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A. Proofs

This appendix provides the proofs of the results in Section 2.

The first proposition solves the firm’s capital structure problem before 

having found the pricing kernel. This is possible because we can deduce 

enough about aggregate dynamics in advance from the following lemmas. 

The first lemma formalizes the dynamics of output deduced in the text.

Lemma 1. Assume that firm value and optimal debt are l inear l inear in

output – V (i) = v(σ)Y (i) and B(i) = b(σ)Y (i) – and that b < v for all σ.

Then aggregate output, including entry and exit effects, obeys the stochastic 

differential equation:
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Y
= µY d t + d





Jt
∑

j=1
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(ut − 1)1{ j,+} + (dt − 1)1{ j,−}
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 . (17)

where µY = (µ+ ζ(I/Y )) includes the growth in the mass of firms due to

aggregate investment, and 1{ j,±} are indicators for the sign of the jth jump,

and ut = u(σt) is

Et

�

eϕ j |ϕ j > 0
�

and

dt = Et

�

eϕ j 1{ϕ j>ϕ?}|ϕ j < 0
�

=

∫ 0

ϕ?
eϕ dFϕ−(σt)

where ϕ? = ϕ?(σ) is the critical threshold for jumps below which firms



default.

Proof. Formally, the probabilistic structure of the model assumes a set of

i.i.d. firms indexed by m ∈ [0, M̄] where the interval is technically a dense limit

of increasing countable subsets.35 At time t, the set of firms that have come into

existence is indexed by the subinterval [0, Mt], where Mt < M̄ . For simplicity,

we take Mt to be nondecreasing in t, meaning that the “mass” Mt counts firms

with zero output (those that have exited). Also notice that the structure implicitly

imposes that the distribution of output (or any other characteristic) of entering

firms, i.e., those in [Mt , Mt+dMt), is the same as that of those that have previously

entered by time t.

With this set-up, the dynamics of Y before considering entry and exit follow

from a law of large numbers applied across firms at each point in time, as described

in the text.

We deduce the existence of a single default-inducing jump threshold for

all firms from the linearity assumption. (If no such threshold exists at t, take

ϕ?(t) = −∞.) The assumption b < v implies that, absent a jump, there is no

default due to changes in the aggregate state σt . The effect entry is to increase

the mass of firms according to dM/M = ζ(I/Y ) d t by assumption. Because the

output distribution of the entering firms is the same as that of incumbents, their

contribution to dY is just Y dM . QED

The next lemma characterizes the form of the economy’s value function,

and deduces the dynamics of consumption and marginal utility.

Lemma 2. Given an output process described by (17), the representative
35Formally, the “continuum” can be described as the limit of economies with countable,

increasing index sets, each of which is endowed with a finitely additive measure of total
mass M . Al-Najjar (2004) shows that integration of random variables in the limit economy
is well defined and a strong law of large numbers applies.



agent’s value function is of the form J = j(σ) Y 1−γ/(1− γ).

The aggregate consumption process is C = c(σ)Y . The functions j(σ)

and c(σ) are characterized (respectively) by an ordinary differential equation

and an algebraic equation given in the proof.

Let Λ denote the pricing kernel. Its dynamics may be written

dΛ
Λ
= η0(σ) d t+η1(σ) dW+d


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j=1
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(u(σ)−γ − 1)1{ j,+} + (d(σ)
−γ − 1)1{ j,−}
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 .

Proof. Given the aggregator function f (C , J), the Bellman equation for

J tells us that maxC{E[dJ] + f (C , J) d t} = 0. Under the conjectured form for

J = J(σ, Y ), and using the known dynamics of σ, and Y , we have E[dJ]/J =

j(σ)′

j(σ)
m(σ)+ (1−γ)µY (σ)+ 1

2 s2(σ)
j(σ)′′

j(σ)
+ 1

2λ[(u(σ)
1−γ−1)+ (d(σ)1−γ−1)]

using the version of Itô’s lemma for jumping processes. Dividing f (C , J) by J and

using the conjectured form of C , we get the two terms36

βθ c(σ)ρ j(σ)−
1
θ − βθ .

