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Appendix A 

The Case for Incorporating the Costs of Financial Distress 

 

Models of private equity (PE) valuation and capital structure have largely sidestepped financial distress 

costs to focus on other frictions. The lack of attention on financial distress costs in PE may in part 

follow from some of the earlier findings of Andrade and Kaplan (1998). They show that high debt 

levels, and not operating inefficiencies, are the sources of distress in their leveraged buyout (LBO) 

sample. They also find that financial distress is resolved with fewer losses on average relative to a non-

treated sample, and that financial distress costs are nearly non-existent for LBO transactions that do not 

experience a negative shock. Yet, in the end, the authors estimate the costs of financial distress to be 

10% to 20%.  

These results were generated from a sample of buyout funds in the 1980s and 1990s. During that 

period, buyout funds performed very well on average, with high alphas helping offset the usual costs of 

financial distress. But excess returns have declined in recent years (e.g., Gupta and Van Nieuwerburgh, 

2021; Phalippou, 2021), implying greater likelihoods of default, as well as loss given default. 

In the commercial real estate sector, publicly listed firms and non-institutional PE market alternatives 

exist to compete directly with institutional private equity real estate (PERE). This implies diminished 

marginal operating, governance, and financial engineering gains attributable to PERE, resulting in 

relatively lower alphas (Gupta and Van Nieuwerburgh, 2017; Pagliari, 2020; Riddiough and Li. 2023). 

Furthermore, in their analysis of insurance company loans backed by income-producing collateral, 

Brown et al. (2006) document distress costs in commercial real estate lending on the order of 20% to 

30% above and beyond losses attributable to the asset’s internal transfer value at the time of 

foreclosure. These costs include addressing deferred maintenance and realizing fire-sale discounts 

when disposing of the asset. For PERE value-add and opportunity funds, which focus on real estate 
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development and repositioning opportunities, I would expect lender losses to be meaningfully higher 

than those found in Brown et al. (2006).1 

Appendix B 

Proofs to Propositions and Corollaries  

 

For all of the proofs, the subscripts are suppressed wherever doing so does not introduce any ambiguity 
into the meaning of the variables. 

Proof of Proposition 1: Starting with equation (1b), after doing some algebra and using the standard 

normal pdf, I have that 𝜕𝜕𝐷𝐷0
𝜕𝜕𝜕𝜕

= 𝑒𝑒−𝑟𝑟𝑟𝑟 �𝑁𝑁[𝑑𝑑2] − 1
𝜎𝜎√2𝜋𝜋𝑟𝑟

𝑒𝑒−
1
2𝑑𝑑2

2
� + (1 − 𝑘𝑘)𝑉𝑉0𝑒𝑒𝛼𝛼𝑟𝑟 �

1
𝜕𝜕𝜎𝜎√𝑟𝑟√2𝜋𝜋

𝑒𝑒−
1
2𝑑𝑑1

2
�. From 

(1b'), 𝑑𝑑12 = 𝑑𝑑22 + 2𝑑𝑑2𝜎𝜎√𝑇𝑇 + 𝜎𝜎2𝑇𝑇. After substituting 𝑑𝑑12 into the prior equation, using the definition of 
𝑑𝑑22 from (1b'), and after completing the squares in the exponents, I get 𝜕𝜕𝐷𝐷0

𝜕𝜕𝜕𝜕
= 𝑒𝑒−𝑟𝑟𝑟𝑟 �𝑁𝑁[𝑑𝑑2] −

1
𝜎𝜎√𝑟𝑟

𝑛𝑛(𝑑𝑑2)� + (1 − 𝑘𝑘)𝑒𝑒−𝑟𝑟𝑟𝑟 1
𝜎𝜎√𝑟𝑟

𝑛𝑛(𝑑𝑑2) = 𝑒𝑒−𝑟𝑟𝑟𝑟 �𝑁𝑁[𝑑𝑑2] − 𝑛𝑛(𝑑𝑑2) 𝑘𝑘
𝜎𝜎√𝑟𝑟

�.  

To prove the existence and uniqueness of a finite 𝐵𝐵𝑘𝑘∗ when k > 0 that satisfies 𝑁𝑁[𝑑𝑑2] − 𝑛𝑛(𝑑𝑑2) 𝑘𝑘
𝜎𝜎√𝑟𝑟

= 0, 

I note that 𝑁𝑁[𝑑𝑑2] − 𝑛𝑛(𝑑𝑑2) 𝑘𝑘
𝜎𝜎√𝑟𝑟

 is everywhere continuous, 𝑁𝑁[𝑑𝑑2] − 𝑘𝑘
𝜎𝜎√𝑟𝑟

𝑛𝑛(𝑑𝑑2) = 1 for B = 0, and that 

𝑁𝑁[𝑑𝑑2] − 𝑘𝑘
𝜎𝜎√𝑟𝑟

𝑛𝑛(𝑑𝑑2) → 0 as 𝐵𝐵 → ∞. Now I claim that 𝑁𝑁[𝑑𝑑2] − 𝑛𝑛(𝑑𝑑2) 𝑘𝑘
𝜎𝜎√𝑟𝑟

→ 0 from below (i.e., the 

quantity is negative when B is large). For this to be true, 𝑘𝑘
𝜎𝜎√𝑟𝑟

> 𝑁𝑁[𝑑𝑑2]
𝑛𝑛(𝑑𝑑2) for any k > 0 as B gets large. 

