
B Comparative Statics

Consider now the general case in which the incumbent might come back to power after 

being ousted. More specifically, as in Ferejohn (1986), assume that, when a politician is

out of office, she returns to power with probability � 2 [0, 1] whenever the new incumbent 

is ousted.

The following proposition provides a partial analog to Ferejohn’s Propositions 4 and 5.

Proposition D (Comparative Statics).

(i) Assume either � = 0 or �(a) ⌘ a. Then the voter’s payoff U from the optimal ret-

rospective rule is increasing in W . In the latter case, it is exactly proportional to

W .

(ii) The voter’s maximized payoff U is higher if � = 0 than if � takes any positive value in

a neighborhood of 0.

Proof. For part (i), suppose first that � = 0. Then, for any rule K, it is clear that the

officeholder’s value function Vt at any t is increasing in W , as her payoff is increasing

in W for any fixed strategy she may follow. By (2), it follows that ✓⇤
t
(K) is a decreasing

function of W for all t, and hence U(K) is increasing in W from any rule (in particular the

optimal one).

Suppose now instead that �(a) ⌘ a. In this case, the problem faced by the officeholder

given a pair (W,K) is homothetic in W and K: if (W,K) is multiplied by ↵ > 0, the

officeholder’s set of payoffs attainable by different strategies is also multiplied by ↵ (as

multiplying all effort choices by ↵ achieves exactly this, and the process is reversible);

thus the optimal payoffs in the continuation at each t, Vt, are also multiplied by ↵, and
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the best-response efforts at(✓) are multiplied by ↵ for all ✓, with the thresholds ✓⇤
t
(K)

remaining fixed. It follows that the voter’s attainable payoffs are also proportional to W :

if W is multiplied by ↵, she can multiply her equilibrium payoff by ↵ by also scaling the

rule K by the same factor.

For part (ii), let us rewrite the officeholder’s Bellman equation (15) for the general case of

� � 0. Her utility when in and out of office, respectively, is
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where F (✓⇤
t
) is the probability that the new incumbent forfeits her position, giving the

officeholder a chance � to return. Denoting �Vt = V I
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Assume that � 2 [0, 1��

�
]. This assumption guarantees that �Vt � 0 for all t.15 Indeed,

�
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 ��Vt+1 for all ✓ � ✓⇤
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by (2), so (24) implies
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Denote by V I

t
(K,�), V O

t
(K,�), �Vt(K,�) the officeholder’s payoffs as a function of the

15For high values of �, it is in principle possible to have �Vt < 0, so that the officeholder in period t� 1
might prefer not to be reelected. Intuitively, this could happen if Kt is very high, Kt0 is low for t0 > t, and �
is high. Then being in power in period t likely means being out of power forever after, whereas being out of
power in period t allows the officeholder to come to power in period t+ 1 and stay there for a long time.
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parameters K, �. We will now argue that a higher � weakens the officeholder’s incentives

for effort:

Lemma 2. If �0  1��

�
, �Vt(K,�0)  �Vt(K, 0) for all t, K.

Proof. We begin by showing that, if �0  1��

�
and �Vt+1(K,�0)  �Vt+1(K, 0), then

�Vt(K,�0)  �Vt(K, 0).

Let Ṽ I
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where we have used that�Vt+1(K,�0)  �Vt+1(K, 0)by assumption and that�Vt+1(K,�0) �

0 because �0 is low enough. More generally, the same argument shows that, if 0 <

�Vt+1(K,�0) ��Vt+1(K, 0) = M , then �Vt(K,�0) ��Vt(K, 0)  �M . Since �Vt0  W

1��
in

all cases, we can conclude that either �Vt(K,�0)  �Vt(K, 0) (if the same inequality holds

for any t0 > t) or, if not, then

�Vt(K,�0)��Vt(K, 0)  �t
0�t(Vt0(K,�0)��Vt0(K, 0))  �t

0�t
W

1� �

for arbitrarily high t0, which also implies the �Vt(K,�0)  �Vt(K, 0).

The result now follows immediately from Lemma 2: if �Vt is lower at all t for � 2 (0, 1��

�
)

than for � = 0, then any fixed rule K extracts less effort from the officeholder in the

3



former case, and so the voter’s payoff must also be lower when comparing the respective

optimal rules.