Adding these to the E[dJ]/J terms and multiplying by j gives the ODE:

βθ c(σ)ρ j(σ)1−
1
θ − βθ j(σ) + j(σ)′m(σ)+

1
2 s2(σ) j(σ)′′ + (1− γ)µY j(σ) + 1

2λ[(u(σ)
1−γ − 1) + (d(σ)1−γ − 1)] j = 0

36Recall f (C , J) = βCρ/ρ
((1−γ) J)1/θ−1 − βθ J .



 or, more compactly,

1
2 s2 j′′ + j′m+ βθ cρ j1− 1

θ +
�

(1− γ)µY + 1
2λ[(u

1−γ − 1) + (d1−γ − 1)]− βθ
�

j = 0

(18)

which must hold at the optimal consumption policy. Recall that µY = µ+ ζ(1−

c(σ)). Hence, the FOC for consumption is simply

β cρ−1 j−
1
θ = ζ′(1− c). (19)

Given any smooth function c(σ), the ODE defining j is to be solved on the closed

interval [σ, σ̄], and coefficient s(σ) on the second order term is zero at the

endpoints. This is equivalent to two mixed boundary conditions (i.e., a relation

g( j′, j) = 0), which suffices for existence and uniqueness of a solution. (Baxley

and Brown (1981).) Then (19) is just an algebraic equation for c(σ) given j(σ).

Formally, the implicit solution can be inserted in the coefficients of the ODE. In

practice, solving the two equations iteratively rapidly yields a convergent solution

for the pair of functions. The existence of these solutions verifies the conjectured

functional forms.

Given these J and C functions, Duffie and Skiadas (1994) show that the

pricing kernel under stochastic differential utility is

Λt = e
∫ t

0 fJ (Cu,Ju) du fC(Ct , Jt).

Here fC(C , J) = β c(σ)ρ−1 j(σ)1−
1
θ Y −γ

The drift and diffusion coefficient of Λ can be readily evaluated (as functions

of σ) by Itô’s lemma and straightforward algebra, and are not of immediate inter-

est. What is important is that dΛ/Λ inherits the jump structure of Y −γ, which is

equivalent to the conclusion of the lemma. QED



We now proceed to the proof of Proposition 1. While the preceding

lemma would appear to have characterized aggregate dynamics, in fact,

only the form of the pricing kernel has been determined. What has not

been pinned down are the critical jump threshold ϕ?(σ) and the size of

the downward jump d(σ).

Proof of Proposition 1.

To start, assume firm value is linear in output prior to default.

The proposition first asserts that the optimal default policy for equity

holders is to abandon if and only if, following a jump to Y (i)t , the value of

the firm is below the pre-jump level of optimal debt, B(i)t−. If equity holders

do not abandon, then their optimal debt policy at t is to adjust to B(i)t . If

they do so, they repay the difference B(i)t− − B(i)t > 0 to debt holders, and

their claim is now worth V (i)t − B(i)t . Clearly they will do this if and only if

the debt repayment is less than the value they receive:

V (i)t − B(i)t > B(i)t− − B(i)t ⇐⇒ V (i)t > B(i)t−

as asserted.

From this observation, it follows that we can link the optimal leverage

ratio prior to a jump with the critical default threshold. Default occurs iff

V (i)t ≤ B(i)t−. So dividing by B(i)t−, we have

eϕ
?

≡
Y (i),

?

t

Y (i)t−

=
V (i),

?

t

V (i)t−

=
B(i)t−

V (i)t−

where the second inequality uses the conjectured linearity. Because the left



side here is only a function of the aggregate state, the linearity of V (i) thus

implies that of B(i). Denote the optimal market leverage ratio `. Then we

have characterized the optimal bankruptcy barrier given optimal leverage

as

eϕ
?

= b(σ)/v(σ) = `(σ). (20)

The value of the ith firm is characterized by the condition

E[dΛV (i)]/(ΛV (i)) = −((1−τ)Y (i) + r̄τB(i)) d t/V (i).

The numerator on the right is the firm’s after-tax earnings when interest

deduction is permitted at the statutory rate r̄, and the tax rate is τ.

Let us conjecture that, prior to default, V (i) = v(σ)(1−τ)Y (i). Given

the form of the pricing kernel, applying Itô’s lemma to the left side of the

above condition gives the equation

1
2 s2(σ)v′′ + [m(σ) +η1(σ)s(σ)]v

′ +
�

η0 +µ+ 1
2λ[(u

1−γ − 1) + (d1−γ − 1) + r̄τ`(σ)]
�

v + 1 = 0. (21)

As with the j equation above, existence and uniqueness of a solution to

this equation will verify the linearity conjecture.

Now we consider the first order condition that maximizes v with respect

to b, or, equivalently, with respect to `.