Applying L’Hospital’s rule to the right-hand side of the inequality shows that it goes to zero in the 
limit, confirming that 𝑁𝑁[𝑑𝑑2] − 𝑘𝑘

𝜎𝜎√𝑟𝑟
𝑛𝑛(𝑑𝑑2) → 0 from below. Next, I take the derivative of 𝑁𝑁[𝑑𝑑2] −

𝑘𝑘
𝜎𝜎√𝑟𝑟

𝑛𝑛(𝑑𝑑2) with respect to B, which results in 𝑛𝑛(𝑑𝑑2) 𝜕𝜕𝑑𝑑2
𝜕𝜕𝜕𝜕

�1 + 𝑑𝑑2
𝑘𝑘

𝜎𝜎√𝑟𝑟
�. The terms outside the bracket 

together are negative. The term inside the bracket is initially positive when B is small, and then 
eventually turns negative for some sufficiently large B. This implies that the slope of 𝑁𝑁[𝑑𝑑2] −
𝑛𝑛(𝑑𝑑2) 𝑘𝑘

𝜎𝜎√𝑟𝑟
 is initially negative as a function of B, but then turns positive for some unique sufficiently 

large B, and then stays positive thereafter. This is all that is needed for the existence and uniqueness of 
𝐵𝐵𝑘𝑘∗, since, for the above collection of facts to be true, it must be the case that there is a single crossing 

                                                           
1 I note that tax shield effects in PE appear to be less important than standard corporate financial analysis might suggest. 
For example, Jenkinson and Stucke (2011) find that incremental tax shield benefits to the issuance of buyout debt largely 
accrue to preexisting shareholders through the acquisition share price. In addition, not all PE debt is issued at the target firm 
(Op-Co) level, with increasing debt in recent years being issued at the fund or sponsor level, presumably with no tax shield 
pass-through benefits. Similarly, in PERE, there is no taxation at the property-firm level, which negates double taxation on 
equity. Even listed commercial real estate firms, REITs, are not taxed at the firm level. Furthermore, the vast majority of LP 
equity investors in PERE (as well as certain other forms of PE) are tax-exempt institutions, such as pension funds, 
endowments, and sovereign wealth funds. 
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at zero in which there is one and only one B for which 𝑁𝑁[𝑑𝑑2] − 𝑛𝑛(𝑑𝑑2) 𝑘𝑘
𝜎𝜎√𝑟𝑟

= 0. Finally, given these 

facts, in the range of 𝐵𝐵 ∈ [0,𝐵𝐵𝑘𝑘∗) it immediately follows that 𝜕𝜕𝐷𝐷0
𝜕𝜕𝜕𝜕

> 0 and 𝜕𝜕
2𝐷𝐷0
𝜕𝜕𝜕𝜕2

< 0 when k > 0. QED 

Proof of Proposition 2: From equation (2b), the FOC is:  𝜕𝜕Φ
𝑉𝑉

𝜕𝜕𝜕𝜕
= 𝜌𝜌 �𝑉𝑉0𝑒𝑒(𝜇𝜇+𝛼𝛼)𝑟𝑟𝑛𝑛(ℎ1) 𝜕𝜕ℎ1

𝜕𝜕𝜕𝜕
− 𝑁𝑁[ℎ2] 𝜕𝜕𝜒𝜒0

𝜕𝜕𝜕𝜕
−

𝜒𝜒0𝑛𝑛(ℎ2) 𝜕𝜕ℎ2
𝜕𝜕𝜕𝜕
� = 0. Recalling that 𝜒𝜒0 = 𝐵𝐵 + (𝑉𝑉0 − 𝐷𝐷0)𝑒𝑒𝜓𝜓𝑟𝑟, it follows that 𝜕𝜕𝜒𝜒0

𝜕𝜕𝜕𝜕
= 1 −

𝑒𝑒(𝜓𝜓−𝑟𝑟)𝑟𝑟 �𝑁𝑁[𝑑𝑑2] − 𝑘𝑘
𝜎𝜎√𝑟𝑟

𝑛𝑛(𝑑𝑑2)�, ψ ≥ r. Subbing this into the FOC and utilizing results from Proposition 

1, as well as well-known comparative static relations for call options with respect to B (the exercise 

price), the FOC simplifies to 𝜕𝜕Φ
𝑉𝑉

𝜕𝜕𝜕𝜕
= −𝜌𝜌𝑁𝑁[ℎ2] �1 − 𝑒𝑒(𝜓𝜓−𝑟𝑟)𝑟𝑟 �𝑁𝑁[𝑑𝑑2] − 𝑛𝑛(𝑑𝑑2) 𝑘𝑘

𝜎𝜎√𝑟𝑟
�� = 0. For ρ > 0, the 

FOC reduces to equating the terms inside the brackets to zero. Existence and uniqueness follow from 
the logic spelled out in the proof to Proposition 1. The lack of dependence on ρ is based on inspection 

of the FOC above. Finally, when ψ < r, inspection of 𝜕𝜕Φ
𝑉𝑉

𝜕𝜕𝜕𝜕
 reveals that an internal optimum does not 

exist. Further inspection reveals that ΦV is universally decreasing in B within the feasible range, 
implying B* = 0. QED 

Proof of Corollary 1 to Proposition 2: 𝜓𝜓 = 𝑟𝑟 − 1
𝑟𝑟
𝑙𝑙𝑛𝑛 �𝑁𝑁[𝑑𝑑2] − 𝑛𝑛(𝑑𝑑2) 𝑘𝑘

𝜎𝜎√𝑟𝑟
� follows directly from the 

FOC derived for Proposition 2. I will refer to this relation repeatedly when deriving the comparative 

static results. The comparative static 𝜕𝜕𝜕𝜕
∗

𝜕𝜕𝜓𝜓
> 0 follows from 𝜕𝜕𝜓𝜓

𝜕𝜕𝜕𝜕
> 0 in the above functional relation, 

since 𝑁𝑁[𝑑𝑑2] − 𝑘𝑘
𝜎𝜎√𝑟𝑟

𝑛𝑛(𝑑𝑑2) > 0 and the derivative of this quantity is negative, per the proof of 

Proposition 1. I use the fact that 𝜕𝜕𝜕𝜕
∗

𝜕𝜕𝜓𝜓
> 0 and implicit differentiation to generate the other stated 

comparative static relations. In the case of 𝜕𝜕𝜕𝜕
∗

𝜕𝜕𝑘𝑘
, inspection of the above relation reveals that 𝜕𝜕𝜓𝜓

𝜕𝜕𝑘𝑘
> 0, 

implying that 𝜕𝜕𝜕𝜕
∗

𝜕𝜕𝑘𝑘
< 0. In the case of 𝜕𝜕𝜕𝜕

∗

𝜕𝜕𝛼𝛼
,  𝜕𝜕𝜓𝜓
𝜕𝜕𝛼𝛼

 is seen to be negative, implying that 𝜕𝜕𝜕𝜕
∗

𝜕𝜕𝛼𝛼
> 0. For the 

cases of 𝜕𝜕𝜕𝜕
∗

𝜕𝜕𝜎𝜎
, 𝜕𝜕𝜕𝜕∗,

𝜕𝜕𝑟𝑟
 and 𝜕𝜕𝜕𝜕

∗

𝜕𝜕𝑟𝑟
 , after quite a bit of tedious algebra, I am unable to sign 𝜕𝜕𝜓𝜓

𝜕𝜕𝜎𝜎
, 𝜕𝜕𝜓𝜓,
𝜕𝜕𝑟𝑟

 and 𝜕𝜕𝜓𝜓
𝜕𝜕𝑟𝑟

. 

