Online Appendix: Summaries of the 18 Core Studies

One of the earliest studies looking for a wind turbine effect on property values was done in the
USA by Ben Hoen and a series of co-authors (Hoen et al. (2011)). The study uses 7459 sales
transactions taken from within 10 miles of 24 facilities in nine states.* The study period is 1996
to 2007 and the coverage is broad, ranging from states in the North Pacific, Upper Midwest,
Texas and Oklahoma, and the Northeast. These study areas were chosen purposefully to be
both diverse and representative of the different kinds of wind facilities existing in the United
States, and the study includes transactions up to several years before and after announcement
and construction of the turbines. This timing dimension is a focal point of the study, and the
authors have a good distribution of transactions across the different time periods. The study
uses field observation for each transaction to judge the view of turbines for all properties in the
sample, in addition to continuous distance and distance band measures. As is common in this
earlier literature, the authors admit to a paucity of sales data close to the wind farms — 128
transactions within one mile and post-construction (PC) and fewer within one mile and in the
post-announcement/pre-construction (PAPC) period. Keeping in mind that these data are
spread over 24 different settings, in any individual community there are just a few transactions.
A weakness of this analysis is that the authors pool the facilities and associated transactions
into one dataset. The pooling helps improve the distribution of sales transactions across time
periods and proximity to turbines, but might be masking heterogeneous impacts across
facilities. Also, they do not employ a DiD analysis. They find no impacts from view and limited
impacts from their distance measures in the PAPC period.

Hoen et al. (2015) follows a strategy similar to the 2011 study. They use a larger sample, a more
rigorous methodological approach, but now only consider distance effects (measured in bands).
The sample covers 51,276 transactions within 10 miles of wind farms in nine states (27
counties). They only include counties with at least 250 transactions within 10 miles of a wind
turbine and the coverage of transactions near wind farms is better — 1198 sales within one mile
with 376 of these post-construction and 331 within one-half mile with 104 post-construction.
Again, these are spread over 27 different counties across the US, so at any single site the
numbers are much smaller. They use traditional hedonic specifications as well as spatial
econometric specifications in a DiD context using census tract fixed effects while also allowing
county specific coefficients on structural variables but still assuming that wind turbine effects
are homogeneous across the study areas. In their model controlling for spatial dependence,
they find statistically insignificant reductions in housing prices within % mile of wind farms PAPC
and PC. In their traditional hedonic specification and in all their robustness checks, they find no
statistically significant negative impacts. Again, given limited data at any given site they cannot
rule out such impacts at any particular facility, but they do have strong evidence that the
“average” or typical finding in this setting is limited.

Heintzelman & Tuttle (2012) consists of three different, but related, case studies in rural
Northern New York. Their transactions span 2000 to 2009 and include 6142, 3251, and 1938
transactions respectively. The data are configured such that a home in any of the three
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communities (counties) uses the distance to the closest wind turbine as an argument in the
hedonic price function. Since the analysis uses panel data and wind farms are constructed at
different times, the closest wind farm for any observation varies over time. The most distant
houses are 53 miles from the wind farms. The authors only consider distance in their analysis —
a continuous measure (1/distance) and distance bands (half mile increments out to three miles)
and the number of properties within three miles of a wind farm over the three cases is n=92,
118, and 251 — small relative to the full sample sizes. In a repeat sales analysis, sample sizes are
scaled down by approximately 1/3. Since compensation was given to many of the households
and/or communities in this study area, Heintzelman and Tuttle interpret the results in terms of
whether compensation was “complete” or not. So, a negative impact from the hedonic model
indicates under-compensation and a positive indicates over compensation.” They find significant
negative impacts in two of the three study areas with both the continuous measure of distance
and within some distance bands but, the bands do not give a strict monotonic decline in value
with proximity to a wind farm which is of concern. The repeat sales analysis has a similar but
somewhat weaker finding statistically. Again, like many earlier studies, the number of
observations close to the wind turbines is quite small, which means that the accuracy of
projecting impacts based on the distance variables is questionable. Important relative to the
pooled studies in this review, they test a model where they pool the three, objectively quite
similar, study areas into a single specification and reject the null hypothesis that the coefficients
are identical across studies. This provides evidence that pooling transactions associated with
multiple wind facilities in different areas may be problematic. In this particular case, the
turbines in one of the study areas, where no property value impacts were identified, were set
relatively far away from home clusters atop a plateau and, anecdotally, included a generous
compensation package for the community, while in the other areas the turbines were more
intermixed with the communities.