Differentiating (21), there are contributions from the benefit flow term

as well as from the down-jump term d1−γ − 1. The latter term is the ex-

pectation of the percentage jump in the product ΛV (i). The ratios V (i)t /V
(i)
t−



and Λt/Λt− are independent given a jump, and the pricing kernel term

is d−γ. The firm takes this component as given and not affected by its

default decision. However, the jump in own-firm value is affected. Hence

we differentiate
∫ 0

ϕ?
eϕ dFϕ−

and multiply by d−γ. From above, we know ϕ? = log(`). Differentiating

this and using the chain rule gives the FOC as

1
2λd−γ f ϕ−(ϕ?) = r̄τ

where f ϕ− is the density function of the negative jumps. And from Lemma

1,

d =

∫ 0

ϕ?
eϕ dFϕ−.

The preceding two equations form a system whose solutions are d and

ϕ?. This closes the problem. It is easy to see that the first equation describe

a locus of points d that is monotonically increasing from zero in |ϕ?|. The

second describes a locus that monotonically decreases to zero as long as the

density function does so, which has been assumed. Hence the system has a

unique interior solution. (The fact that ϕ? = 0 is not a solution verifies the

assertion that b < v for all σ. That is, jumps alone can trigger default.)

So far, the derivation has assumed that leverage would be chosen to

maximize the value of the firm. The proposition also asserts that resulting

policy would also followed by managers who could not commit to maximiz-

ing firm value, and instead maximized the value of equity. Intuitively, this



is a consequence of the stipulation that the price, p, of the debt contract per

unit face value is always one, which implies that no policy can expropriate

value from existing debt holders.

Formally, if the firm is at the firm-value maximizing value, policy pair

V ′, B′ then equity holders can costlessly move to any V ′′, B′′ by paying (or

receiving if negative) the difference in debt amounts B′ − B′′. Including

this payment, equity holders will have achieved net value V ′′ − B′. But, by

assumption, this is strictly less than the original value they had, V ′ − B′.

QED

Proof of Corollary 2.1

Let P denote the value of an arbitrary debt contract and p = P/B be its

price per unit face value. Let τ denote the sooner of the firm’s default time

and the repayment time of the contract. (The debt contract considered

in the paper has no formal maturity. However, the firm has the right to

alter the amount outstanding costlessly at any time. We can consider a

repayment of amount ∆B as applying pro rata randomly across bonds.

So any individual bond can be considered to have a stochastic retirement

time.) Then on [0,τ), p solves the valuation equation

1
2 s2(σ)p′′ + [m(σ) +η1(σ)s(σ)]p

′ +
�

η0 + 1
2λ[(u

−γEt

�

p+

p

�

− 1) + (d−γEt

�

p−

p

�

− 1)]
�

p+ Γ = 0. (22)

where Γ is the coupon rate and p+

p and p−

p denote the fractional changes in

p conditional on an up and down jump, respectively.

We require that Γ be set such that p = 1 solves this equation. And we



are assuming p = 0 on default. In that case, the equation reads

η0 + 1
2λ[(u

−γ − 1) + (d−γFϕ−(ϕ?)− 1)] + Γ = 0.

or

η0 + 1
2λ[(u

−γ − 1) + (d−γ − 1)]− 1
2λd−γ(1−Fϕ−(ϕ?))] + Γ = 0.

We then recognize that the first two term are the drift rate of the pricing

kernel, Λ, which is equal to minus the instantaneous riskless rate, r. Hence,

Γ = r + 1
2λd−γ(1−Fϕ−(ϕ?)).

QED

Proof of Corollary 2.2

The assumption now is that, creditors of a firm that has defaulted

receive a payment ΘBt− where Bt− is the face value of debt prior to default.

The government does not have the ability to create the value lost due

to default, however. Those losses create the same decline in aggregate

consumption as in the base case. (So implicitly a tax on all households

must fund the creditors’ insurance payout.)

To derive the effect on optimal capital structure, we revisit the equation

(21) for firm value. Previously, the contribution from the expected change

in Λ V (i) from down jumps was 1
2λ times

d−γ
∫ 0

ϕ?
eϕ dFϕ− − 1.



Now there is an additional contribution to the left-hand term from the

default insurance that creditors collect:

d−γ
�

∫ 0

ϕ?
eϕ dFϕ− +Θ

B(i)

V (i)

∫ ϕ?

−∞
dFϕ−

�

.

Differentiating the new term with respect to ` = B(i)/V (i) adds the two

terms

Θ

∫ ϕ?

−∞
dFϕ− +Θ f ϕ−(ϕ?).

So the full FOC becomes

1
2λ d−γ [(1−Θ) f ϕ−(ϕ?)−Θ Fϕ−(ϕ?)] = r̄τ.

As in Proposition 1, this FOC can be solved jointly with the equation

d =
∫ 0
ϕ?

eϕ dFϕ−.