This in turn implies that I am unable to sign 𝜕𝜕𝜕𝜕
∗

𝜕𝜕𝜎𝜎
, 𝜕𝜕𝜕𝜕∗

𝜕𝜕𝑟𝑟
, and 𝜕𝜕𝜕𝜕

∗

𝜕𝜕𝑟𝑟
. QED 

Proof of Proposition 3: As a first step, it is useful to write out 𝜕𝜕Φ𝐶𝐶𝐶𝐶
𝑉𝑉

𝜕𝜕𝜕𝜕
 . This quantity can be expressed 

as 𝜕𝜕Φ𝐶𝐶𝐶𝐶
𝑉𝑉

𝜕𝜕𝜕𝜕
= 𝜉𝜉[𝑁𝑁(𝑚𝑚2) − 𝑁𝑁(ℎ2)] �1 − 𝑒𝑒(𝜓𝜓−𝑟𝑟)𝑟𝑟 �𝑁𝑁[𝑑𝑑2] − 𝑛𝑛(𝑑𝑑2) 𝑘𝑘

𝜎𝜎√𝑟𝑟
�� − 𝜌𝜌𝑁𝑁(𝑚𝑚2). Note that the bracketed 

term to the far left is always negative in the relevant range for B, as is the last term. When the larger 

bracketed term (that also contains the choke condition term) is positive, then 𝜕𝜕Φ𝐶𝐶𝐶𝐶
𝑉𝑉

𝜕𝜕𝜕𝜕
< 0. This is always 

true when ψ ≤ r, and holds for all B ≥ 0 and follows because 𝑁𝑁[𝑑𝑑2] − 𝑛𝑛(𝑑𝑑2) 𝑘𝑘
𝜎𝜎√𝑟𝑟

= 1 at B = 0, which 

then decreases in the feasible range 𝐵𝐵 ∈ [0,𝐵𝐵𝑘𝑘∗]. In this case, 𝐵𝐵𝐶𝐶𝐶𝐶∗ = 0 as claimed. In the case of ψ>r 

and 1 − 𝑒𝑒(𝜓𝜓−𝑟𝑟)𝑟𝑟 ≥ 𝜌𝜌𝑁𝑁[𝑚𝑚2]
𝜉𝜉�𝑁𝑁[𝑚𝑚2]−𝑁𝑁[ℎ2]�

 at B = 0, inspection of  𝜕𝜕Φ𝐶𝐶𝐶𝐶
𝑉𝑉

𝜕𝜕𝜕𝜕
 above reveals that 𝜕𝜕Φ𝐶𝐶𝐶𝐶

𝑉𝑉

𝜕𝜕𝜕𝜕
< 0 for all B ≥ 

0, implying that 𝐵𝐵𝐶𝐶𝐶𝐶∗ = 0 in this case as well. Lastly, in the case of ψ>r and 1 − 𝑒𝑒(𝜓𝜓−𝑟𝑟)𝑟𝑟 <
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𝜌𝜌𝑁𝑁[𝑚𝑚2]
𝜉𝜉�𝑁𝑁[𝑚𝑚2]−𝑁𝑁[ℎ2]�

 at B = 0, inspection of 𝜕𝜕Φ𝐶𝐶𝐶𝐶
𝑉𝑉

𝜕𝜕𝜕𝜕
 above shows that the larger bracketed term is negative and 

that 𝜕𝜕Φ𝐶𝐶𝐶𝐶
𝑉𝑉

𝜕𝜕𝜕𝜕
> 0 at B = 0. Now, because the right-hand side of the FOC expressed in equation (10b) is 

always negative, and because the left-hand side of (11b) is increasing in B, there will exist a 𝐵𝐵𝐶𝐶𝐶𝐶∗  < B* 
that satisfies the FOC written in (10b). QED 
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Appendix C 

Alternative Model of Private Equity Fundraising 

 

In consideration of the alternative fundraising model, I fix 𝐸𝐸0 = 𝐸𝐸�0 and ask how large V0 should be 
given that debt finances all fund acquisitions in excess of 𝐸𝐸�0. Consequently, the PE fundraising game 
now has two independent stages, with equity fundraising coming in the first stage and optimal fund 
size determination based on debt financing in the second stage.  

This approach to fundraising complicates debt valuation, because debt is now self-referencing. That is, 

𝐷𝐷�0 = 𝑒𝑒−𝑟𝑟𝑟𝑟𝐵𝐵𝑁𝑁��̆�𝑑2� + (1 − 𝑘𝑘)𝑉𝑉�0𝑒𝑒𝛼𝛼𝑟𝑟𝑁𝑁�−�̆�𝑑1� as before, with �̆�𝑑1 =
𝑙𝑙𝑛𝑛�𝑉𝑉

�0
𝜕𝜕� �+�(𝑟𝑟+𝛼𝛼)+12𝜎𝜎

2�𝑟𝑟

𝜎𝜎√𝑟𝑟
, �̆�𝑑2 = �̆�𝑑1 −

𝜎𝜎√𝑇𝑇. But now 𝑉𝑉�0 = 𝐸𝐸�0 + 𝐷𝐷0 and 𝐷𝐷�0 = 𝐷𝐷0 are imposed as constraints. I note that 𝐷𝐷�0 is well-behaved 
(continuous and increasing) as it depends on B, for 𝐵𝐵 ∈ [0,𝐵𝐵𝑘𝑘∗).  

