
Online Appendix
Limited Foresight and Gridlock in Bargaining

A Omitted Proofs for Section 3
Proof. (of Proposition 0) The case of T = ∞ is shown in the main text. We thus focus on the case of finite

T and proceed by induction on T . The base case is solved in the main text. Suppose the statement of the

theorem holds for T − 1, and consider a decision-maker with foresight horizon T . Given threshold e∗
T −1 for

policy revision with foresight horizon T − 1, recall the definition

t̃T −1 := min
{

t :
t∏

i=1
β̃i < e∗

T −1

}

from the main text. Note that if the decision-maker revises the policy in the current period, her expected

future surplus (and hence utility, since she always institutes her favorite policy) is

ST −1 = E[
t̃T −1−1∑

t=0
δt
∏

i = 1tβ̃i] + E[δt̃T −1 ]ST −2.

The decision-maker will thus replace the status quo only if (if)

e + δST −1 ≤ (<)ST −1 =⇒ e ≤ (<)(1 − δ)ST −1.

Limiting Case e∗
∞. Finally, I show that limT →∞ e∗

T := e∗
∞ = 1. We begin by defining

N(x) := E

 ∑
t∈N:
∏t

i=0
β̃i>x

δt

(
t∏

i=1
β̃i

) , (12)

d(x) := E
[
δmin{t∈N:

∏t

i=1
β̃i≤x}

]
. (13)

N(x) is expected efficiency life of a policy revised only once e ≤ x and d(x) is the expected δ-power of the

time of revision. These will be helpful objects in our analysis. By definition,

e∗
T = (1 − δ)ST −1

= (1 − δ)
{

N(eT −1
∗ ) + d(eT −1

∗ )N(eT −2
∗ ) + d(eT −2

∗ )d(eT −1
∗ )N(eT −3

∗ ) + . . .
}

, (14)
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in terms of the functions N(·) and d(·). Since β̃ has a non-atomic distribution, both are continuous in x and

therefore also uniformly continuous on the domain [0, 1]. Thus, for any ε > 0, ∃φ1, φ2 such that

|x − y| < φ1 =⇒ |N(x) − N(y)| <
ε

2 , |x − y| < φ2 =⇒ |d(x) − d(y)| <
ε

2 .

Letting φ := max{φ1, φ2} gives us

|x − y| < φ =⇒ |N(x) − N(y)| < ε, |d(x) − d(y)| < ε. (15)

Consider arbitrary ε ∈ (0, 2δ) and the corresponding φ. From Proposition 2(a), the sequence {e∗
T } is

monotonically increasing and bounded from above (by 1) and so (Cauchy) converges. Hence, there exists Tφ

such that ∀ m, n > Tφ, |em
∗ − en

∗ | < φ. Consider the expression Equation 14 for 2Tφ:

e
2Tφ
∗ = (1 − δ)

{
N
(

e
2Tφ−1
∗

)
+ d

(
e

2Tφ−1
∗

)
N
(

e
2Tφ−2
∗

)
+ d

(
e

2Tφ−1
∗

)
· d
(

e
2Tφ−2
∗

)
N
(

e
2Tφ−3
∗

)
+ . . .

}
.

Hence,

∣∣∣∣∣∣e2Tφ
∗ − (1 − δ)N

(
e∗2Tφ

) 2Tφ∑
i=0

d
(

e
2Tφ
∗

)∣∣∣∣∣∣ ≤ (1 − δ)

 Tφ∑
i=1

(ε

2

)i

+ δTφ

1 − δ

 , by using Equation 15

≤ (1 − δ) · ε

2 − ε
+ δTφ

≤ ε

2 + δTφ , since ε

2 < δ.

Now, since the statement holds for all Tφ sufficiently large, we can simply choose Tε > Tφ in the above

analysis so that δTε < ε
2 . Since δ < 1, such a Tε exists. The above shows that for any ε > 0, there exists

Tε > 0 such that for all T > Tε,

∣∣∣∣∣e2Tε
∗ − (1 − δ)N

(
e∗2Tε

) 2Tε∑
i=0

d
(
e2Tε

∗
)∣∣∣∣∣ ≤ ε.

Hence, in the limit as T → ∞,

lim
T →∞

e∗
T = e∗

∞ = (1 − δ)N (e∗
∞) 1

1 − d (e∗
∞)

= (1 − δ)E

 ∑
t∈N:
∏t

i=1
β̃i>e∗

∞

δt

(
t∏

i=1
β̃i

) 1

1 − E
[
δmin{t∈N:

∏t

i=1
β̃i≤e∗

∞}
] , (16)

substituting in the definitions Equation 12 and Equation 13. Let β∗ (possibly equal to 1) be the supremum

of the support of the random variable β̃. First, note that e∗
∞ = 1 solves the fixed point equation Equation 16
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since the right-hand side is 1 for any e∗
∞ ∈ [β∗, 1]. If β∗ < 1, this also rules out any e∗

∞ ∈ [β∗, 1) as a solution.

Furthermore, for any sequence (xi)∞
i=0, with xi ∈ (e∗

∞, 1),

(1 − δ)1 + δx1 + δ2x2 + . . . + δtxt

1 − δt+1 = 1 + δx1 + δ2x2 + . . . + δtxt

1 + δ + . . . + δt
> max

t
xt > e∗

∞,

for any t ∈ N. Hence, for any realization of {β̃i} such that min{t ∈ N :
∏t

i=1 β̃i ≤ e∗
∞} > 1, it follows that

(1 − δ)

 ∑
t∈N:
∏t

i=1
β̃i>e∗

∞

δt

(
t∏

i=1
β̃i

) 1

1 − δmin{t∈N:
∏t

i=1
β̃i≤e∗

∞}
> e∗

∞.

Otherwise, it is equal to 1. Noting that for any e∗
∞ < β∗ there will be delay with positive probability

before agreement, it follows that the right-hand side of Equation 16 is greater than e∗
∞ for any such e∗

∞

and thus cannot solve Equation 16. Hence, e∗
∞ = 1 is the unique solution to Equation 16, completing the

proof.

Proposition 1. Consider the general two-party bargaining game of the baseline model. For any T ∈ N, an

equilibrium exists. Moreover, in any equilibrium, agreement occurs at the state ((e, â), T ) only if e ≤ e∗
T (and

if e < e∗
T ).

Proof. We begin with a helpful lemma, which establishes that whenever agreement occurs in equilibrium, it

must occur with either bargaining party as the incumbent.