C Teaching Guide for Proposition C

Ferejohn’s model is often the first formal model of accountability taught to graduate

students in political science. With that in mind, this Section provides a guide to proving

the main claims of Proposition C that should make the analysis digestible for first or

second-year graduate students.

(i) Note that the voter’s welfare given a retrospective rule K can be written as U(K) =
P1

t=0 �
tKt(1� F (✓⇤

t
(K))). (Equation 3’)

Note that, under the assumptions of Proposition C, this simplifies to U(K) =
P1

t=0 �
tKt(1� ✓⇤

t
(K)).

(ii) Differentiate the expression for U(K) with respect to Kt for each t to obtain the

relevant FOC for each performance threshold:
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(iii’) Note that Equation 8 reduces to
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Show that this, combined with Equation 2, implies

@✓⇤
t
(K)

@Kt+1
= � Kt

�V I2
t+1

ln(✓⇤
t+1) = �✓⇤2

t

�

Kt

ln(✓⇤
t+1).

4



More generally, for s < t, repeated application of Equation 8 yields @V
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(iv) Combine (ii), (iii) and (iii’) to obtain
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for all t.

(v) Write down the equations obtained for the first few values of t:

0 = 1� 2✓⇤0

0 = 1� 2✓⇤1 + ln(✓⇤1)✓
⇤2
0

0 = 1� 2✓⇤2 + ln(✓⇤2)(✓
⇤2
0 (1� ✓⇤1) + ✓⇤21 )

0 = 1� 2✓⇤3 + ln(✓⇤3)(✓
⇤2
0 (1� ✓⇤1)(1� ✓⇤2) + ✓⇤21 (1� ✓⇤2) + ✓⇤22 )

. . .

Rewrite the system by defining At =
P

t�1
s=0 ✓

⇤2
s

Q
t�1
l=s

(1 � ✓⇤
l
) to obtain Equations

(13)–(14) as shown in the proof of Proposition C:
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A0 = 0 0 = 1� 2✓⇤0

A1 = ✓⇤20 + A0(1� ✓⇤0) = ✓⇤20 0 = 1� 2✓⇤1 + ln(✓⇤1)A1

A2 = ✓⇤21 + A1(1� ✓⇤1) 0 = 1� 2✓⇤2 + ln(✓⇤2)A2

A3 = ✓⇤22 + A2(1� ✓⇤2) 0 = 1� 2✓⇤3 + ln(✓⇤3)A3

. . .

Convince yourself that this recursive system pins down ✓⇤
t

and At for all t. Moreover,

defining T implicitly by 0 = 1 � 2T (x) + x ln(T (x)) and defining S by S(x) = (1 �

T (x))x+ T (x)2, convince yourself that ✓⇤
t
= T (At) for all t, and At+1 = S(At) for all t.

The steps up to this point cover the preliminary results before Proposition C as well

as the first main step of the proof of this proposition (“pinning down ✓⇤
t
”). The next

step is to show that the sequence (✓⇤
t
)t�0 is decreasing in t.

(vi) To prove this result analytically, show by using the definitions of S and T that (a) S is

a stricty increasing function; (b) T is a strictly decreasing function; and (c) A1 > A0.

Deduce that At+1 > At for all t and hence ✓⇤
t+1 < ✓⇤

t
for all t.

You may like to check the result numerically. Here are two ways. First, using the

recursive system from (v), you may solve numerically for as many elements of the

sequence (✓⇤
t
)t�0 as desired, and check that the sequence is decreasing. Second, you

may plot the functions S and T to verify that they are increasing and decreasing,

respectively. Both are simple coding exercises.

(vii) Take the limit of Equations (13)–(14) to characterize ✓⇤1.

(viii) The analytical proof that (Kt)t�0 is decreasing is involved. The interested reader

may follow the argument given in Proposition C.
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However, the result is easy to check numerically. Indeed, you only need to follow

the logic from Equation (15) up to Equation (18). If you have solved for (✓⇤
t
)t�0

numerically on a computer, you can use Equation (18) to then compute Kt for as

many values of t as you like and check that the sequence is decreasing.

The only complication is that the formula for Kt involves values of ✓⇤
s

for all s � t.

Of course, you can only calculate a finite number of values of ✓⇤
s
. However, if you

are using a value of � not too close to 1, you can approximate Kt arbitrarily well by

replacing tail values of ✓⇤
s

for s >> t with ✓⇤1.
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