Taking the total derivative of 𝐷𝐷�0 with respect to B, I obtain 𝑑𝑑𝐷𝐷
�0
𝑑𝑑𝜕𝜕

= 𝜕𝜕𝐷𝐷�0
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝐷𝐷�0
𝜕𝜕𝑉𝑉�0

𝜕𝜕𝑉𝑉�0
𝜕𝜕𝜕𝜕

. Since 𝑉𝑉�0 = 𝐸𝐸�0 + 𝐷𝐷0 

and 𝐷𝐷�0 = 𝐷𝐷0, 𝑑𝑑𝐷𝐷
�0
𝑑𝑑𝜕𝜕

= 𝜕𝜕𝑉𝑉�0
𝜕𝜕𝜕𝜕

 and the total derivative can be rewritten as 𝑑𝑑𝐷𝐷
�0
𝑑𝑑𝜕𝜕

= 𝜕𝜕𝐷𝐷0
𝜕𝜕𝜕𝜕

�1 + 𝜕𝜕𝐷𝐷�0
𝜕𝜕𝑉𝑉�0

�. And since 

𝑉𝑉�0 = 𝐸𝐸�0 + 𝐷𝐷0, it is clear that 𝜕𝜕𝐷𝐷
�0

𝜕𝜕𝑉𝑉0
> 0 in the relevant range for B. In particular, 𝜕𝜕𝐷𝐷

�0
𝜕𝜕𝑉𝑉0

=

(1 − 𝑘𝑘)𝑁𝑁�−�̆�𝑑1� + 𝑛𝑛��̆�𝑑1�
𝑘𝑘

𝜎𝜎√𝑟𝑟
> 0. Thus, not only is 𝑑𝑑𝐷𝐷

�0
𝑑𝑑𝜕𝜕

 positive, but 𝑑𝑑𝐷𝐷
�0
𝑑𝑑𝜕𝜕

> 𝜕𝜕𝐷𝐷0
𝜕𝜕𝜕𝜕

 for 𝐵𝐵 ∈ [0,𝐵𝐵𝑘𝑘∗). 

With this result I am now in a position to consider the GP’s problem of optimizing fund size as it 
depends on B. As before, the problem is stated as: 𝑀𝑀𝑀𝑀𝑀𝑀

𝜕𝜕
 Φ𝑉𝑉(𝐵𝐵;𝜓𝜓, 𝜌𝜌) = 𝜌𝜌 �𝑉𝑉�0𝑒𝑒(𝜇𝜇+𝛼𝛼)𝑟𝑟𝑁𝑁�ℎ�1� −

𝜒𝜒0𝑁𝑁�ℎ�2��, ℎ�1 =
𝑙𝑙𝑛𝑛�𝑉𝑉

�0 𝜒𝜒0� �+�(𝜇𝜇+𝛼𝛼)+12𝜎𝜎
2�𝑟𝑟

𝜎𝜎√𝑟𝑟
, ℎ�2 = ℎ�1 − 𝜎𝜎√𝑇𝑇. Further, as above, 𝑉𝑉�0 is a function of B, with 

the previously imposed constraints applying. Evaluating incentive compatibility results in the 

following relation: 1
𝑑𝑑𝐷𝐷�0
𝑑𝑑𝑑𝑑

= 𝑒𝑒(𝜇𝜇+𝛼𝛼)𝑇𝑇𝑁𝑁[ℎ�1]
𝑁𝑁�ℎ�2�

> 𝑒𝑒(𝜇𝜇+𝛼𝛼)𝑟𝑟 > 𝑒𝑒𝜓𝜓𝑟𝑟 when 𝜇𝜇 + 𝛼𝛼 >ψ. A unique interior solution 

therefore exists when r < μ + α, which is always the case as long as μ > r and α ≥ 0. Since 𝑑𝑑𝐷𝐷
�0
𝑑𝑑𝜕𝜕

> 𝜕𝜕𝐷𝐷0
𝜕𝜕𝜕𝜕

 
for 𝐵𝐵 ∈ [0,𝐵𝐵𝑘𝑘∗), the marginal cost of debt in this case (left-hand side of the above relation) is less than 
the marginal cost of debt with the baseline fundraising model. This implies that the optimal B is larger 

in this fundraising model whenever 𝜇𝜇 + 𝛼𝛼 >ψ. And since 𝑑𝑑𝐷𝐷
�0
𝑑𝑑𝜕𝜕

> 𝜕𝜕𝐷𝐷0
𝜕𝜕𝜕𝜕

, the optimal 𝐷𝐷�0 will also be larger 

than 𝐷𝐷0. Lastly, note that 𝐷𝐷�0 = 0 when 𝐷𝐷0 = 0, implying that the marginal cost of debt increases 
without bound as 𝐷𝐷0 approaches zero. This in turn implies that the optimal 𝐷𝐷�0 is finite and therefore 
fund size is finite. 
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Appendix D 

Parameter Value Selection 

 

Total Asset Acquisition Cost and Management Fees: Proper accounting for management fees is 
more complex than typically characterized. Many management fees, such as acquisition, monitoring, 
and development fees, scale directly to total fund size as opposed to invested capital. Moreover, 
management fees are paid over the entire life of the fund, and not simply over the cash-based duration 
of fund investment. For example, although fund durations may commonly be on the order of five to 
seven years, management fees are incurred continually over a typical fund life of 10 years. 
Consequently, I assume 1.50% in total management fees per annum (as displayed in column (1) of 
Table 1), taken over a 10-year fund life, to result in 15.0% total management fees as a percentage of 
invested capital. Then I rescale these fees based on representative fund leverage ratios, resulting in 
total fixed management fees equal to 5.0% of the fund’s asset acquisition cost. In all cases, I assume 
that the fund’s asset acquisition cost is V0 = 100. 

Incentive Fee Contract Variables: For baseline model estimation purposes, in this sub-section I 
specify a carried interest share of 20.0% and a carried interest hurdle rate of 9.0%, with no catch-up fee 
provision term. Catch-up fees are considered separately, after the completion of this initial calibration 
exercise. 

Fund Assets’ Unlevered Equilibrium Rate of Return: Reference to monthly reports issued by Green 
Street suggests unlevered returns of around 6.0%. Real Estate Research Corporation (RERC) also 
produces estimates of unlevered discount rates for major property types. As of the fourth quarter of 
2020, their estimates range from 5.0% to 8.5% for A+ to A quality property.  