Lemma A.1. For given equilibrium strategies, define

Aτ (p̂) := Aτ
L(p̂) ∩ Aτ

R(p̂).

If outcome (e, a) comes into place at (p̂, τ) for some incumbent on the equilibrium path, then (e, a) ∈ Aτ (p̂).

Moreover, if Aτ (p̂) ̸= ∅, then some (1, a) ∈ Aτ (p̂) comes into place in equilibrium for any incumbent.

Proof. If pτ
I (p̂) /∈ Aτ (p̂), then either

(1) pτ
I (p̂) /∈ Aτ

−I(p̂), in which case, the proposal is rejected by definition of A−I .

(2) pτ
I (p̂) /∈ Aτ

I (p̂). Either the proposal is rejected, as in (1), or, if accepted, yields an inferior continuation

value for I than maintaining the status-quo and moving to the next period. The latter follows since

Aτ
I (p̂) maximizes utility in equilibrium and incumbency is not history-dependent.
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On the other hand, if ∃ (1, a) ∈ Aτ (p̂), then if proposed, it will be accepted and implemented. By (2),

the proposer prefers to implement such an a rather than maintain the status-quo; moreover, any proposal

pI /∈ Aτ
−I(p̂) will be rejected. Hence, in equilibrium, it must be that some (1, a) ∈ Aτ (p̂) comes into place.

The main proof is by induction on the foresight horizon T . Let V T
i (e, â|σ) be the continuation value

of agent i after new status quo (e, â) has materialized and prior to the selection of the incumbent, given

that agents play profile σ and have foresight horizon T . We first consider T = 1. With status quo (e, â), the

condition for both agents to agree to a given proposal (1, a1) in equilibrium is

uxi(1, a1) · S0 ≥ uxi(e, â) + δE[V 1
i (β̃1e, â|σ)] (17)

for each i ∈ {L, R}, given that future play is described by profile σ. Noting the form of uxi
, a1 is in the

agreement set of the respective parties if

a1 ≥ eâ

S0
+

δE
[
V 1

R(β̃1e, â|σ)
]

S0
(R)

a1 ≤ eâ

S0
+

δE
[
V 1

R(β̃1e, â|σ)
]

S0
+ 1 −

(
δS1(β̃1e, â|σ) + e

)
S0

, (L)

where S1(e′, â|σ) :=
∑

i∈{1,2} V 1
i (e′, â|σ) is the expected total surplus to both bargaining agents when they

play profile σ, with status quo e′. By Lemma A.1, if σ is an equilibrium profile, it must dictate (dis)agreement

at (e, â) regardless of the identity of the incumbent. Thus, agreement occurs in equilibrium only if (R) and

(L) are satisfied (and if (R) and (L) are satisfied with strict inequality). Thus, from (R) and (L), there exists

â ∈ AT (e, â) if and only if

eâ

S0
+

δE
[
V 1

R(β̃1e, â|σ)
]

S0
≤ 1, and 1 −

(
δS1(β̃1e, â|σ) + e

)
S0

≥ 0. (18)

Consider the case e < e∗
1 = (1 − δ)S0. We know E[V 1

R(β̃1e, â|σ)] ≤ S1(β̃1e, â|σ) ≤ S0, where the final

inequality results from previous arguments made in the single decision-maker case.13 By direct inspection,

both conditions in Equation 18 are thus satisfied whenever e < (1 − δ)S0. Hence, agreement occurs in any

equilibrium profile σ if e < e∗
1.

On the other hand, consider e > e∗
1. Under any σ, if agents disagree at (e, â), there is from above a path

13Surplus is maximized when e < (1 − δ)S0 by renewing the policy, which yields expected surplus equal to
S0.

4



of future play in which agreement occurs after t ≥ 1 periods. In this case,

e + δE
[
S1(β̃1e, â|σ, t)

]
= e + E

t−1∑
j=1

δj

(
j∏

i=1
β̃i

)
e

∣∣∣∣σ, t

+ δt

1 − δβ

=
t−1∑
j=0

δjE

[
e ·

j∏
i=1

β̃i

∣∣∣∣σ, t

]
+ δt

1 − δβ
(19)

>
1 − δ

1 − δβ

(
1 − δt

1 − δ

)
+ δt

1 − δβ
= 1

1 − δβ
.

Here, the final inequality results from noting that each element in the sum of Equation 19 must have

E
[
e ·
∏j

i=1 β̃i

∣∣∣∣σ, t

]
> e∗ = 1−δ

1−δβ
, since at any future period j (j < t) for which e ·

∏j
i=1 β̃i ≤ e∗, we have

from above that there must be agreement in period j, which would contradict the assumption of t periods of

disagreement. The final inequality shows that for any e > e∗
1, the second condition in Equation 18 is violated.

So, agreement occurs under any equilibrium σ only if e ≤ e∗
1, as desired.

Finally, for existence of equilibrium, note that R makes proposal p1
R(e, â) = max

{
a1 ∈ A1(e, â)

}
, and

L proposes p1
L(e, â) = min

{
a1 ∈ A1(e, â)

}
, whenever e < e∗

1. The opposition always accepts these. When

e > e∗
1, any acceptable proposal from A1

I(e, â) being made by incumbent I and being rejected by opposition

O constitutes an equilibrium profile. At e = e∗
1, the incumbent and opposition are indifferent between having

the (uniquely) acceptable proposal implemented or rejected, so any profile is admissible in equilibrium.

We now suppose the statement is true for τ = T − 1 and consider the behavior of agents with foresight

horizon T . By inductive hypothesis and definition of ST −1, starting at the period in which the next agreement

is passed, the remaining expected surplus in the game remains constant at ST −1 for any equilibrium strategy

profile σ. The proof of the proposition for any T > 1 is thus analogous14 to the base case, substituting ST −1

for S0 = 1
1−δβ

, ST (·) for S1(·), and V T
i (·) for V 1

i (·).