Vyn & Mccullough (2014) perform a single market difference-in-differences analysis similar to
Heintzelman and Tuttle (2012) in a rural residential/agricultural landscape in Ontario, Canada.
Their analysis considers a 133-turbine wind farm built in 2008 and the impacts on residential
(n=5414) and agricultural (n=1590) properties using sales data from 2000-2010. They are the
first study to include agricultural land in the analysis. Like others they express a concern for a
limited number of transactions in close proximity to the turbines in the post-turbine periods.
Their event dates are PA and PC. Unlike most, they consider two measures of PC (beginning of
construction and completion of construction). With beginning of construction as the event date,
they have 103 residential transactions within 5 km and 23 within 1 km. They use distance and
view to measure impacts and consider an interactive model with distance and view. This allows
the measure of view to have more intensity in closer proximity. Their view variable is a rating
(following Hoen (2009)) that ranges from 1 to 3 and increases as the share of the turbine(s) that
are visible rises, and is similarly based on field observation. A strength of this paper is the wide
variety of specifications, including continuous distance measures, distance bands in kilometers
(<1, 1-3, and 3-5), measures of turbine density, a spatial autoregressive model, repeat sales, all
in a difference-in-differences context. In none of their specifications do they find significant
impacts of the wind turbines, residential or agricultural. They call attention to low population

2 There was no formula or data for compensation by household, so it could not be explicitly incorporated into the
model.



density in the area of their application and note that this a common thread with Heintzelman
and Tuttle (2012), who find no impact in one of their three cases and it happens to be the case
where population density is lower.

Heintzelman, Vyn, and Guth (2017) is a bit of a hybrid between the Vyn and McCullough (2014)
paper and that of Heintzelman and Tuttle (2012) and focuses on a single industrial wind farm
with 86 turbines that affects two distinct markets separated by the U.S./Canada border. The
Wolfe Island wind facility is on a Canadian island in the St. Lawrence River that is visible from
many properties on the American side of the river. Most of the study area is rural, with a
significant population of seasonal/vacation home properties. The study includes 6,017
properties in the American market, and 2,262 in the Canadian market. Of these, less than 3% of
the parcels in Canada, and less than 1% of those in the USA had views of the turbines, and there
are only 47 parcel transactions within 5 miles PC in Canada and 58 in New York, with 39 and 15,
respectively, with views PC. The small numbers problem is acute in this study. View is
determined by field inspection of transactions within 5 miles of the turbines. The authors use a
standard difference-in-differences approach, but have to deal with a significant confounding
factor on the US side which is that those homes with the “best” views of the turbines are likely
to be waterfront or very close to the water. They address this using a waterfront variable
included in the model. The authors find significant PC effects for those homes with a view of the
turbines on the US side in the full sample, restricting to homes within 20 miles, and again within
10 miles of the turbines. They find some evidence of negative effects from a continuous
proximity (inverse distance) variable on the US side as well. Interestingly, they find no significant
effects on the Canadian market. They speculate that this heterogeneity could be caused by a
number of factors: compensation to landowners in Canada, inclusion in the siting process, a
larger portion of vacation homes in the US market, and the fact that waterfront vacation homes
on the Canadian side (largely on the island itself) may be more likely to face away from the
turbines even if they do have a view of the turbines.

