)ℓ

2s

[
θ22 −max{∆/2− s, 0}2

]
.
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Taking an expectation leads to the following ex ante informational payoff for each state:

BD =
ℓ

6s
(1− β)

(
s2 + 3(∆/2)2 − 3min{−∆/2 + s, 0}2

)
.

Consider the function (ΠD−BD). If ℓ ≥ 2s, then (ΠD−BD) < (ΠND−BND). If we optimize
the expression (ΠD −BD) restricted to ℓ ∈ [0, 2s] we obtain:

ℓ(s,∆) =

{
0 if 0 ≤ s ≤

√
3(∆/2)

s
3
− ∆2

4s
if
√
3(∆/2) < s ≤ ∆.

D.3 Heterogeneous Value of Coordination and Proposition 9
We now study how the gains from delegation depend on states’ potentially heterogeneous
values of coordination β. This extension serves to capture a situation with a large state that
cares more about adjusting decisions to domestic conditions and a smaller state that cares
more about coordinated decisions.

We analyze the extreme case when state 1 does not value coordination and has policy pref-
erences of π1(d1, θ1) = −(d1 − θ1)

2. State 2, however, still values coordination with weight
β2 ∈ (0, 1) and has preferences as in the main model. We assume preferences of the IO that
are still a weighted average of both countries’ interests:

uIO(θ1, θ2) = α
[
−(d1 − θ1)

2
]
+ (1− α)

[
−(1− β2)(d2 − θ2)

2 − β2(d1 − d2)
2
]
.

In the benchmark we assume α = 1
2
and provide the following result.

Lemma 2. In ex-ante terms, state 1 never prefers to delegate while state 2 always prefers to
delegate. There exists an inverted u-shaped function s̃(β) such that, if s ≤ s̃, then delegation
generates joint benefits.

We prove this lemma below together with Proposition 9. This result implies that although
state 1 would lose from delegation, state 2 gains more, and could compensate for state 1’s
loss by sending transfers as long as the level of uncertainty is sufficiently low. The reason for
the non-monotonic effect becomes apparent by contrasting two extreme situations. If state 2
cares very little about coordination, with β2 ≈ 0, then the positive effects of the increase in
coordination due to delegation is unlikely to outweigh the costs of money burning, even with
little uncertainty. In the other extreme where state 2 finds coordination highly important,
with β2 ≈ 1, state 2 is already willing to coordinate to a large extent with the other state,
again implying that delegation is barely beneficial. Increased coordination is only valuable
for intermediate values of β2, and may lead to beneficial delegation for a wider range of
uncertainty.

Another way to compensate state 1 is to alter the allocation of authority in the IO. We now
study how the joint benefits from delegation can be maximized by selecting α ∈ [0, 1], which
is state 1’s weight in the IO. An increase in α grants state 1 more authority, shifting decisions
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in 1’s favor, and also affects the signals that countries send. Proposition 3 establishes our
result. The results depend crucially on the amount of uncertainty, s, and the importance
that the small state places on coordination, β2. If the goal of the IO is to generate the largest
amount of ex-ante joint benefits, then the share of authority by state 1 is increasing in the
level of uncertainty.

There are two factors that affect the total gains from delegation. First, each state’s payoffs
that are determined by equilibrium decisions. Given that institutions that maximize the
total gains for both countries weigh the welfare of them both equally, it implies that if there
is no uncertainty, countries should have equal authority. This guarantees that decisions are
taken that weigh both countries’ interests equally. The second factor is informational welfare.
state 1 never burns money because it has no interest in changing state 2’s behavior. As a
result, the only costly signals are sent by state 2. With more uncertainty, this part affects
the gains and losses from delegation the most, and by giving state 1 more authority, state
2 knows that its signals have less influence on decisions, reducing incentives to send costly
signals. With too much uncertainty, it is optimal to give all authority to state 1. Formally:

Proposition 3. The institution that maximizes ex-ante joint benefits always gives weakly
more authority to state 1 with α ≥ 1

2
. Further, there exists a function s∗(β2) < 1 such that if

there is more uncertainty than s∗(β2), then all authority is in the hands of state 1 (α = 1).
If there is less uncertainty than s∗(β2), then α is increasing in the amount of uncertainty.