Example A.2 (Two Negotiators with Constant Recognition Probabilities). I now consider a simple

example, corresponding to Figure 3, of a two-agent bargaining game consistent with the model of Section 2,

where each negotiator has T = 1 and a constant probability 1
2 of being recognized as the proposer in each

period. Without loss of generality, suppose L makes a proposal a1
L(e, â) to R from status quo (e, â). In order

for the proposal to be accepted, it must be that

a1
L(e, â) · S0 ≥ e · â + δE

[
1
2a1

L(β̃1e, â) + 1
2a1

R(β̃1e, â)
]

· S0, (20)

14The unique diference in the T > 1 case is that we, in general, have p1
i (e, â) ∈ arg maxV T

i (1, â), since the
choice of agreement may affect the utility downstream for general π(·).
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where a1
I(β̃1e, â) are the proposals made by I ∈ {L, R} in the next period if the stochastic decay shock at the

start of the next period is β̃1. Similarly, L will only advance such a proposal if it generates more utility than

simply waiting until the next period—

(1 − a1
L(e, â)) · S0 ≥ e · (1 − â) + δ

(
1 − E

[
1
2a1

L(β̃1e, â) + 1
2a1

R(β̃1e, â)
])

· S0 (21)

Adding these two inequalities together allows us to see that there exists a beneficial agreement a1
L(e, â) in the

present for both agents if and only if

S0 ≥ e + δS0 ⇐⇒ e ≤ (1 − δ)S0,

as noted by Proposition 1. On the other hand, for any e ∈ [0, 1], Equation 20 with equality defines the

least acceptable proposal to R— α1
R(e, â)—- at (e, â) with T = 1. Of course, a1

L(e, â) = α1
R(e, â) for any

e < e∗
1 = (1 − δ)S0. Similarly, taking Equation 21 with equality defines the greatest acceptable proposal—

α1
L(e, â)— to L. Furthermore, consider â = 1

2 , in which case the environment is exactly symmetric for both

parties. From any e, therefore, parties’ least acceptable proposals will be symmetric about 1
2 . In particular, we

solve for α1
R(e, â) as

α1
R(e, â) · S0 = e · â + 1

2 · S0

=⇒ α1
R(e, â) = e(1 − δβ) + δ

2 .

Here, I substitute 1
2 for E

[ 1
2 a1

L(β̃1e, â) + 1
2 a1

R(β̃1e, â)
]

in Equation 20, given the symmetric environment, and

simplify. By analogous calculation, from Equation 21,

α1
L(e, â) = 1 − e(1 − δβ) + δ

2 .

Substituting for β = .5, δ = .8, and for e ∈ {.9, .7, .3} now allows us to reproduce Figure 3.

Proposition 2. In any equilibrium of the game,

(a) for T ′ < T and any set of other fixed parameters, e∗
T ′ < e∗

T

(b) for any T ∈ N, e∗
T is strictly decreasing in δ

Proof. (of Proposition 2) (a) From Proposition 1, for every T ,

e∗
T = (1 − δ)ST −1 = (1 − δ)

(
T∑

k=1
E
[
δ
∑k−1

i=1
t̃T −i η̃T −k

])
= (1 − δ)

(
E
[
η̃T −1]+ E

[
δt̃T −1ST −2

])
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> (1 − δ)E

t̃T −1∑
i=0

δi · e∗
T −1 + δt̃T −1ST −2


= (1 − δ)ST −2E

t̃T −1∑
i=0

δi · (1 − δ) + δt̃T −1


= (1 − δ)ST −2 = e∗

T −1,

where the final equality results because
∑t̃T −1

i=0 δi · (1 − δ) + δt̃T −1 = 1 for any integer realization t̃T −1.

(b) For convenience, let β̃0 = 1. We consider first e∗
1. It is clear that

∂e∗
1

∂δ
= − 1 − β

(1 − δβ)2
< 0.

Next, note that for each T ≥ 2,

∂e∗
T

∂δ
= ∂ {(1 − δ)ST −1}

∂δ
= −ST −1 + (1 − δ) ∂

∂δ
ST −1. (22)

The following auxiliary claim is thus useful in completing the proof—

Lemma A.3. For each T ∈ N,
∂

∂δ
ST =

∏T
τ=1 d(e∗

τ ) · β

(1 − δβ)2
. (23)

Proof of Lemma A.3. We proceed by induction on T . First, note that using definitions Equation 12 and

Equation 13, we can write

ST −1 = N(e∗
T −1) + d(e∗

T −1)ST −2.

Thus, for the base case T = 1,

∂

∂δ
S1 = ∂

∂δ

(
N(e∗

1) + d(e∗
1) · 1

1 − δβ

)
= N ′(e∗

1) · ∂

∂δ
e∗

1(δ) + d′(e∗
1) · ∂

∂δ
e∗

1(δ) · 1
1 − δβ

+ d(e∗
1) · ∂

∂δ

1
1 − δβ

= − 1
(1 − δβ)2

[
(1 − β) ·

(
N ′(e∗

1) + d′(e∗
1)

1 − δβ

)
− d(e∗

1)β
]

(24)

We evaluate by rewriting N(e∗
1) and d(e∗

1) in convenient forms for differentiation. For convenience, we let Gi

be the cumulative distribution of the stochastic product
∏i

j=1 β̃j and gi its pdf. For any x,

N(x) = 1 + δ · P[β̃1 > x] · E[β̃1|β̃1 > x] + δ2 · P[β̃1 > x] · E[β̃1|β̃1 > x] + . . .
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= 1 + δ ·
∫ 1

x

t · g1(t) dt + δ2 ·
∫ 1

x

t · g2(t) dt + . . . .

Using the Leibniz rule,

N ′(x) = −x ·
∞∑

i=1
δigi(x). (25)

Similarly, d(x) = δG1(x) + δ2(G2(x) − G1(x)) + δ3(G3(x) − G2(x)) + . . .

=⇒ d′(x) = δg1(x) + δ2(g2(x) − g1(x)) + δ3(g3(x) − g2(x)) + . . . .

By directly applying the above expressions, we then obtain

N ′(e∗
1) + d′(e∗

1)
1 − δβ

=
∞∑

i=1

[
gi(e∗

1)
(

−δie∗
1 + δi

1 − δβ
− δi+1

1 − δβ

)]
= 0,

since e∗
1 = 1−δ

1−δβ
. Therefore, substituting back into Equation 24,

∂

∂δ
S1 = d(e∗

1)β
(1 − δβ)2

.

This shows the base case. We suppose now the claim holds true for any τ = 1, . . . , T − 1. We show it must

hold for T .

ST = N(e∗
T ) + d(e∗

T )ST −1.