Value-add and opportunity PERE funds typically acquire assets that require repositioning, and 
oftentimes significant development or redevelopment. This increases asset risk relative to otherwise 
equivalent income-producing assets. According to RERC, unlevered discount rates for B and C quality 
assets range from approximately 7.0% to 12.0%. In referencing Pagliari’s (2020) analysis of value-add 
and opportunity funds, he pegs unlevered expected asset returns at approximately 10.0%. I am not 
aware of any other direct evidence on the topic, so I use μ = .10 as my base-case value. 

Fund Assets’ Unlevered Standard Deviation of Return: Empirical estimates of PERE fund return 
volatility exist in industry publications (e.g., CEM Benchmarking 2020). But such estimates are 
generally made on a portfolio or index of levered funds on a net-of-fee basis. With that in mind, fund 
volatility estimates are typically in the 17.5% to 25.0% range. Pagliari (2020) generates direct 
volatility estimates on value-add and opportunity PERE funds in the 15.0% to 20.0% range. Based on 
my analysis of Preqin data, I find the standard deviation of IRRs realized on 399 value-add and 
opportunity PERE funds to be 16% to 17%. Altogether, these data points result in σ = .175, which I 
use as my base-case value.  

I note that the base-case fund volatility is significantly below asset volatilities estimated or assumed in 
venture capital and buyout funds (e.g., Cochrane, 2005; Metrick and Yasuda, 2010; Sorensen, Wang, 
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and Yang, 2014). But, given the highly specific idiosyncratic risks associated with these investments, 
they generally have a low correlation structure that significantly reduces variation in payoffs at the 
fund level. Resulting variation in fund-level payoffs is therefore much more in line with my PERE-
based fund payoff volatility estimate.2 Furthermore, PERE funds often specialize by property type and 
geographical area or region, resulting in a strong correlation structure relative to that observed in 
buyout and venture capital funds.  

Alpha: Alpha is estimated on a gross-of-fee basis. There are no direct estimates of gross-of-fee value-
add and opportunity PERE fund alphas that I know of. As noted earlier, there are good reasons to 
believe that operational, governance, and financial engineering benefits to PERE are limited relative to 
the benefits available in buyout or venture capital funds. Limited benefits are closely related to the 
existence of a viable and liquid parallel public market for the ownership of commercial real estate. 
That said, the repositioning and redevelopment of assets held by PERE funds do offer opportunities to 
add value relative to holding run-of-the-mill income-producing property.  

Recent studies document PERE fund alphas on a net-of-fee basis. Gupta and Van Nieuwerburgh 
(2021) estimate that closed-end PERE funds lose 17 cents on average for every dollar invested. Given 
fund durations of five to seven years on average, this equates to approximately a 2.0% to 3.0% 
negative net-of-fee alpha. Applying a standard mean-variance framework, Bollinger and Pagliari 
(2019) and Pagliari (2020) generate similar net-of-fee alpha estimates for PERE value-add and 
opportunity funds. Risk adjustments are made in both studies and do not explicitly account for liquidity 
differences between PERE funds and the liquid benchmark indices.  

This leads me to choose a base case α = .02. This estimate seems reasonable based on net-of-fee 
performance ranging from 0.0% to −3.0 %, with fee drag in the 3.5%-4.0% range.  

Fund Duration and Debt Term: I obtain Preqin data on 78 PERE value-add and opportunity funds 
that have liquidated and for which I have a full set of cash flows. In these data, the average fund life is 
10.5 years. Durations and weighted average fund lives are significantly shorter, however. These data 
generate an average fund duration of 4.7 years [as measured by the method suggested in Phalippou and 
Gottschalg (2009)] and an average weighted average life of just under 5.0 years. Other data I have seen 
indicate weighted average PERE fund lives in the four- to eight-year range. Given these data points, I 
take T = 6 years as my base-case value. 

Risk-free Rate of Return: The U.S. Treasury rate is often referenced as the risk-free rate. Previous 
work suggests that the risk-free rate exceeds the Treasury rate due to a convenience yield 
(Krishnamurthy and Vissing-Jorgensen, 2012). Thus, I specify the risk-free rate as r = .02. This 
relatively low rate applies to the 2004-2020 time period that I use for my empirical analysis. 

Costs of Financial Distress: Financial distress costs were previously pegged at k = .30 (see Appendix 
A). 

  

                                                           
2 For example, Sorensen et al. (2014) assume 60% volatility at the deal level, with 20% pairwise correlations and 15 deals 
in a fund. This reduces volatility to 25% at the fund level.  



9 
 

Appendix E 

LP Return Targeting and the Baseline Contract 

 

To start, I make three initial observations. First, incentive fees are strictly decreasing in λ. Second, 
incentive fees are strictly increasing in ρ, with the interest carry share acting as a linear scaling factor. 
Third, based on these first two facts, the GP is able to extract fees to the point where the target return 
constraint binds. Specifically, the GP sets �̅�𝜌 such that: 

 �̅�𝜌 = ℰ𝑇𝑇−𝑒𝑒𝜆𝜆
∗𝑇𝑇�𝐸𝐸0+𝛷𝛷𝐹𝐹�

𝑉𝑉0𝑒𝑒(𝜇𝜇+𝛼𝛼)𝑇𝑇𝑁𝑁[ℎ1]−𝜒𝜒0𝑁𝑁[ℎ2]
. (E.1) 

Two additional observations are in order. First, for ψ < λ*, the target return constraint in (7a) cannot be 
satisfied when ρ = 1. That is, at least some profit sharing by the GP through interest carry must occur. 
Second, GPs will exit the market when they cannot meet the return target constraint with a positive 
carried interest share. That is, the GPs will not contract for 𝜌𝜌 ≤ 0. As a result, based on these structural 
considerations, the 0 < 𝜌𝜌 < 1 constraint in (7a) will always be satisfied and hence can be ignored. 

To solve (7) subject to (7a), I form the Lagrangian, with the resulting Karush-Kuhn-Tucker (KKT) 
conditions: 

 ℒ(𝐵𝐵,𝜌𝜌) = −Φ𝑉𝑉(𝜌𝜌,𝐵𝐵;𝜓𝜓) + 𝜇𝜇1�𝜆𝜆∗ − 𝜆𝜆𝑁𝑁(𝐵𝐵, 𝜌𝜌)� + 𝜇𝜇2(𝐷𝐷0(𝐵𝐵)− 𝐷𝐷�0), (E.2) 

where 𝜇𝜇1, 𝜇𝜇2 ≥ 0 denote Lagrange multipliers. With this I can now state the major result of this 
subsection. 