Proof. We calculate equilibrium payoffs as a function of α and then we study the case
α = 1/2. Now, policy payoffs are as follows:

π1(d1, d2, θ1) = − (d1 − θ1)
2 ,

π2(d2, d1, θ2) = −(1− β2) (d2 − θ2)
2 − β2 (d2 − d1)

2 .

In the case of delegation the IO maximizes the following

uIO(d1, d2, θ1, θ2) = α
[
−(d1 − θ1)

2
]
+ (1− α)

[
−(1− β2)(d2 − θ2)

2 − β2(d2 − d1)
2
]
.

We need to obtain ex ante political and informational payoffs for both cases.

Without delegation, states take the following decisions as a function of θ1 and θ2

dND
1 = θ1,

dND
2 = β2θ1 + (1− β2)θ2.

Thus, ex ante political payoffs are as follows

ΠND
1 = 0,

ΠND
2 = −2

3
(1− β2)β2(6 + s2).

Finally, states have no incentives to burn money since state 1 does not benefit from manip-
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ulation and state 2 can not influence. Thus

BND
1 = BND

2 = 0.

With delegation, the IO chooses the following decisions as a function of θ1 and θ2:

dD1 =
θ1α + θ2(1− α)(1− β2)β2

α + β2 − αβ2 − β2
2 + αβ2

2

,

dD2 =
θ1αβ2 + θ2(1− β2)(β2 + α(1− β2))

α + β2 − αβ2 − β2
2 + αβ2

2

.

Ex ante political payoffs are as follows

ΠD
1 = −2

3

(1− α)2(1− β2)
2β2

2(6 + s2)

(α + β2 − αβ2 − (1− α)β2
2)

2
,

ΠD
2 = −2

3

α2(1− β2)β2(6 + s2)

(α + β2 − αβ2 − (1− α)β2
2)

2
.

Money burning functions

bD1 (θ1) =
2(1− α)α(1− β2)β2

(α + β2 − αβ2 − β2
2 + αβ2

2)
2

(
θ1 −min{θ1, 1}

)(θ1 +min{θ1, 1}
2

− 1

)
,

bD2 (θ2) =
2(1− α)α(1− β2)

2β2
2

(α + β2 − αβ2 − β2
2 + αβ2

2)
2
(θ2 −max{θ2,−1})

(
θ2 +max{θ2,−1}

2
+ 1

)
.

Then, ex ante informational payoff

BD
1 =

2

3

(1− α)α(1− β2)β2(6− s)s

(α + β2 − αβ2 − (1− α)β2
2)

2
,

BD
2 =

2

3

(1− α)α(1− β2)
2β2

2(6− s)s

(α + β2 − αβ2 − (1− α)β2
2)

2
.

The rest of the proof assume α = 1/2. After some algebra, we obtain (ΠND
1 − BND

1 ) >
(ΠD

1 −BD
1 ) and (ΠND

2 −BND
2 ) < (ΠD

2 −BD
2 ). Thus state 1 prefers not to delegate while state

2 prefers to delegate. If we consider instead(
ΠND

1 −BND
1 +ΠND

2 −BND
2

)
−
(
ΠD

1 −BD
1 +ΠD

2 −BD
2

)
,

We obtain that there is s̃ such that

If s ≤ s̃, then
(
ΠND

1 −BND
1 +ΠND

2 −BND
2

)
≤
(
ΠD

1 −BD
1 +ΠD

2 −BD
2

)
,

If s > s̃, then
(
ΠND

1 −BND
1 +ΠND

2 −BND
2

)
>
(
ΠD

1 −BD
1 +ΠD

2 −BD
2

)
.
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The cutoff s̃ is the following

s̃ ≡ 3− (9− 6β2 + 12β3
2 − 6β4

2)
1
2

1 + β2 − β2
2

.