=⇒ ∂

∂δ
ST = N ′(e∗

T ) · ∂e∗
T

∂δ
+ d′(e∗

T ) · ∂e∗
T

∂δ
ST −1 + d(e∗

T ) · ∂

∂δ
ST −1

= ∂e∗
T

∂δ
(N ′(e∗

T ) + d′(e∗
T )ST −1) + d(e∗

T ) · ∂

∂δ
ST −1

= ∂e∗
T

∂δ
·

∞∑
i=1

[
gi(e∗

T )
(
−δie∗

T + (δi − δi+1)ST −1
)]

+ d(e∗
T ) · ∂

∂δ
ST −1,

where in the final equality we reapply the expressions for N ′(x) and d′(x) derived above. Since e∗
T = (1−δ)ST −1,

each summand gi(e∗
T )
(
−δie∗

T + (δi − δi+1)ST −1
)

= 0. Hence,

∂

∂δ
ST = d(e∗

T ) · ∂

∂δ
ST −1

= d(e∗
T )
∏T −1

τ=1 d(eτ
∗)β

(1 − δβ)2
, using the inductive hypothesis for ∂

∂δ
ST −1

=
∏T

τ=1 d(eτ
∗)β

(1 − δβ)2
, as desired.

8



Using Lemma A.3, we can now complete the proof of Proposition 2(b) for any T ≥ 2.

∂

∂δ
eT

∗ = −ST −1 + (1 − δ) ∂

∂δ
ST −1 = −ST −1 +

(1 − δ)
∏T

τ=1 d(eτ
∗)β

(1 − δβ)2
< 0,

where the concluding inequality results because 1−δ

1−δβ
< 1 and ST −1 > S0 := 1

1−δβ
since from part (a), the

ST are increasing in T . This completes the proof.

B Omitted Proofs for Section 4
Note: for ease of notation in the proofs in this Appendix, we drop σ from the terms pT (p̂, IT , σ) and aT (p̂, It, σ)

for outcomes that materialize in equilibrium given a particular status quo and incumbent.

B.1 Proofs for Section 4.2

Proposition 3. For any T ∈ N, there is an almost-everywhere outcome-unique equilibrium of the game that

implements unique proposals pT
i (p̂) with eT

i (p̂) = 1 and aT
i (e, â) linear and increasing in â for i ∈ {R, L} for

any p̂ = (e, â) at which agreement occurs on the equilibrium path. We write for each i,

aT
i (e, â) = CT (e)â + BT

i (e),

where CT ∈ (0, 1) for e > 0 and CT (0) = 0.

We prove the result by induction on the foresight horizon T through two lemmas— a preliminary result

followed by the inductive step. The base case of T = 1 is in the main text. We will first show that if the

main proposition holds for all τ ≤ T − 1, that linearity in the partisan lean of policy, â, also holds for several

key equilibrium objects.

Let H1 := 1
1−δβ

and J 1 := 0. Supposing Proposition 3 holds for τ ≤ T − 1, define recursively for all such τ—

Kτ (e) = Cτ (e) · (1 − ∆τ (e)) , for any e ≤ eτ
∗

Mτ (e) = Bτ
L(e) · (1 − ∆τ (e)) +

(
1 − ∆τ (e)

2

)
∆τ (e), for any e ≤ eτ

∗

Hτ+1 = E[η̃τ ] + E[δt̃τ · Hτ · Kτ (ẽτ )]

J τ+1 = E
[
δt̃τ (Hτ · Mτ (ẽτ ) + J τ )

]
Lemma B.1. Suppose the statement of Proposition 3 holds for every τ ≤ T − 1 Then, for each τ ≤ T − 1,
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(i) If Iτ is the incumbent when pτ is implemented, then for any e ≤ eτ
∗ ,

EIτ (e) [aτ (e, â)] = Kτ (e) · â + Mτ (e)

(ii) Moreover,

W τ+1
R (a) = Hτ+1a + J τ+1.

Proof. We proceed by induction on τ . By hypothesis, since aτ
i (e, â) are linear in â with the same coefficient

Cτ (e), it follows that aτ
R(e, â) − aτ

L(e, â) = ∆τ (e), which does not depend on â. For τ = 1, we have

(i) EI1(e)
[
a1((e, â), I1)

]
= a1

L(e, â) +
(

1 − a1
L(e, â) + a1

R(e, â)
2

)
∆1(e)

= a1
L(e, â) +

(
1 − a1

L(e, â) − ∆1(e)
2

)
∆1(e)

= (1 − ∆1(e)) · a1
L(e, â) +

(
1 − ∆1(e)

2

)
∆1(e)

= (1 − ∆1(e))C1(e)︸ ︷︷ ︸ ·a + (1 − ∆1(e))B1
L(e) +

(
1 − ∆1(e)

2

)
∆1(e)︸ ︷︷ ︸

:= K1(e) := M1(e), by definition.

(ii) W 2
R(a) = a · E[η̃1] + E

[
δt̃1a1((ẽ1, â), I1)

]
· 1

1 − δβ

= a
(
E[η̃1] + E[δt̃1H1K1(ẽ1)]

)
︸ ︷︷ ︸+E

[
δt̃1H1M1(ẽ1)

]
︸ ︷︷ ︸

:= H2 := J 2, by definition.

Now suppose (i) and (ii) hold for all τ < T̂ ≤ T − 1. First, we show that (i) holds for T̂ . Note by inductive

hypothesis that W T̂
R is increasing. Thus, parties will push their proposals to the extrema of the acceptability

set AT̂ (e, â) in equilibrium. We then have

EIT̂ (e)

[
aT̂ ((e, â), IT̂ )

]
= aT̂

L(e, â) +
(

1 − aT̂
L(e, â) + aT̂

R(e, â)
2

)
∆T̂ (e)

= aT̂
L(e, â) +

(
1 − aT̂

L(e, â) − ∆T̂ (e)
2

)
∆T̂ (e),

=
(

1 − ∆T̂ (e)
)

aT̂
L(e, â) +

(
1 − ∆T̂ (e)

2

)
∆T̂ (e)

=
(

1 − ∆T̂ (e)
)

C T̂ (e) · â

+
(

1 − ∆T̂ (e)
)

BT̂
L (e) +

(
1 − ∆T̂ (e)

2

)
∆T̂ (e).

10



Noting the definition of K T̂ and M T̂ , we see that (i) holds for T̂ .

And, for (ii), W T̂ +1
R (a) = a · E

[
η̃T̂
]

+ E
[
δt̃T̂ W T̂

R

(
aT̂ ((ẽT̂ , a), IT̂ )

)]
= a · E

[
η̃T̂
]

+ E
[
δt̃T̂

{
HT̂

(
K T̂ (ẽT̂ ) · a + M T̂ (ẽT̂ )

)
+ J T̂

}]
,

by composing linear functions

= a ·
(
E
[
η̃T̂
]

+ E
[
δt̃T̂ · HT̂ · K T̂ (ẽT̂ )

])
︸ ︷︷ ︸+E

[
δt̃T̂

(
HT̂ · M T̂ (ẽT̂ ) + J T̂

)]
︸ ︷︷ ︸

:= HT̂ +1 := J T̂ +1, by definition.