Skenteris et al. (2019) look at the impacts of wind turbines on two different Greek islands, both
of which are popular tourist destinations. The two islands have 14 and 4 wind farms
respectively, and with 400 and 1416 transactions over the period 2006 to 2016. All of their
transactions are treated as if they are PC, so there is no causal identification (turbines are
reported to have been built between 2001 and 2008). They use both continuous distance and
distance bands to measure correlations, and find a significant negative effect of proximity to
wind turbines on one of the two islands. The distance bands suggest that this effect is limited to
be within 2km of the turbines. There is no measure of visibility. On South Evia, the island where
they find impacts within 2km of approximately 14%, the authors suggest that turbines are, in
general, in closer proximity to homes and less isolated from population centers, which likely
explains the significant impact.

Sunak and Madlener (2016) focuses on four small to medium sized wind facilities (5 to 26
turbines each) in a small region of Germany. They study PC impacts, with 905 of 2141 total
transactions occurring after construction, and consider view, proximity, and density of turbines
for each property. These dimensions of impact are combined into an index variable (VIL) ranging
from 1-6 where 1 indicates no view and 6 indicates an extreme view of, on average, 10 turbines



at close distance. Of the 905 post-turbine transactions, about 42% have at least a medium view
of turbines (VIL>3), while 32.8% have no view. This is a good amount of variation, and the
inclusion of both visibility and distance in a single measure helps to overcome the lack of
variation seen in so many studies that look at only one of these dimensions. Visibility is
determined through the use of a high resolution Digital Surface Model (DSM). Parcels are all
between 700m and 6km from the turbines. The prices used are land prices, separate from the
home values in the transactions, although the mechanism for how these land values are
calculated is unclear and there is some concern that they are not market-based. The empirical
approach in Sunak and Madlener (2016) is somewhat different from most other studies in
employing spatial econometric approaches including spatial lag and error models and a spatial
Durbin model. These approaches are also compared to the standard spatial fixed effects models
employed in most of the rest of the reviewed studies. They find generally negative and
significant impacts of having at least a medium view of turbines PC. The spatial econometric
approaches reveal some additional significant estimates relative to the non-spatial model at
VIL=4 and VIL=6, although the qualitative results are quite similar. Unfortunately, they do not
report results of decomposed proximity or view impacts for the purposes of comparison to
other studies.

Sunak and Madlener (2017) use a subset of the data used in the 2016 paper, and apply a
locally-weighted regression (LWR) technique which allows for coefficient estimates to vary over
space, using a nearest-neighbor weights matrix in the estimation. They compare this to a
standard fixed effects model. This study focuses on one farm with 9 turbines, 1405 property
sales each between 982m and 5.2km from the turbines, all of which happen PC, so this is not a
DiD approach, limiting causal identification. They do not use the VIL index here, but instead
continuous distance and proximity dummy variables. They again use a DSM model to estimate
visibility and include a visibility dummy variable and a count variable of visible turbines. They
find significant negative impacts for properties less than 1 km away (visible and not) and a
significant negative impact using the continuous distance variable in the standard models. They
do, however, suffer the usual small numbers problems with fewer than 1% of their observations
within 1km of a turbine. The LWR results, using continuous distance and number of visible
turbines variables, are hard to summarize (results are only displayed on maps), but similarly
suggest negative and significant impacts across the space and, unsurprisingly, these appear to
be stronger in close proximity and when more turbines are visible.

Jensen, Panduro, & Lundhede (2014) represents a larger study, more in Hoen et al. (2011, 2015)
style, looking at 24 study areas spread across Denmark, each containing property transactions
within 2.5 km of turbines, some of which occur before turbine construction (it is not clear how
many, and they do not attempt a DiD approach). In total, they include 12,640 transactions over
12 years from 2000-2011. They also employ spatial econometric approaches in the form of
spatial error and spatial autoregressive models. Like other studies, they test proximity and
visibility (using a DSM approach, as in Sunak and Madlener (2016, 2017)), but they also
explicitly investigate noise effects using an equation linking turbine characteristics and distance
to estimate noise effects under “ideal” conditions for noise transmission — the worst case noise
scenario. They do not report numbers of observations at various distances from turbines, but do
report that 33% of their observations have a view of the turbines. In addition, 68% of their