We now use the previous results and study the case of general α. Consider (ΠD
1 − BD

1 +
ΠD

2 −BD
2 ) as a function of α. Define

α(β, s) ≡ −(1− β)β(s2(β2 − β − 3) + s(−6β2 + 6β + 6)− 12)

s(s− 6)− 2β3s(s− 6) + β4s(s− 6)− β2(5s2 − 6s+ 24) + 6β(s2 − 2s+ 4)
,

and

s∗ ≡ 3 + 3β2 − 3β2
2 − (9 + 6β2 − 33β2

2 + 54β3
2 − 27β4

2)
1/2

1 + 3β2 − 3β2
2

.

Denote α̂ the maximizer of
(
ΠD

1 −BD
1 +ΠD

2 −BD
2

)
restricted to 0 ≤ α ≤ 1. A simple

first-order condition analysis implies the following

If 0 < s ≤ s∗, then α̂ = α (β2, s),

If s∗ < s, then α̂ = 1.

It is direct to see that ∂α(β2,s)
∂s

> 0 and α (β2, 0) =
1
2
.

D.4 One-sided Incomplete Information and Proposition 10
To investigate the role of asymmetric uncertainty, we study an extreme version where state
1’s type is known while state 2’s type is drawn as in the main model. We show that state
1 always prefers to delegate as it has no signaling cost, while state 2 would only prefer
delegation under the same conditions as in the baseline model. Hence, our results are robust
to the introduction of asymmetries in terms of states’ domestic conditions.

Proposition 4. Delegation is ex-ante jointly beneficial if and only if the level of uncertainty
is sufficiently low such that s < š(β), where š(β) > ŝ(β).

Proof. Formally, we assume state 1’s type is publicly observable. Since state 1 can not
influence beliefs through its signals, it does not burn money. Political payoffs are the same
as in the previous results.

Without delegation, the money burning functions are the following

bND
1 (θ1) = 0,

bND
2 (θ2) =

2(1− β)β2

(1 + β)2
(θ2 −max{1− s, θ1})

(
θ2 +max{1− s, θ1}

2
− θ1

)
.
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And then

BND
2 =

{
2
3
(1−β)β2(s3+6s−2)

(1+β)2s
if s ≥ 1

2
3
(1−β)β2(6−s)s

(1+β)2
if s < 1,

With delegation, the money burning functions are the following

bD1 (θ1) = 0,

bD2 (θ2) =
2(1− β)β

(1 + 3β)
(θ2 −max{1− s, θ1})

(
θ2 +max{1− s, θ1}

2
− θ1

)
.

And then

BD
2 =

{
2
3
(1−β)β(s3+6s−2)

(1+3β)s
if s ≥ 1

2
3
(1−β)β(6−s)s

(1+3β)
if s < 1.

We have that BND
2 < BD

2 . Comparing terms, we obtain that ΠD
1 > ΠND

1 , thus state 1 always
prefers to delegate. In the other side, after some algebra we obtain

If s ≤ ŝ, then
(
ΠND

2 −BND
2

)
≤
(
ΠD

2 −BD
2

)
,

If s > ŝ, then
(
ΠND

2 −BND
2

)
>
(
ΠD

2 −BD
2

)
.

If we consider
(
ΠND

1 +ΠND
2 −BND

2

)
−
(
ΠD

1 +ΠD
2 −BD

2

)
, there is š with š > ŝ such that:

If s ≤ š, then
(
ΠND

1 +ΠND
2 −BND

2

)
≤
(
ΠD

1 +ΠD
2 −BD

2

)
,

If s > š, then
(
ΠND

1 +ΠND
2 −BND

2

)
>
(
ΠD

1 +ΠD
2 −BD

2

)
.

ŝ < š ≡

(
3 + 6β − (9 + 24β − 12β2)

1
2

)
(1 + 4β)

.
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