Proposition E1 (The Constrained Baseline Contract When LPs Target Returns): When 
maximizing incentive fees, the target return constraint always binds, with 𝜇𝜇1 = 𝑇𝑇[ℰ𝑟𝑟 − 𝛷𝛷𝑉𝑉] > 0. As a 
result, the GP sets the carried interest share according to equation (E.1) in order to just meet the 
target return constraint. In general, depending on parameter values, the target fund leverage 
constraint may or may not be binding. When the fund leverage constraint binds, 𝜇𝜇2 =
1

𝜕𝜕𝐷𝐷0
𝜕𝜕𝑑𝑑

�𝜕𝜕ℰ𝑇𝑇
𝜕𝜕𝜕𝜕

− 𝜕𝜕𝐸𝐸0
𝜕𝜕𝜕𝜕

�ℰ𝑇𝑇−𝛷𝛷
𝑉𝑉

𝐸𝐸0+𝛷𝛷𝐹𝐹�� > 0. Target return and fund leverage constraints simultaneously bind if and 

only if  𝐸𝐸0+𝛷𝛷
𝐹𝐹

ℰ𝑇𝑇
< 𝑒𝑒−𝜆𝜆∗𝑟𝑟 <

𝜕𝜕𝐸𝐸0
𝜕𝜕𝑑𝑑
𝜕𝜕ℰ𝑇𝑇
𝜕𝜕𝑑𝑑

. This inequality relation is independent of ψ.  

Proof: Given the Lagrangian stated in (E.2), after examining the necessary FOCs I find that, regardless 

of whether the fund leverage constraint is binding, 𝜇𝜇1 =
−𝜕𝜕Φ𝑉𝑉

𝜕𝜕𝜕𝜕
−𝜕𝜕Φ𝑉𝑉
𝜕𝜕𝜕𝜕 �1𝑇𝑇��

1
𝜀𝜀𝑇𝑇−Φ𝑉𝑉

�
= 𝑇𝑇[ℰ𝑟𝑟 − Φ𝑉𝑉] > 0. This 

implies that the fund target return constraint always binds. As a result, one finds �̅�𝜌 > 0 as defined in 
equation (E.1), where positive �̅�𝜌 is necessary to satisfy GP participation. With 𝜇𝜇1, in the case of a 

binding fund leverage constraint, after some algebra I obtain 𝜇𝜇2 = 1
𝜕𝜕𝐷𝐷0
𝜕𝜕𝑑𝑑

�𝜕𝜕ℰ𝑇𝑇
𝜕𝜕𝜕𝜕

− �ℰ𝑇𝑇−Φ
𝑉𝑉

𝐸𝐸0+Φ𝐹𝐹�
𝜕𝜕𝐸𝐸0
𝜕𝜕𝜕𝜕
�. The term 
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inside the bracket must be verified to be positive for 𝜇𝜇2 > 0. When 𝜇𝜇2 > 0, it must be that 
𝜕𝜕𝐸𝐸0
𝜕𝜕𝑑𝑑
𝜕𝜕ℰ𝑇𝑇
𝜕𝜕𝑑𝑑

>

𝐸𝐸0+Φ𝐹𝐹

ℰ𝑇𝑇−Φ𝑉𝑉. Recalling equation (6), this inequality implies that 
𝜕𝜕𝐸𝐸0
𝜕𝜕𝑑𝑑
𝜕𝜕ℰ𝑇𝑇
𝜕𝜕𝑑𝑑

> 𝑒𝑒−𝜆𝜆∗𝑟𝑟. Also, GP participation vis-à-vis 

equation (E.1) implies that ℰ𝑟𝑟 − [𝐸𝐸0 + Φ𝐹𝐹]𝑒𝑒𝜆𝜆∗𝑟𝑟 > 0, which in turn implies that 𝑒𝑒−𝜆𝜆∗𝑟𝑟 > 𝐸𝐸0+Φ𝐹𝐹

ℰ𝑇𝑇
. 

Altogether I have that 𝐸𝐸0+Φ
𝐹𝐹

ℰ𝑇𝑇
< 𝑒𝑒−𝜆𝜆∗𝑟𝑟 <  

𝜕𝜕𝐸𝐸0
𝜕𝜕𝑑𝑑
𝜕𝜕ℰ𝑇𝑇
𝜕𝜕𝑑𝑑

 when 𝜇𝜇2 > 0 and GP participation is satisfied as stated in 

the proposition. Furthermore, 𝐸𝐸0+Φ
𝐹𝐹

ℰ𝑇𝑇
< 𝑒𝑒−𝜆𝜆∗𝑟𝑟 <  

𝜕𝜕𝐸𝐸0
𝜕𝜕𝑑𝑑
𝜕𝜕ℰ𝑇𝑇
𝜕𝜕𝑑𝑑

 implies 𝜇𝜇2 > 0. All terms are independent of ψ, as 

claimed. QED 

 
In general, the target fund leverage constraint may or may not be binding, depending on the parameter 
values. It will not be binding when μ2 = 0 for some B such that 𝐷𝐷0(𝐵𝐵) < 𝐷𝐷�0. Given the calibrated 
parameter values I use in my analysis, I find that the target fund leverage constraint always binds, 
implying that μ2 > 0 for 𝐵𝐵�  such that 𝐷𝐷0(𝐵𝐵�) = 𝐷𝐷�0. Thus the LP essentially breaks even from a risk-
return perspective. Interestingly, μ2, the shadow value associated with relaxing the fund leverage 
constraint, equals the marginal cost of debt, 1

𝜕𝜕𝐷𝐷0
𝜕𝜕𝑑𝑑

, multiplied by the (partially-adjusted) increase in LP 

return associated with a marginal dollar of debt, �𝜕𝜕ℰ𝑇𝑇
𝜕𝜕𝜕𝜕

− 𝜕𝜕𝐸𝐸0
𝜕𝜕𝜕𝜕

�ℰ𝑇𝑇−𝛷𝛷
𝑉𝑉

𝐸𝐸0+𝛷𝛷𝐹𝐹��. 