observations are modeled to experience turbine noise exceeding 20dB. This is impressive
coverage of affected parcels. They find that, simultaneously, both noise and visibility have
significant negative impacts on property values and that view effects are magnified by closer
proximity. Their qualitative results are unchanged by the spatial approaches as compared to
simple OLS, although the magnitudes of the visibility effects are substantially lower in the
spatial models. It is worth noting, however, that they do not report non-spatial fixed effects
models. The main contribution of this study is the explicit measurement of noise impacts which
most other studies simply imply through proximity measures.

Jensen et al. (2018) expands on the 2014 study with a larger sample of transactions, and the
inclusion of both on- and off-shore wind turbines with a large range of characteristics. They are
one of only three papers we are aware of that study offshore turbines. Although they only
partially report on their turbine data, they include turbines ranging in height from 22-140
meters and in capacity from 11-3000kW. They conduct separate analyses for the on- and
off-shore turbines, and separate analyses for primary and secondary (vacation) homes in each
of five separate markets. For the onshore turbines, they only have PC data, so they cannot make
any causal inference about the impact on property values. The econometric approach is a
spatial semi-parametric Generalized Additive Model (GAM) to help control for spatial
dependence and the usual endogeneity and omitted variables concerns. Impact of the onshore
turbines is measured in the number of turbines within 3km and a measure of turbine density
that increases with proximity in that same range, forgoing the more detailed measures of
impact used in the 2014 study. Including both impact variables in their models (which seems to
present a significant unnecessary collinearity risk) they find negative correlation with property
values for both number and density of turbines in all five regions, and almost all of these
coefficients are statistically significant for primary homes. For secondary homes they only
include the density variable and find significant negative correlations in three of five regions.
Overall, they have more than 85,000 observations for the onshore analysis, but these are split
into 10 separate analyses with numbers ranging from 408 to 25,301 observations per analysis.
The analysis of offshore turbines relies on a much smaller sample, still split between primary
and secondary homes (and run separately for the two farms), but has the advantage of
including both pre- and post-construction transactions, allowing for a DiD analysis. These
analyses focus on view impacts PC, and include 275/91/43/9 homes with turbine views out of
1611/703/2712/1316 total transactions respectively. Of these, still smaller numbers of homes
with views were traded after construction, so there is a small numbers problem in this study. It
isn’t clear how view was determined. The turbines studied in this analysis are between 3.5 and
9.5 km from shore and are comprised of a total of 162 turbines with hub heights of 80m. They
find no significant PC property value impacts from the offshore turbines.

Lang, Opaluch, & Sfinarolakis (2014) are the first to study impacts in a more densely populated
area, considering 10 separate wind power facilities in Rhode Island. Another difference between
their study and those that came before it is that, given the more urban/suburban setting, nine
of the facilities they study are single turbines and one is a cluster of three, so not traditional
industrial scale wind facilities.> The facilities include turbines on school grounds, residential

3 A related study using the same dataset by Gorelick (2014) generates very similar results.



communities, and mixed residential/commercial communities. The authors note that some are
“...coupled with an existing disamenity such as proximity to a highway or water treatment
plant.” They consider 48,545 transactions within 5 miles of a turbine and they have 584
transactions within % mile and 3254 within 1 mile. The PAPC and PC counts in the % mile range
are 75 and 74, which are low relative to the full sample but comparable to, or an improvement
on some other studies. Impact is measured using distance bands and view in separate hedonic
models. They field-verify viewsheds for transactions within two miles of the turbines and use
five categories to define view. They consider announcement and construction as events and use
a standard DiD approach, as well as a repeat-sales analysis. They find negative impacts in the
distance bands within three miles but all are statistically insignificant, small, and nonmonotonic
(failed to increase in impact moving closer to a turbine). This provides at best weak evidence of
impact. In the repeat-sales analysis they find a significant PAPC impact period in a % - 1 mile
distance band (5.9% price impact) but not in the other bands including the closer 0 — % distance
band. The authors obtain similarly insignificant results in considering the view of the turbines.
This analysis, along with Hoen & Atkinson-Palombo (2016) which we discuss next, provides
evidence that facilities with small numbers of turbines are less likely to have adverse property
value impacts.