Besides altering the optimal leverage, the firm value equation must be

solved with the extra term given above. In addition, the solution for the

credit spread picks up a factor of (1−Θ). QED

Proposition 2 now simply finishes the characterizations of the quantities

in Lemma 2 above. Now that d and ϕ? have been determined explicitly, the

coefficients in the differential equation for j(σ) and the algebraic equation

for c(σ) are fully specified. The proof just finishes the description of the

pricing kernel.

Proof of Proposition 2



The Lemma determined that

Λt = e
∫ t

0 fJ (Cu,Ju) du fC(Ct , Jt),

and

fC(C , J) = β c(σ)ρ−1 j(σ)1−
1
θ Y−γ.

Denote the product of c and j terms in this expression as a(σ). Also, after

some cancellations,

fJ (C , J) = βθ
�

(1−
1
θ
) c(σ)ρ j(σ)−

1
θ − 1

�

.

The task is to evaluate dΛ/Λ. The integral term just contributes an fJ term

to the drift. To this we add d fC/ fC , which is

�

1
2

a′′

a
s2 +

a′

a
m+µY

�

d t+
a′

a
s dW+d
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Jt
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j=1

�

(u−γ − 1)1{ j,+} + (d
−γ − 1)1{ j,−}

�



 .

The diffusion coefficient here is sa′/a = s[(ρ − 1)c′/c + (1 − 1/θ) j′/ j],

which is called η1 in the Proposition. Likewise η0 is the drift term plus fJ .

The full expression for a′′/a is omitted for brevity. The expression in the

proposition for riskless rate is just minus the drift of dΛ/Λ. QED

Likewise, there is nothing formally to prove for Proposition 3, because

the proof of Proposition 1 already deduced the ODE solved by v(σ) =

V (i)/(1−τ)Y (i). There it was only necessary to observe its form in order

to take the first order condition for optimal debt. Now that the kernel and

the debt policy have been explicitly obtained, the ODE is fully specified



and (as observed above) a unique solution exists. We can redefine v to be

that solution times (1−τ) to obtain the solution in terms of pre-tax output

V (i) = v(σ)Y (i).

The following corollary computes the risk premia for the firm’s claims.

Corollary A.1. The expected excess return to the firm’s assets is

πV = −
v′

v
sη1+ 1

2λ
�

(u−1) + (d − 1) + (u−γ−1) + (d−γ−1)− (u1−γ−1)− (d1−γ−1)
�

.

The expected excess return to the firm’s debt is

πF = 1
2λ (d(σ)

−γ − 1) (1−F−ϕ(ϕ?)).

The expected excess return to the firm’s equity, πE is given by the solution

to

πV =
1

1− `
πE +

`

1− `
πF .

Proof of Corollary

The valuation ODE for V equates

1
2

v′′

v
s2 +

v′

v
m+µ+

1−τ
v
+ r̄τ

b
v
+η0

to

−
�

η1s
v′

v
+ 1

2λ((u
1−γ − 1) + (d1−γ − 1)

�

.

If we add to each side 1
2λ((u

−γ−1)+ (d−γ−1)) we can then substitute out

the sum of these terms and η0 for −r in the top expression. Then add to

each side 1
2λ((u− 1) + (d − 1)) and the top expression becomes the (true)



expected excess returns to dV /V . We conclude that πV is

−
v′

v
sη1+ 1

2λ
�

(u− 1) + (d − 1) + (u−γ − 1) + (d−γ − 1)− (u1−γ − 1)− (d1−γ − 1)
�

.

which we can also write as

πV = −
v′

v
sη1 + 1

2λ
�

(u− 1)(u−γ − 1) + (d − 1)(d−γ − 1)
�

.

The debt contract has no expected change per unit time, outside of default.

So its expected excess return is the coupon rate minus the riskless rate

plus the instantaneous default intensity. But this is just the difference

between the credit spread, determined above, (which is also the risk neutral

default intensity) and the true default intensity, giving the expression in the

corollary. Finally, by no arbitrage, the risk premium on the firm is the value

weighted combination of debt and equity claims. This is the last assertion

in the corollary.

QED

B. Data and Estimation

This appendix describes the data and estimation procedures used in Sec-

tion 3.

Aggregate Moments

The model has several simplifying assumptions about firms and the economy

that make choice of empirical counterparts somewhat subjective. The list



below discusses the proxies chosen and some possible alternatives.