One can simply use the inequality relation, 𝐸𝐸0+Φ
𝐹𝐹

ℰ𝑇𝑇
< 𝑒𝑒−𝜆𝜆∗𝑟𝑟 <

𝜕𝜕𝐸𝐸0
𝜕𝜕𝑑𝑑
𝜕𝜕ℰ𝑇𝑇
𝜕𝜕𝑑𝑑

, to verify that the GP participates in 

the fund with �̅�𝜌 > 0 and with the fund leverage constraint binding at 𝐷𝐷0(𝐵𝐵�) = 𝐷𝐷�0. The participation 

constraint, 𝐸𝐸0+Φ
𝐹𝐹

ℰ𝑇𝑇
< 𝑒𝑒−𝜆𝜆∗𝑟𝑟, requires finding an 𝛼𝛼𝑀𝑀𝑀𝑀𝑛𝑛 > 0 such that �̅�𝜌 = 0. Then for any 𝛼𝛼 > 𝛼𝛼𝑀𝑀𝑀𝑀𝑛𝑛, the 

GP participates and sets �̅�𝜌 according to equation (E.1), with a net-of-fee return to the LP of 𝜆𝜆 = 𝜆𝜆∗. For 

the fund leverage constraint to bind, it must be that 𝑒𝑒−𝜆𝜆∗𝑟𝑟 <
𝜕𝜕𝐸𝐸0
𝜕𝜕𝑑𝑑
𝜕𝜕ℰ𝑇𝑇
𝜕𝜕𝑑𝑑

, which follows from the second KKT 

condition. In all cases, the inequality relations do not depend on the carry hurdle rate, ψ.  
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Appendix F 

LP Return Targeting and the Catch-Up Provision 

 

To solve equation (11), I form the Lagrangian, with KKT conditions as follows: 

 ℒ(𝐵𝐵, 𝜉𝜉) = −Φ𝑉𝑉(𝜌𝜌,𝐵𝐵;𝜓𝜓) + 𝜇𝜇1�𝜆𝜆∗ − 𝜆𝜆𝑁𝑁(𝐵𝐵,𝜌𝜌)� + 𝜇𝜇2(𝐷𝐷0(𝐵𝐵) − 𝐷𝐷�0) + 𝜇𝜇3(𝜉𝜉 − 1) (F.1) 

and where 𝜇𝜇1, 𝜇𝜇2, 𝜇𝜇3 ≥ 0 denote Lagrange multipliers.  

Prior to stating solutions to the constrained optimization problem, it is also useful to recall the 
following relation: 

 𝛷𝛷𝐶𝐶𝐶𝐶
𝑉𝑉 = ℰ𝑟𝑟 − 𝑒𝑒𝜆𝜆∗𝑟𝑟[𝐸𝐸0 + 𝛷𝛷𝐹𝐹]. (F.2) 

This is simply a rearrangement of equation (6), along with constraining 𝜆𝜆𝑁𝑁 to equal 𝜆𝜆∗. I use this 
relation to locate solutions when analyzing KKT conditions according to equation (F.1).  

With this, I am now in a position to state the constrained efficient solution to the catch-up fee 
contracting problem. 

Proposition F1 (The Constrained Catch-Up Fee Contracting Problem): For empirically-based 
parameter value ranges established previously, there are three solution ranges to consider. To bracket 
the solution ranges, let �̇�𝛼 be that 𝛼𝛼 > 0 with 𝜆𝜆 = 𝜆𝜆∗ and 𝐷𝐷0 = 𝐷𝐷�0 given 𝜉𝜉 = 𝜌𝜌, and let �̈�𝛼 be that 𝛼𝛼 > �̇�𝛼 
at which 𝜆𝜆 = 𝜆𝜆∗ and 𝐷𝐷0 = 𝐷𝐷�0 given 𝜉𝜉 = 1.0. The contracting solution ranges are as follows: 1) when 
𝛼𝛼 < �̇�𝛼, no catch-up provision is included the incentive contract; 2) when �̇�𝛼 ≤ 𝛼𝛼 < �̈�𝛼, both the target 
return and fund leverage constraints bind, with ξ chosen to satisfy equation (E.2); 3) when 𝛼𝛼 ≥ �̈�𝛼, full 
catch-up 𝜉𝜉 = 1.0 is implemented, along with 𝜆𝜆 = 𝜆𝜆∗. 𝐷𝐷0(𝐵𝐵) < 𝐷𝐷�0 is chosen to satisfy equation (F.2).  

Proof: The first step is to determine 𝜕𝜕Φ𝐶𝐶𝐶𝐶
𝑉𝑉

𝜕𝜕𝜉𝜉
 and 𝜕𝜕𝜆𝜆

𝜕𝜕𝜉𝜉
.   After differentiating Φ𝐶𝐶𝐶𝐶

𝑉𝑉  with respect to 𝜉𝜉 and 

doing some algebra, I obtain 𝜕𝜕Φ𝐶𝐶𝐶𝐶
𝑉𝑉

𝜕𝜕𝜉𝜉
= �𝑉𝑉0𝑒𝑒(𝜇𝜇+𝛼𝛼)𝑟𝑟𝑁𝑁[ℎ1] − 𝜒𝜒0𝑁𝑁[ℎ2]� − �𝑉𝑉0𝑒𝑒(𝜇𝜇+𝛼𝛼)𝑟𝑟𝑁𝑁[𝑚𝑚1] − 𝜒𝜒0𝑁𝑁[𝑚𝑚ℎ2]�, 

which can be re-expressed as ∫ (𝑉𝑉𝑟𝑟 − 𝜒𝜒0)𝑓𝑓(𝑉𝑉𝑟𝑟)𝑑𝑑𝑉𝑉𝑟𝑟
Χ0
𝜒𝜒0

> 0 given that 𝜒𝜒0 < Χ0. As for 𝜕𝜕𝜆𝜆
𝜕𝜕𝜉𝜉

, differentiate 

lambda as defined in equation (6) with respect to 𝜉𝜉, noting that only Φ𝐶𝐶𝐶𝐶
𝑉𝑉  depends on 𝜉𝜉. Thus I have 

that  𝜕𝜕Φ𝐶𝐶𝐶𝐶
𝑉𝑉

𝜕𝜕𝜉𝜉
= 𝑉𝑉0𝑒𝑒(𝜇𝜇+𝛼𝛼)𝑟𝑟�𝑁𝑁[ℎ1] − 𝑁𝑁[𝑚𝑚1]� − 𝜒𝜒0�𝑁𝑁[ℎ2] − 𝑁𝑁[𝑚𝑚2]� > 0 and 𝜕𝜕𝜆𝜆

𝜕𝜕𝜉𝜉
=

−𝜕𝜕Φ𝐶𝐶𝐶𝐶
𝑉𝑉

𝜕𝜕𝜕𝜕

𝑟𝑟�ℰ𝑇𝑇−Φ𝐶𝐶𝐶𝐶
𝑉𝑉 �

 < 0.   