This completes the inductive step and thus the proof.

Lemma B.2 (Inductive Step). Take any T ≥ 2. Suppose the statement of Proposition 3 holds for every

τ ≤ T − 1. Then, the statement also holds for T.

Proof. Given the inductive hypothesis, there is an outcome-unique equilibrium in cut-off strategies for

foresight horizon of length T − 1. Let σ be the profile played therein. As before, we continue to write η̃τ to

be the efficiency life of the agreement which is in place while τ future agreements remain on the foresight

horizon, and let t̃τ be the number of periods this agreement is in place. It remains to be shown that the

proposal functions with a T foresight horizon are linear and unique in any equilibrium.

The argument is analogous to the proof of the base case in the main text. Consider e ≤ (1 − δ)ST −1. As

in Equation 17, a new agreement a is acceptable to both players at p̂ = (e, â) if and only if

W T
i (a) ≥ uxi(p̂) + δE[V T

i (β̃1e, â|σ)].

Let yT
R(e, â) and yT

L(e, â) be the minimal (maximal) policies accepted by R and L, respectively whenever

e ≤ (1 − δ)ST −1. We have then

W T
R (yT

R(e, â)) = eâ + δE[V T
R (β̃1e, â|σ)] WL(yT

L (e, â) = e(1 − â) + δE[V T
L (β̃1e, â|σ)] (26)

From Proposition 1, agreement occurs in any equilibrium in the ensuing period should it not occur in

the current one. Hence,
∑

i∈{R,L} V T
i (β̃1e, â|σ) = ST −1 for any realization of β̃1. We can thus express the

equation for L in Equation 26 as

ST −1 − W T
R (yT

L (e, â)) = e − eâ + δ
(

ST −1 − E
[
V̂ T

R (β̃1e, â)
])

W T
R (yT

L (e, â)) = (1 − δ)ST −1 − e + W T
R (yT

R(e, â), by substitution from Equation 26

=⇒ W T
R (yT

L (e, â)) − W T
R (yT

R(e, â)) = (1 − δ)ST −1 − e (27)

11



Finally, by Lemma B.1, linearity of W T
R (·) allows us to rewrite the left-hand side of Equation 27 as

HT · (yT
L (e, â) − yT

R(e, â)) = (1 − δ)ST −1 − e.

By Lemma B.1 and indutive hypothesis, W T
R is increasing so that R (L) will prefer greater (lesser)

agreements. That is, aT
R(e, â) = yT

L (e, â) and aT
L(e, â) = yT

R(e, â). This immediately yields

∆T (e) := aT
R(e, â) − aT

L(e, â) = (1 − δ)ST −1 − e

HT
, (28)

a function only of e. The previously proven structure of cut-off equilibrium with foresight horizon T

(Proposition 1), then allows us to derive aT
L(e, â) as the solution to W T

R (aT
L(e, â) = eâ + δE

[
V T

R (β1e, â)
]

.

Using again Lemma B.1,

W T
R (aT

L(e, â)) = eâ + δE
[
W T

R (aT ((β̃1e, â), I1))
]

, since we have a cut-off equilibrium. Thus,

HT aT
L(e, â) + J T = eâ + δE

[
W T

R (aT
L(β̃1e, â)) +

(
1 − aT

L(β̃1e, â) + aT
R(β̃1e, â)

2

)
HT · ∆T (β̃1e)

]
= eâ + δE

[
HT · aT

L(β̃1e, â)
(
1 − ∆T (β̃1e)

)
+
(

1 − ∆T (β̃1e)
2

)
HT ∆T (β̃1e)

]
+ δJ T .

Rearranging gives us

aT
L(e, â) = eâ

HT
+ δE

[(
1 − ∆T (β̃1e)

2

)
∆T (β̃1e)

]
− (1 − δ)J T

HT
+ δE

[(
1 − ∆T (β̃1e)

)
aT

L(β̃1e, â)
]

Note that the above equation has an aT
L(β̃1e, â) term on the right-hand side. This gives us a recursive

formulation of aT
L(β̃1e, â). Reapplying this recursive formula allows us to obtain

aT
L(e, â) =

 ∞∑
i=0

δi · E

 i∏
j=1

(
1 − ∆T

(
j∏

k=1
β̃k · e

))
β̃j

 e

HT︸ ︷︷ ︸
·â+

CT (e)
∞∑

i=1
δi · E

[
i−1∏
j=1

(
1 − ∆T

(
j∏

k=1
β̃k · e

))
·


1 −

∆T
(∏i

k=1 β̃k · e
)

2

∆T

(
i∏

k=1
β̃k · e

)
− (1 − δ)J T

δHT


]

, (29)
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where the final term is BT
L (e). As before, aT

R(e, â) = aT
L(e, â) + ∆T (e). Thus, both parties’ equilibrium

proposals are uniquely determined by Equation 29, linear, and strictly increasing in â for e > 0, which follows

because CT (e) > 0 for all e > 0. Moreoever, the sum in the coefficient of CT (e) is less than HT , by noting

the recursive definitions in the prelude to Lemma B.1. Hence, CT (e) < 1, completing the proof.

Proposition 4 (Short-Run Dynamics). When e ≤ e∗
T , P[R wins] is decreasing in â and E[aT (e, â)] is

increasing in â.

Proof.

Pt[R wins] = P
[
mt >

aT
L(e, â) + aT

R(e, â)
2

]
= 1 − aT

L(e, â) + aT
R(e, â)

2 ,

where mt is the position of the t-period median voter. The first equality is a result of the median voter

selecting the policy she myopically favors, and the final equality results from the assumption that mt is

distributed uniformly on [0, 1]. By Proposition 3, aT
I (e, â) is increasing in â for I ∈ {L, R}, so that Pt[R wins]

is decreasing in â. The result for E[aT (e, â)] is direct from Lemma B.1, noting that the definition of KT (e)

means that KT ≥ 0 since CT ≥ 0 from Proposition 3. In both cases, monotonicity is strict when e > 0, again

from direct inspection of KT (e) and CT (e).

Proposition 5. Consider T ′ < T. Whenever e ≤ e∗
T ′ < e∗

T , ∆T (e) > ∆T ′(e). Moreover, ∆T (e) is strictly

decreasing in δ.