Leverage:

The quantity b in the model is firm’s debt face value divided by

(pre-tax) cash-flow, or output. In the data, I thus need to choose

pairs of (debt,output) measures that correspond to the same set

of firms. The firm is supposed to be representative of the entire

economy. The broadest measure, and the main proxy used, is from

the Federal Reserves Z1 reports (The flow-of-funds accounts) for the

U.S. nonfinancial corporate sector. Specifically debt is bank loans

and bonds (long and short term), and output is net operating surplus

plus consumption of fixed capital.37 In one test, debt is scaled instead

by firm assets (historical cost).38

The main tests in the paper use net debt, subtracting cash and cash

equivalents.39 To check robustness to the inclusion of off-balance

sheet liabilities in total debt, another version adds retirement entitle-

ments (pensions and healthcare liabilities, FL103152025.Q) to the

numerator.

For further robustness, I also consider a broader measure of the pri-

vate sector. Debt, also from the flow of funds accounts, includes

the noncorporate sector, meaning primarily private firms, partner-

37The respective Z1 data items are FL104122005.Q, FL104123005.Q and
FU106402101.Q, FU106300005.Q.

38Series FL102000115.Q.
39Specifically, the definition follows the construction of Table L.103 in the Flow of Funds

reports. Cash is checkable, time, and foreign deposits, holding of money market mutual
funds, and Treasury securities and other bonds. These are Z1 series FL103020005.Q,
FL103030003.Q, FL103034003.Q, FL103091003.Q, FL102051003.Q and FL103061103.Q.



ships, and proprietorships. The debt measure is constructed from

the same variables as for the corporate series (FL104104005.Q plus

FL114123005.Q). The corresponding output measure is now taken to

be the non-farm business GDP number from NIPA Table 1.3.5. Fixed

assets of nonfinancial corporate and noncorporate sectors are from

NIPA Table 6.3.

To address concerns that aggregate data is dominated by large firms,

a final alternative leverage measure is constructed from median firm

values in quarterly Compustat data. Specifically, for all nonfinancial

firms with a reporting quarter ending within each calendar quarter, I

compute net debt as long term debt total plus debt in current liabilities

minus cash and short term investment. Cash-flow is operating profits

before interest, depreciation, and taxes. I then take the median value

across firms of the ratio of net debt to cash-flow. Firms for which the

denominator is non-positive are excluded, as are firms missing any

of the numerator items. The quarterly Compustat series is available

from 1976:Q1.

Credit spread:

In choosing a credit spread series, the main consideration is, again,

that the model speaks to a firm representative of the entire corporate

sector. The question then is how to define the average creditworthi-

ness of firms overall.

Based on the average default rate of the entire private sector (see

below) and long-term default frequencies from S&P by rating, the



representative firm in the economy appears to be approximately of

credit grade BB or BBB. The natural candidate to measure credit in

this range is the time-series of seasoned Baa-rated yields-to-maturity

from Moody’s that goes back to 1916. (A Moody’s Baa rating corre-

sponds to an S&P BBB rating.) According to Moody’s, this series is

for debt with maturity of at least 20 years. So I subtract the constant

maturity 20-year Treasury yield from the Federal Reserve Bank of St.

Louis (FRED), interpolating between 10 and 30 year yields when the

20 year series in unavailable.40 I measure both yields at the end of

calendar quarters. The Treasury yields are available from 1953:Q1.

For comparison with other works in the asset pricing literature, I

also consider the credit spread defined as the difference between Baa

yields and Aaa yields. Some authors have viewed Treasury bonds as

an inappropriate benchmark because of potential liquidity premia or

tax effects embedded in their prices.

To address the concern that the firm’s borrowing cost in the model

is for floating-rate debt and should therefor correspond to a short-

maturity interest rate, I also construct a credit spread based on com-

mercial paper yields. The main drawback with this series is that

commercial paper is only issued by large high-quality borrowers,

making its spread unrepresentative. Commercial paper rates are

obtained from FRED. I concatenate separate pre- and post-1998 se-

40 Choosing a series that fixes the rating level over time does impose a measurement
bias because it misses fluctuations in the population credit quality. Intuitively, the effect of
this bias should be straightforward: it should mean that fluctuations in credit spreads are
understated.



ries for 90-day maturity. (The post-1998 series is for A2/P2 rated

nonfinancial issuers. The earlier series does not specify the issuer

type.) The CP-TB spread is defined as the difference between this

rate and the current 3-month Treasury bill rate, also from FRED.