Now, for the parameter values considered herein, LP returns increase in fund leverage at and below the 
fund leverage constraint. Altogether this implies that there exists a minimum �̇�𝛼 > 0 at which 𝜉𝜉 = 𝜌𝜌 
with 𝜆𝜆 = 𝜆𝜆∗ and 𝐷𝐷0 = 𝐷𝐷�0. Because LP return increases in α, any 𝛼𝛼 ≤ �̇�𝛼 implies that the catch-up fee 
provision cannot be implemented with 𝜉𝜉 > 𝜌𝜌 while simultaneously satisfying the target return and fund 
leverage constraints. This establishes the lower range of α’s.  
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Next, I identify an �̈�𝛼 > �̇�𝛼 such that 𝜉𝜉 = 1.0 with 𝜆𝜆 = 𝜆𝜆∗ and 𝐷𝐷0 = 𝐷𝐷�0. This establishes an upper bound 
for the middle range of α’s. I now claim that for �̇�𝛼 < 𝛼𝛼 < �̈�𝛼, the target return and fund leverage 
constraints bind with 𝜉𝜉 chosen to satisfy equation (F.2). This claim requires that μ1, μ2 > 0 for there to 
be a constrained optimum. After examining FOCs that follow from equation (F.1), I find 𝜇𝜇1 =

𝑇𝑇[ℰ𝑟𝑟 − Φ𝐶𝐶𝐶𝐶
𝑉𝑉 ] > 0 and 𝜇𝜇2 = 1

𝜕𝜕𝐷𝐷0
𝜕𝜕𝑑𝑑

�𝜕𝜕ℰ𝑇𝑇
𝜕𝜕𝜕𝜕

− �ℰ𝑇𝑇−Φ𝐶𝐶𝐶𝐶
𝑉𝑉

𝐸𝐸0+Φ𝐹𝐹 �
𝜕𝜕𝐸𝐸0
𝜕𝜕𝜕𝜕
�. These are precisely the same conditions that are 

required to hold in the constrained baseline contract problem characterized in Proposition 3, where the 
only difference is that I am optimizing the expanded contract with respect to the catch-up rate, 𝜉𝜉, 
instead of the baseline contract with respect to the carry share percentage, 𝜌𝜌. 𝜇𝜇1 is seen to be always 
positive, while the bracketed term of 𝜇𝜇2 must be verified as positive given the parameter set in 
question.  

Lastly, 𝛼𝛼 ≥ �̈�𝛼 defines the higher range of αs. In this case, I claim that the target return and full catch 
rate constraints bind. Here 𝐷𝐷0 is positive but less than 𝐷𝐷�0, with 𝐷𝐷0 determined by (F.2). For this claim 
to hold, I must verify that μ1, μ3 > 0. Solving the constrained optimization problem in (F.1) generates 

that 𝜇𝜇1 =
−𝜕𝜕Φ𝐶𝐶𝐶𝐶

𝑉𝑉

𝜕𝜕𝑑𝑑
𝜕𝜕𝜆𝜆𝑁𝑁
𝜕𝜕𝑑𝑑

 and 𝜇𝜇3 = 𝜕𝜕Φ𝐶𝐶𝐶𝐶
𝑉𝑉

𝜕𝜕𝜉𝜉
�1 − 𝜇𝜇1

𝑟𝑟�ℰ𝑇𝑇−Φ𝐶𝐶𝐶𝐶
𝑉𝑉 �
�. These KKT conditions are verified to hold for 

empirically supported parameter ranges applied herein. QED 

 

For 𝛼𝛼 ≤ �̇�𝛼, there is no 𝜉𝜉 > 𝜌𝜌 that can simultaneously satisfy the target return and fund leverage 
constraints for the given ψ and ρ, while also resulting in GP incentive fees that are positive in 
expectation. Implicit in this result is that, for empirically-based parameter values established 
previously, and because 𝛼𝛼 > 0, LP returns are increasing in fund leverage at the fund leverage 
constraint. This causes the low-skill LP to lever the fund up to the 𝐷𝐷0 = 𝐷𝐷�0 constraint in a (failed) 
attempt to meet the LP’s return target.  

In all cases for which the catch-up fee provision is implementable, constrained optimal GP incentive 
fees are determined as a two-part tariff. For �̇�𝛼 ≤ 𝛼𝛼 < �̈�𝛼, the GP optimizes incentive fees by setting 
𝐷𝐷0 = 𝐷𝐷�0, and then using equation (F.2) to find the catch-up rate, 𝜉𝜉, to meet the LP’s return target. The 
GP optimizes over the catch-up rate rather than fund leverage, since the LP’s return target is more 
sensitive to reductions in fund leverage than it is to increases in the catch-up rate. In this case, the 
Lagrange multipliers are of the exact same form as in the baseline contracting case, except now 
incentive fees paid to the GP incorporate the fee-increasing effects of the catch-up provision. This 
augmented contract, which reduces fund leveraging incentives of the GP, has the effect of reducing 
shadow costs at both the return target and fund leverage constraint. For 𝛼𝛼 ≥ �̈�𝛼, the catch-up rate binds 
at 𝜉𝜉 = 1.0. Here the GP finds 𝐷𝐷0(𝐵𝐵) < 𝐷𝐷�0 that satisfies equation (F.2). Because fund leverage moves 
inversely with α, the GP reduces leverage to increase fees. This decreases the LP’s returns, with the GP 
reducing fund leverage to the point at which λN = λ*. 

 