Proof. We prove the first part of the proposition first. To show this, note that it suffices to show ∆T +1(e) >

∆T (e) for e ≤ eT
∗ < e∗

T +1. By Equation 28 (See, proof of Lemma B.2),

∆τ (e) = (1 − δ)Sτ−1 − e

Hτ
.

Define

φ(e) := ∆T +1(e) − ∆T (e) = (1 − δ)
(

ST

HT +1 − ST −1

HT

)
+
(

1
HT

− 1
HT +1

)
e

on the domain e ∈ [0, (1 − δ)ST −1]. Importantly, φ is a monotonic function in e. At e = (1 − δ)ST −1,

∆T (e) = 0 by definition, while ∆T +1(e) = (1 − δ) (ST −ST −1)
HT +1 > 0. Hence, φ ((1 − δ)ST −1) > 0. To show that

φ(0) > 0, which therefore completes the proof, it suffices to show that HT > HT +1.

Note that Hτ expresses the time-averaged effect of the current partisan lean of policy on the stream of

agreements on a foresight of horizon τ . Hence, it is indeed intuitive that the more re-negotiations of policy
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are considered, the more dilute the current partisan-lean of policy becomes on the full stream of agreements.

To see this concretely, we can compare HT to HT +1 for a particular realization of efficiency shocks β = {β̃}—

HT (β) = 1 + δβ̃1 + . . . + δt̃T KT −1

 t̃T∏
i=1

β̃i

 · HT −1

= 1 + δβ̃1 + . . . +

1 − ∆T −1

 t̃T∏
i=1

β̃i


·

∞∑
i=t̃T

δi

 i∏
j=t̃T +1

1 − ∆T −1

 j∏
k=t̃T +1

β̃k

 t̃T∏
i=1

β̃i

 β̃j

 t̃T −1∏
i=1

β̃i


by substituting KT −1(e) =

(
1 − ∆T −1(e)

)
CT −1(e) from the recursive definitions preceding Lemma B.1 and

further using the derivation of CT −1(e) from Equation 29. It then follows that

HT (β) > 1 + δβ̃1 + . . . +

(
1 − ∆T

(
t̃T∏

i=1

β̃i

))
∞∑

i=t̃T

δi

 i∏
j=t̃T +1

1 − ∆T

 j∏
k=t̃T +1

β̃k ·

(
t̃T∏

i=1

β̃i

) β̃j

( t̃T∏
i=1

β̃i

)

> 1 + δβ̃1 + . . .

+

1 − ∆T

t̃T +1∏
i=1

β̃i

 ∞∑
i=t̃T +1

δi

 i∏
j=t̃T +1+1

1 − ∆T

 j∏
k=t̃T +1+1

β̃k ·

t̃T +1∏
i=1

β̃i

 β̃j

t̃T +1∏
i=1

β̃i


= HT +1(β).

Because e∗
T +1 > e∗

T , it follows that t̃T +1 ≤ t̃T . This accounts for the second inequality. That is, with a

foresight horizon of T + 1, the first agreement arrived at in the game will be in force for a weakly shorter

duration than with a foresight horizon T , given the same realization of shocks β :=
{

β̃
}

. With larger initial

agreement duration, by inspection, each element of the sequence
(∏j

i=1 β̃j

)∞

j=0
is being multiplied by a larger

number in the sum above. Taking the expectation over the sequences β gives us HT > HT +1. As argued

above, this directly implies ∆T +1(e) > ∆T (e), completing the proof of the first part of the proposition.

We now show that ∆T (e) is decreasing in δ for arbitrary T . Note that

∂

∂δ
∆T (e) = ∂

∂δ

[
(1 − δ)ST −1 − e

HT

]
=

∂
∂δ e∗

T · HT − ∂
∂δ HT · (e∗

T − e)
(HT )2 . (30)

From Proposition 2, we have shown that ∂
∂δ e∗

T < 0, so that in order for the expression in Equation 30 to

be negative, we need only show ∂
∂δ HT > 0. To complete the proof, we demonstrate this auxiliary claim
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inductively on T . For the base case T = 1,

∂

∂δ
H1 = ∂

∂δ
S0 = β

(1 − δβ)2
> 0.

Suppose ∂
∂δ HT > 0. We show that this holds for T + 1 as well. Let t∗ = min

{
t :
∏t

j=1 β̃j ≤ z
}

and define

for convenience

K̂T (z) := E

δt∗
· KT

 t∗∏
j=1

β̃j

 . (31)

By definition,

HT +1 = N(eT
∗ ) + K̂T (e∗

T )HT .

Hence,

∂

∂δ
HT +1 = ∂eT

∗
∂δ

(
N ′(e∗

T ) + ∂

∂e
K̂T (e∗

T )HT

)
+ ∂

∂δ
HT K̂T (e∗

T )

>
∂eT

∗
∂δ

(
N ′(e∗

T ) + ∂

∂e
K̂T (e∗

T )HT

)
, (32)

where the inequality follows from the inductive hypothesis. We use again the notation that gk represents the

distribution over any k-prodcut of i.i.d. random variables drawn from the underlying distribution F that

governs β̃. By definition Equation 31,

K̂T (z) = δ

∫ z

0
KT (y)g1(y) dy + δ2

∫ 1

x=z

∫ z
x

y=0
KT (xy) · g1(y)g1(x) dy dx

+ δ3
∫ 1

x=z

∫ z
x

y=0
KT (xy) · g1(y)g2(x) dy dx + . . .

By convention, let g0 := 0. Applying the Leibniz rule gives us

∂

∂e
K̂T (z) = δKT (z)g1(z) +

∑
t≥1

δt+1
[
−gt(z)

∫ 1

0
KT (z · y)g1(y) dy + KT (z)

∫ 1

x=z

1
x

g1

( z

x

)
gt(x) dx

]

= δKT (z)g1(z) +
∑
t≥1

δt+1
[
−gt(z)

∫ 1

0
KT (z · y)g1(y) dy + KT (z)gt+1(z)

]
=
∑
t≥0

{
δt+1 (−gt(z)E

[
KT

(
β̃t+1 · z

)]
+ KT (z)gt+1(z)

)}
, (33)

The second equality results from using the definition of the partial distribution function of a product of

independent random variables. Utilizing Equation 33 and substituting Equation 25 for N ′(e∗
T ) allows us to
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write

N ′(e∗
T ) + ∂

∂e
K̂T (e∗

T )HT = −e∗
T ·
∑
t≥1

δtgt(e∗
T ) + HT ·

(
KT (e∗

T ) − δE
[
KT (β̃ · e∗

T )
])

·
∑
t≥1

δtgt(e∗
T ), (34)

where β̃ is any shock drawn from the distribution F . By directly substituting in the form of KT (e),

E
[
KT (e∗

T ) − KT (β̃ · e∗
T )
]

=
∞∑

i=0
δiE

 i∏
j=0

(
1 − ∆T

(
j∏

k=0
β̃k · e∗

T

))
β̃j

 e∗
T

HT
−

∞∑
i=0

δi+1E

 i∏
j=0

(
1 − ∆T

(
j∏

k=0
β̃k · β̃e∗

T

))
β̃j · β̃

 e∗
T

HT
(35)

Note that for each i, the (i + 1)th summand in the former sum is equal to the ith summand in the latter sum

of Equation 35. Hence, all but the first summand in the former sum remains when we evaluate this difference.