Default rate:

To assess representative borrower quality in the U.S. corporate sector,

I obtain a time-series of annual total bankruptcy filings by U.S. firms

for 1981-2015 from the American Bankruptcy Institute. 41 I divide

total bankruptcies by the total number of firms in the U.S. from

the Statistics of U.S. Businesses 42 compiled from the U.S. Census

Bureau’s Survey of Business Ownership. The latter series are available

from 1988-2012. I average the annual ratio of the two numbers

to obtain the unconditional default frequency 0.0087 used in the

estimation.

For comparison to rated bond issuers, average global default rates by

rating and issuer type are available for 1981-2014 are obtained from

S&P’s Global Corporate Default Study (Vazza and Kraemer, 2015).

For such issuers, the average one-year default rate for nonfinancial

firms worldwide over this period is 0.0181 (Table 16).

Investment rate:

In the model, investment is made directly by households through their

savings decisions. Therefore I measure average investment as the

41http://www.abi.org/newsroom/bankruptcy-statistics
42https://www.sba.gov/advocacy/firm-size-data#susb

http://www.abi.org/newsroom/bankruptcy-statistics
https://www.sba.gov/advocacy/firm-size-data#susb


personal savings rate (savings as a fraction of disposable household

income) from NIPA Table 2.1. The value used in the estimation is the

average of annual rates from 1980-2015.

Equity valuation:

The model’s equity valuation as a fraction of output is again supposed

to be representative of the entire economy. The flow of funds tables

include market valuation of equity (less intercompany holdings) for

the nonfinancial corporate public sector. This is value is divided by the

cashflow series constructed as described above. The value used in the

estimation is the average of quarterly ratios from 1980:Q1-2015:Q1.

Estimation

The two models in Section 2 are estimated by minimum-square-error crite-

rion applied to the moments (or statistics) listed in the text’s Table 1, with

one exception. Instead of targeting the default rate itself, the estimation

targets the ratio of the credit spread to the default rate in order to better

identify the credit risk premium. In addition, because the trade-off model

assumes zero recovery on debt, the estimation for that specification deflates

the model’s value by an average loss factor (one minus recovery rate) of

0.6 for comparison with the empirical counterpart.

Model moments at each point in the parameter space are computed by

sampling from the stationary distribution of the σ process. Moment errors

are scaled by the estimation error in each target statistic, and squared.

Because the statistics are computed from distinct samples over different

dates and frequencies, I do not attempt to estimate cross-moment errors.



Hence the scheme corresponds to a diagonal weighting matrix.43

The estimation fixes six of the parameters to be the same in both models.

The jump intensity is held constant at λ = 1 for ease of interpretation, e.g.,

so that jump magnitudes can be viewed as expected annual rates. The

jump shape parameter L is fixed at 4.0 and the scale of the production

function ζ1 is fixed at 0.975. These parameters are poorly identified by

the data moments. For comparability across specifications, the upper and

lower bounds of the state variable are held fixed at σl = 0.05,σu = 0.60.

Finally, the tax-rate is fixed at 0.30, as it is not really a free parameter.

The resulting estimates for the remaining parameters are given in Table

A1 for each specification.

Table A1: Parameter Estimates

Parameter Model:T-O Model:D-I

Risk aversion γ 7.7074 8.4004
E.I.S. ψ 0.3927 3.8295
Subjective discount rate β 0.0595 0.1292

Interest deduction rate r̄ 0.1246 0.0130
Debt recovery/insurance rate θ 0.4000 0.4013

Production function curvature ζ0 0.1465 0.0808
Output growth constant µ 0.0577 0.0814

Uncertainty mean σ̄ 0.0925 0.0988
Uncertainty mean-reversion κ 0.2271 0.1808
Uncertainty diffusion s0 0.2599 0.1805

Description: The table gives the point estimates of the parameters for the two versions of
the model fitted by the method of simulated moments.

43The delta method is used to approximate the sampling error of the credit spread-default
rate ratio.



 Panel Regressions

The panel regressions shown in Table 3 follow closely Covas and den

Haan (2011) in the sample construction, definition of the variables, and

controls used. Details on these may be found in the data appendix for that

paper, available from wouterdenhaan.com. For reasons described there, the

sample starts in 1980 and excludes financial firms, utilities, firms involved

in major mergers, as well as Ford, Chrysler, GM, and GE. The sample runs

through 2011, which is the extent of the uncertainty series from Jurado

et al. (2015). For parsimony, Covas and den Haan (2011) include lagged

cash-flow and Tobin’s Q as the sole controls. We do likewise.

Firm-quarter observations are required to have non-missing, strictly pos-

itive assets, sales, and shareholder equity. The debt numerator is long-term

debt plus debt in current liabilities minus cash and short-term investments.