Hoen & Atkinson-Palombo (2016) similarly study the impacts of small-scale wind farms (mostly
3-turbine farms or smaller) on residential properties in densely populated areas spread across
Massachusetts from 1998 to 2012. The analysis of more than 122,000 transactions is pooled
over 21 markets and includes properties in coastal, mountainous, and highly developed areas in
the state. There are a total of 41 industrial turbines included in the study. Compared to many of
the previous studies, they have a relatively large number of affected homes, with 1107
transactions within % mile of a turbine. Of these 230 are PC and 224 are PAPC. They consider
only proximity impacts, focused on the effects of being within ¥ mile of a turbine, PAPC and PC,
and their base control group extends to five miles from any turbines, including robustness
checks on both extents (within % mile and extending the control out to 10 miles). Controlling for
housing attributes and many locational amenities and disamenities, they first find strong
evidence that, as one might expect, turbines are more likely to be sited in areas with lower ex
ante property values. This endogeneity problem is a warning to the literature at large that
careful consideration must be taken to control for these effects. Using a DiD analysis to control
for this endogeneity, then, they find some limited evidence of impact in the PAPC period, but no
evidence of impacts in the PC period. Interestingly, they do find evidence of impacts from other
spatial variables including proximity to highways, beaches, power lines, and landfills, which
suggests that the method is valid and strengthens their case that the turbines in their study area
are not having an impact. It is important to note, again, however, that these turbines are not in
utility scale farms, but in much smaller clusters.

Vyn (2018) is in the same spirit of the larger studies covering a large land area in a single study,
in his case the Canadian province of Ontario. He uses 22,159 observations within 20km of a
wind turbine as his sample, covering 37 wind farms ranging from 3 to 110 turbines in rural
areas. By comparison to most other studies, Vyn (2018) has a good distribution of transactions
across PA/PAPC/PC periods and about 20% of the transactions are within 5km of the turbines.
This distribution allows for a robust estimate of property value impacts using a standard DiD



design. Impact is measured using distance bands between the transaction and the nearest
turbine, as well as a measure of turbine density. The novelty of this study is the use of an
additional policy variable to disaggregate the sample — whether or not a community has labeled
itself as an “unwilling host” community to wind turbines. This appears to be a bit of a
movement across Ontario where some communities have chosen to signal their unhappiness
with wind development through local non-binding resolutions. Importantly, the power to site
wind facilities is held not by the local community, but by the province. Overall, Vyn (2018) finds
negative and significant impacts from proximity across the province in both PAPC and PC eras,
but when these impacts are disaggregated into unwilling host communities and others, the
negative impacts are broader and more significant in unwilling host communities. Measured
impacts of turbine density are mostly only negative and significant in unwilling communities.
There is no information about the timing of the unwilling host designation relative to
announcement and construction of the turbines, so it is hard to know the direction of the
correlation between negative impacts and self-designation as an unwilling host.