We thus obtain

E
[
KT (e∗

T ) − KT (β̃ · e∗
T )
]

= eT
∗

HT

Substituting back into Equation 34 gives

N ′(e∗
T ) + ∂

∂e
K̂T (e∗

T )HT = 0.

Therefore, Equation 32 straightforwardly gives ∂
∂δ HT +1 > 0, as desired.

B.2 Proofs for Section 4.3

Proposition 6 (Long-Run Policy Dynamics). Let (LT )N (F ) be the distribution of policies after N

agreements have been reached between agents with foresight horizon T , when the initial agreement is drawn

from distribution F . Then, there exists distribution G∗, symmetric about 1
2 , such that for any F , as N → ∞,

(LT )N (F ) converges to G∗.

Proof. Step One. First, I show that the policy operator acts as a contraction, in expectation. Consider two

different policies x, y ∈ [0, 1]. Without loss of generality, assume x < y, and let πT
i (e, z) be the probability

that i wins the election at state ((e, z), T ), for e < e∗
T . Denote ẽT the (stochastic) efficiency at which revision

occurs, and H its cdf. We then have

E
[∣∣aT (ẽT , x) − aT (ẽT , y)

∣∣] =
∫

[0,e∗
T

]

{ ∣∣aT
L(eT , x) − aT

L(eT , y)
∣∣ · πT

L (x, eT ) +
∣∣aT

R(eT , x) − aT
R(e, y)

∣∣ · πT
R(y, eT )

+
∣∣aT

R(eT , x) − aT
L(eT , y)

∣∣ · (1 − πT
L (x, eT ) − πT

R(y, eT ))
}

dH(eT )
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=
∫

[0,e∗
T

]

{
CT (eT ) · |x − y| ·

(
πT

L (x, eT ) + πT
R(y, eT )

)
+
∣∣aT

R(eT , x) − aT
L(eT , y)

∣∣ · (1 − πT
L (x, eT ) − πT

R(y, eT ))
}

dH(eT )

≤ E
[
CT (ẽT )(1 + ∆T (ẽT ))

]
· |x − y|, by using the expressions for πT

i (z, e)

≤
(
1 − E[BT

R(ẽT )2]
)

· |x − y|.

Thus, the policy operator acts as a contraction in expectation; over time, the expected distance between

policy outcomes that stem from x and y grows closer by factor less than α := 1 − E[BT
R(ẽT )2] < 1.

Step Two. Next, consider any two distributions F and G on [0,1] from which the initial policy in

the sequence of agreements will be drawn.15 I show that the operator LT is a contraction mapping. Let

ξ ∈ [0, e∗
T ] × {L, R} := X be a particular realization of (ẽT , IT (ẽT )).

∫ 1

0
|LT (F )(z) − LT (G)(z)| dz =

∫ 1

0

∣∣∣∣∫
X

LT (F )(z|ξ) − LT (G)(z|ξ) dH(ξ)
∣∣∣∣ dz

≤
∫ 1

0

∫
X

|LT (F )(z|ξ) − LT (G|ξ)| dH(ξ) dz, by the Cauchy-Schwarz inequality

=
∫

X

∫ 1

0
|LT (F )(z|ξ) − LT (G|ξ)| dz dH(ξ)

=
∫

X

∫ 1

0

∣∣LT (F |ξ)−1(t) − LT (G|ξ)−1(t)
∣∣ dt dH(ξ), (36)

where the final equality in the above series transforms the Riemann-Stieljes integral into the corresponding

Lebesgue integral. I integrate over the differences between “percentiles” of the distributions LT (F ) and

LT (G), conditional on a particular realization, ξ ∈ X. Note that conditional on the realization ξ, each

percentile of the transformed policy distributions has the same relative ordering as the percentiles of the

initial distribution F and G. This is because aT
I (eT , ·) is monotone for fixed ξ = (eT , I). Hence,

∣∣LT (F |ξ)−1(t) − LT (G|ξ)−1(t)
∣∣ =

∣∣aT
I (eT , F −1(t)) − aT

I (eT , G−1(t))
∣∣ , where ξ = (eT , I)

≤ α · |F −1(t) − G−1(t)|, from work done in Step One.

Hence, substituting this expression into Equation 36, we now have

∫ 1

0
|LT (F )(z) − LT (G)(z)| ≤

∫
X

∫ 1

0

∣∣LT (F |ξ)−1(t) − LT (G|ξ)−1(t)
∣∣ dt dH(ξ)

≤
∫

X

∫ 1

0
α · |F −1(t) − G−1(t)| dt dH(ξ)

15With apologies, I am abusing notation here since F and G have been previously been used for distributions
corresponding to the decay shocks to the efficiency of policy. Here, they assume no such contextual meaning.
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= α

∫ 1

0
|F −1(t) − G−1(t)| dt

= α

∫ 1

0
|F (z) − G(z)| dz,

transforming the Lebesgue back into the Riemann-Stieljes integral. We now have that since α < 1, LT is a

contraction mapping for any T ∈ N over the complete metric space of probability distributions on X, itself a

complete metric space. We can therefore apply the Contraction Mapping Theorem to conclude that there

exists a unique distribution G∗ such that for any initial distribution F , (LT )N (F ) converges to G∗ as N → ∞.

If we start with degenerate distribution F that places probability 1 on 1
2 , then at each step N of the process

(LT )N (F ), the resulting distribution will be symmetric about 1
2 . Hence, G∗ is symmetric about 1

2 .