This definition follows Strebulaev and Yang (2013). The three leverage

measures – but not their changes – are winsorized at the 1% and 99%

levels.

The definition of net external equity in Panel B of the table again follows

Covas and den Haan (2011) and Fama and French (2005) in using the

change in shareholder equity net of retained earnings. The Compustat data

item SEQQ already nets out of balance sheet equity the cumulative total

of extraordinary items as well as treasury stock repurchased. However it

is still inclusive of retained earnings. So the the item REQ is subtracted

out. Changes in the resulting quantity, known as paid-in capital, arise from

stock issuance and repurchases. Dividend payments are not captured.

wouterdenhaan.com


C. Robustness

This appendix provides additional evidence for the empirical relations

documented in Section 3.

First, the empirical rejection of the trade-off model was primarily at-

tributable to the positive correlation between credit spreads and leverage.

That correlation was illustrated visually in Figure 4 using the main mea-

sures of each quantity as described in Appendix B. Table A2 shows the

correlations for pairwise combinations of the additional measures described

there.

Next, Table A3 presents extended results on the empirical relation be-

tween aggregate debt and uncertainty that employ alternative uncertainty

proxies. The table shows results for 12 regressions: using three proxies,

two specifications, and two aggregate debt and output series. All 12 sup-

port the conclusion of a statistically and economically significant positive

association.

The regressions in Section 3 utilize the JLN uncertainty series. Here

the table also uses the well-known CBOE VIX index44, the dispersion in

economists’ forecast of GDP, as tabulated from the Survey of Professional

Forecasters (SPF)45, and a third series (RED) that measures firm-level,

rather than aggregate uncertainty, from Johnson and Lee (2014). It is

constructed from the cross-firm dispersion of residual operating earnings,

44The VIX series is extend backward from 1990 to 1984 using implied volatility data on
individual SPX options.

45The SPF series averages the dispersion in current-quarter forecasts of real and nominal
GDP. Using other forecast horizons and extracting a principal component from the dispersion
series produce similar results.



after orthogonalizing with respect to aggregate output changes. Note that

each of the series is constructed from entirely distinct underlying data.

The table shows regressions of year-on-year changes in log debt on

year-on-year log changes in the uncertainty series. In the top panel, debt

is measured net of cash items using the Flow of Funds (Z.1) accounts for

the nonfinancial corporate sector. The specification in the left panel scales

debt by corporate cashflow. In the right panel debt changes themselves are

the dependent variable, with contemporaneous cashflow changes included

as a control variable. The tests are repeated in the bottom panel using a

broader measure of debt that includes the noncorporate private sector, and

scaling by Gross Domestic Product of nonfarm U.S. businesses, from NIPA

Table 1.3.5. Standard errors correct for the serial correlation in overlapping

residuals.
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Caption to Table A3
Description: The table reports time-series regressions of quarterly aggregate debt on
measures of economic uncertainty, in changes. If the first panel, b is total debt securities
and loans, minus cash items (including checkable, time and savings deposits, money-market
funds, and foreign deposit) for the U.S. nonfinancial corporate sector and y is the total
cashflow of this sector measured as net operating surplus plus consumption of fixed capital.
All data are from the Federal Reserve’s Flow of Funds accounts. In the second panel, b is
the combined total debt (net of cash items) for corporate and noncorporate nonfinancial
businesses and y is gross domestic product of nonfarm U.S. businesses from NIPA Table 1.3.5.
Debt and output variables are in logarithms. VIX, SPF, and RED are respectively the CBOE
VIX index (extend backward from 1990 by the author), the dispersion in current-quarter
forecasts of real and nominal GDP as tabulated by the Survey of Professional Forecasters
(SPF), and the residual earnings dispersion measure of Johnson and Lee (2014). The
uncertainty series are year-on-year log differences contemporaneous with the dependent
variable. Numbers in parentheses are Newey and West (1987) T-statistics (in absolute
value) using 8 lags.

Interpretation: The positive leverage-uncertainty relation is robust to the choice of uncer-
tainty proxy and the choice of aggregate debt. The same result holds using debt changes as
the dependent variable.

Next, Table A4 reverts to the JLN uncertainty measure and shows ad-

ditional regressions in which changes in (log) debt are the dependent

variable.46 Panel A shows the positive relation persists in these specifica-

tions, and is robust to controlling for additional predictors.

Because uncertainty changes are negatively autocorrelated, a natural

question is whether the positive relationship in changes is actually proxying

for a negative relationship between debt changes and uncertainty levels.47

Panel B allows the data to consider both possibilities. The results unam-

biguously support a positive relation in changes, with no statistical support

46The table utilizes the nonfinancial corporate series. Results using the broader private
sector series are similar and are omitted for brevity. The variables and sample are defined
in the caption to Table 2.