The last four studies we consider in this review have in common their very large sample sizes
and geographic scales. Gibbons (2015) uses a large sample (1.7M transactions) from 2000-2011
for England and Wales to examine the impacts of nearly all wind developments in the study
region —some 148 wind farms ranging in size from 1 to 106 turbines. Included transactions are
those within 14km of wind facilities. The transactions are averaged at the post code level to
generate quarterly post code average prices over the sample period. He then uses a digital
elevation model to approximate visibility using post code and wind farm centroids. Visibility is
then interacted with a PC dummy variable and a series of proximity dummy variables to indicate
the effect of visibility on proximity at various distances. Two control groups are created to
compare to treated homes in the DiD analyses employing post code and temporal fixed effects.
In the first analysis, treated observations are compared to observations in post codes that will
be treated by the end of the sample period. This analysis essentially isolates the effect of
construction on a set of observations that will eventually have visible wind turbines. The second
analysis compares the same set of treated observations to observations that are in the same
proximity bands to operational turbines but are estimated to not have them in their viewshed.
This analysis isolates the effect of visibility (the spatial dimension) rather that construction (the
temporal dimension). Because of the scale of their dataset, this study does not suffer the small
numbers problem common in much of the literature. By using postcode averages as
observations instead of individual transactions, and calculating visibility approximately at the
same scale, there are many more observations in close proximity to turbines and within the
viewsheds. As a result, they identify 1,142 postcodes within 1km of a wind facility and 1,125 of
these are estimated to be able to view the turbines. It is important to recognize that the
aggregation, even at as small a scale as post code, and the approximation of viewsheds both
introduce error into their analysis although it isn’t clear in which direction this might bias the
estimates. They find consistent significantly negative impacts of visible and operational wind
turbines on property values in both of their analyses, and these are robust to various
specifications of control variables. They also include an analysis accounting for the size of the
wind facilities and find that larger facilities have larger negative impacts.



Droes and Koster (2016) use a similarly large dataset of some 2.2M transactions in the
Netherlands spanning 1985-2011 to study the impact of the 1,898 onshore turbines that have
been constructed in that period. They use a standard DiD analysis to explore PC impacts for
homes within 2km of turbines versus all other homes. They do not attempt any analysis of
visibility, nor do they attempt to find impacts beyond the 2km boundary. In addition to the large
dataset, what sets this study apart is the large number of robustness checks varying the fixed
effects approaches, the extent of the sample, and they use interaction terms to allow the effect
to vary over some different temporal subsamples, by home setting, and by the number of
turbines within the 2km treatment zone. Overall, this is perhaps the most comprehensive study
of wind turbine impacts on property values, and they find very consistent negative and
significant impacts across nearly all specifications of the analysis.

Eichholtz, Kok, Langen & van Vulpen (2018), use virtually the same dataset as Droes and Koster
(2016) to investigate the effects of all power plants, not just, but including, wind turbines. The
strength of the paper is the ability to take account of plant openings and closings, and to allow
for the direct comparison of impacts from wind facilities to other facilities including coal, gas,
and biomass. They use a traditional DiD approach focused on proximity, but define their
treatment and control groups carefully. In particular, they count all transactions within 2.5 km of
a power plant treated, then allow for a 1.5 km buffer distance of excluded transactions before
their control group starts at 4 km, and extends out to 20 km. This helps to prevent leakage of
impacts across the 2.5 km boundary from biasing estimated impacts. There is no estimate of
visibility or other impacts. In addition to the impacts of these various facilities, they also allow
the effects to vary based on the size of the plant (# of turbines in the case of wind) and on
whether or not the plant is in an urban setting. They use location fixed effects and standard
controls of home characteristics. They have more than 300,000 observations in their treatment
group, with more than 1.4 million in the full control group. In general they find that gas and
wind turbine openings have a negative impact on property values in both urban and non-urban
settings, while biomass plants have positive impacts in non-urban settings but negative impacts
in urban settings. Wind turbine effects are generally about half or less the magnitude of gas
plant effects. Closing effects are less significant (there are fewer closings than openings), in
general, but basically have the opposite impacts of plant openings. A repeat sales analysis also
provides similar results.

Similar to Eichholtz et al. (2018), Jarvis (2021) investigates not just wind turbines, but also solar
installations. In addition to measuring the presence of these renewable energy facilities, they
measure the effect of size. Their primary treatment variable is a difference-in-differences
measure of size of nearby facilities where proximity is measured with distance bins and size in
MW. They use a log-log specification so that they are measuring the change in property values
for a 1% change in installed capacity within a specified distance.