C A Micro-Foundation for Limited Foresight
As discussed in Section 2, negotiators exhibit limited foresight when they give import to only a finite number

of downstream agreements that result from the current implementation of policy. A natural way this behavior

arises is through the inability of agents to fully account for the impact current policy will have on optimal

choices at future decision nodes. Agents respond by truncating the dynamic linkage of downstream agreements

to a chain of length T .

C.1 Endogenizing Foresight in Equilibrium

To illustrate how this may happen, suppose the status quo is (e, â) with incumbent I. For a foresight horizon

T , the proposal functions of the parties {aτ
i }T

τ=1 are well-defined at those states at which agreement is reached,

within any equilibrium σ.

(1) The agreement reached in the current state has only one possibility— aT
I (e, â)— given the information

set of the agents.

(2) The subsequent agreement that is arrived at on the projected path of play of the agents, on the other

hand, is uncertain. This is given by aT −1
IT −1

(ẽT −1, aT
I (e, â)), where the uncertainty is over both the eventual

incumbent IT −1 when this agreement is hatched, as well as the efficiency level, ẽT −1 at which this occurs.

(3) Continuing along, the next agreement arrived at is aT −2
IT −2

(
ẽT −2, aT −1

IT −1
(ẽT −1, aT

I (e, â))
)

. Here, there is

uncertainty on four dimensions: the incumbent IT −2 and the efficiency level ẽT −2 when this agreement

is made, along with the incentives induced by the previous agreement, aT −1
IT −1

, which itself encapsulated

uncertainty along two dimensions.
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Clearly, there are more possibilities as one projects agreements further downstream from the current negotiation.

In particular, uncertainty inherent in one negotiation continues to compound when considering all agreements

whose outcomes are dependent on its resolution.

Formally, given a foresight horizon T , and initial state ((e, â), T ) and incumbent I, we let X(T +1)−τ ((e, â), I)

be the set of possible agreements reached τ re-negotiations from the present. That is, a ∈ X(T +1)−τ ((e, â), I)

if and only if there exists some sequence of {ẽτ ′}T −τ
τ ′=T and {Iτ ′}T −τ

τ ′=T such that

a = aT −τ
IT −τ

(
ẽT −τ , aT −τ+1

IT −τ+1

(
ẽT −τ+1, . . .

))
in any given equilibrium σ. We can now define the following notion of strategic complexity in the problem

faced by a decision-maker by foresight horizon T :

Definition C.1. For given equilibrium σ, the total statistical entropy over future agreements within a foresight

horizon T is denoted by

ET ((e, â), I) := −
T∑

τ=1

 ∑
x∈X(T +1)−τ ((e,â),I)

P(x) · lnP(x)

 . (37)

This definition, of course, is analogous to the standard definition of entropy in an information theory

setting from Shannon (1948). Here, Shannon entropy is summed over each of the agreements up to T links

from the present decision node. Since the sets X(T +1)−τ themselves depend on the equilibrium σ, ET ((e, â, I)

is itself an equilibrium object.

I introduce also a cognitive constraint B ∈ (0, 1) for agents that represents the degree of uncertainty

they are able to accurately incorporate within their maximization problem. Requiring that in equilibrium,

ET ((e, â, I) not exceed B thus captures the generic inability of negotiatosr to consider the infinite chain of

agreements that flow from the current one. This requirement is delineated in the following refinement of our

earlier notion of equilibrium—

Definition C.2 (Endogenous Foresight Equilibrium). Given a cognitive constraint B, exponential

discount factor δ, and stochastic decay shock β̃, an endogenous foresight equilibrium of the game is given by

strategies σT
i (as given in Definition 2.3) for i ∈ {R, L} and a foresight horizon T such that

(1) The strategy profile σ := (σT
L , σT

R) is a Markov perfect equilibrium

(2) The foresight horizon T is the maximal T ′ such that for each (e, â) at which agreement occurs under σ

and every incumbent I,

ET ′
((e, â), I) ≤ B
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We can think of Definition C.2 as follows: the analysis within the main text provides a roadmap for

computing equilibrium strategies for each foresight horizon T ; the cognitive restraint B thus selects the

unique one of these equilibria that is consistent with parameter B, using (2) above. Finally, note that the

uniqueness of equilibrium we derived in Proposition 4 for the legislative bargaining setting continues to hold

under this alternative definition. This is because, since there is a unique equilibrium for each foresight horizon

T , the unique endogenous foresight equilibrium equilibrium is given from the mapping from B → T that is

induced by (2) in Definition C.2.

C.2 Discussion

Under this endogenization of the foresight horizon, the strategic setting of negotiations can have a large

impact on the foresight horizon of agents, and thus on the outcome.

(a)

(b)

Figure 7: Total statistical entropy increases due to uncertainty over both the incumbent at the time of a
break-through in negotiations along with that over the efficiency of policy at any future of time.

For illustration, consider legislative bargaining. Various situations are shown in Figure 7. The bargaining
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game can be trivial, in the sense that decisions are made by a dictator D in each period; here, there is never

any strategic complexity, since in each period, the dictator simply implements her ideal point, a∗. Given this

behavior, it easy to see that for any T ∈ N, and from any status quo policy p̂, ET ((e, â), D) = 0.

We might also consider a democracy in which there is single-party control over legislative institutions;

here, the opposition does not have an effective means to oppose legislation. This situation mirrors the United

States Congress in the 1960’s and early 1970’s when Democrats controlled a filibuster-proof majority in the

Senate along with a majority in the House of Representatives. If the shocks β̃ were deterministic, as in Figure

7(a), then there would be no uncertainty within the entire chain of agreements passed since agents are certain

about the incentives— the status quo policy and the identity of the incumbent— they will face in each of the

relevant decision nodes. Hence, uncertainty only exists through the randomness of β̃.

Finally, in a competitive democracy, such as the one that has existed in the United States from 1994

until the present,16 the entropy is largest. Here, uncertainty accumulates not only through uncertainty over

the identity of the incumbent, but also through uncertainty over the incentives that any incumbent would

face when β̃ is non-deterministic.

Under Definition C.2, ceteris paribus, the foresight exhibited by politicians is more restricted when the

environment they face is more electorally competitive. As the incidence of gridlock is increasing with more

limited foresight (Corollary 1), we then have a straightforward predicted relationship: as uncertainty over

control of legislative institutions increases, gridlock also increases. This is among the most important causes

of modern-day U.S. gridlock posited by political scientists— seminal work in this literature includes Lee

(2016), Binder (1999), among others.

16In 1994, Republicans gained control of the House of Representatives for the first time in five decades
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