47The two relations are not econometrically inconsistent. In the context of the models
studied here, however, a levels-on-changes regression is a misspecification. See also the
discussion in footnote 26.



for a negative relation between debt changes and uncertainty levels.

The specifications so far do not distinguish between expected and

unexpected changes in uncertainty. This is appropriate in the sense that the

models in Section 2 imply that debt levels respond to levels of uncertainty,

whether or not they were expected. Moreover, in the presence of real-world

planning delays, it seems likely that debt issuance would be driven mostly by

expected changes. Panel C of the Table quantifies both responses by splitting

uncertainty changes into two components via an auxiliary regression of

these changes on a set of lagged predictors (listed in the column labeled

Projection). When both the fitted and the residual components of this

projection are included in the debt regression, each is seen to have a

statistically and economically significant positive impact. Summing the

two coefficients, the total impact is substantially larger than in the baseline

specifications in Panel A.



Table A4: Uncertainty and Debt Dynamics

PANEL A: Baseline

∆v(t+4:t) Controls:

0.3028 ∆y(t+4:t)
(3.69)

0.1989 ∆y(t+4:t),∆y(t:t−4),∆b(t:t−4)
(3.16)

0.1420 all
(2.56)

PANEL B: Uncertainty changes vs levels

∆v(t+4:t) vt Controls:

0.2777 -0.0486 ∆y(t+4:t)
(3.79) (0.57)

0.1457 0.0155 all
(2.34) (0.23)

PANEL C: Uncertainty innovations vs expected changes

U ∆v(t+4:t) E ∆v(t+4:t) Controls: Projection:

0.2450 0.4691 ∆y(t+4:t) vt ,∆v(t:t−4), Rmkt
t , |Rmkt

t |
(3.71) (2.28)

0.1247 0.2197 all vt ,∆v(t:t−4), Rmkt
t , |Rmkt

t |
(2.15) (2.81)

Description: The table shows regressions of aggregate changes in log debt,
∆b(t+4:t), on uncertainty changes. The variables are described in the cap-
tion to Table 2. In the column labeled Controls, all refers to the variables
∆yt+4:t ,∆yt:t−4,∆bt:t−4, Rmkt

t , SP_PEt , Y 10y r
t , CR_SPt ,∆C PIt:t−4. In Panel C, U ∆v(t+4:t)

and E ∆v(t+4:t) denote the residual and fitted values, respectively, from a first-stage regres-
sion of uncertainty changes on the variables listed in the Projection column. Numbers in
parentheses are Newey and West (1987) T-statistics (absolute value) using 8 quarterly lags.

Interpretation: The positive debt-uncertainty relation is using the JLN measure is explored
further. The positive relation with uncertainty changes is not masking a negative relation
with uncertainty levels. The relation is found in both expected and unexpected components
of uncertainty changes.



Another way of quantifying the response of debt to orthogonalized un-

certainty shocks is via impulse response functions in vector autoregressions.

Figure C1 shows two response functions, each computed in non-overlapping

quarterly specifications, using four lags. The left-hand panel is a bivariate

specification in levels where debt is scaled by output (both in logs) to

achieve stationarity. (This specification also includes linear trends.) The

right-hand panel is from a trivariate system – uncertainty, output, and debt

– in changes. In each system, the variables are ordered with the debt series

last and the shocks are orthogonalized via Cholesky decomposition.48

Consistent with the change regressions above, the right panel affirms a

significant positive debt change response at one and two quarters. Uncer-

tainty shocks predict changes in debt. These responses then mean-revert as

uncertainty itself mean-reverts. The left panel shows that the cumulative

positive effect on leverage levels (which includes the negative response of

the denominator to an uncertainty shock) remains positive for around two

years.

48The data series are the same ones used in Table A4.



Figure C1: Impulse response functions

Description: The figure shows impulse responses to a one standard deviation shock to
uncertainty in quarterly vector autoregressions. The left panel uses a bivariate specification
of logs of debt-to-income (b − y) and uncertainty (v) and includes linear trends. The
right panel uses a trivariate system of log changes in uncertainty, output, and debt. Both
specifications include four lags. The horizontal axis is in quarters. The dashed lines are
bootstrapped 95% confidence intervals.

Interpretation: Uncertainty shocks produce statistically significant positive impulse re-
sponses of leverage levels and debt changes in quarterly vector autoregressions.




