Online Appendix Paved with Partisan Intentions

A Derivations & Proofs

A.1 Result 1

Result 1 *The Speaker is more like to appoint an outsider as electoral adversity,* μ *, increases.*

Rather than assume a specific functional form for λ , we instead assume only that

- 1. $\lambda(\chi_i \mid \mu)$ is twice continuously differentiable in both χ_i and μ ,
- 2. $\lambda(\chi_i \mid \mu)$ is strictly increasing in χ_i for all $\mu > 0$ (*i.e.*, $\frac{\partial \lambda(\chi_i \mid \mu)}{\partial \chi_i} > 0$), and
- 3. $\frac{\partial \lambda(\chi_i | \mu)}{\partial \chi_i}$ is strictly increasing in μ for all $\chi_i \left(i.e., \frac{\partial^2 \lambda(\chi_i | \mu)}{\partial \chi_i \partial \mu} > 0 \right)$.

Substantively, the second of these properties implies that *S* has a strict preference for a legislator with higher ability, ceteris paribus. The third property implies that the marginal importance of ability is increasing in the electoral adversity faced by *S*.

Because we have assumed that discretion granted to a legislator *i*, *d*, does not affect *S*'s leadership value from appointing *i* and we assume that any legislator *j* would accept the job, d_i^* will depend entirely on *S*'s incentives (specifically, the function η). Thus, each legislator *i* can be represented as presenting *S* with a (sequentially rational) *policy value*, which we write as $v_i \in \mathbf{R}$, defined as follows:

$$v_i = \max_{d \in \mathbf{R}_+} \bigg[\eta(i, d) \bigg].$$

With this in hand, reorder the legislators in \mathcal{L} (without loss of generality) according to v_i as follows:

$$i \le j \Leftrightarrow v_i \ge v_j$$

Thus, any legislator with a "higher index" is *less* preferred by (or, *more* "distant from") S on policy grounds. Then, the set of abilities, $\chi = {\chi_j}_{j \in \mathcal{L}}$, that would appoint over any given legislator with policy value of v_i is equal to

$$R_{\lambda}(v_i \mid \chi) = \left\{ \left\{ \chi_j \right\}_{j \in \mathcal{L}} \in \mathbf{R}^{n-1} : v_i + \lambda(\chi_i) < v_j + \lambda(\chi_j) \right\},\$$

or, equivalently, as

$$R(v_i \mid \chi)_{\lambda} = \left\{ \{\chi_j\}_{j \in \mathcal{L}} \in \mathbf{R}^{n-1} : \lambda(\chi_j) > v_i - v_j + \lambda(\chi_i) \right\},\$$

Remark 1 Fix any *n*-dimensional vector $\{v_i\}_{i \in \mathcal{L}} \in \mathbf{R}^n$. To keep our analysis transparent, we refer to the "probability that *S* appoints a policy outsider" as increasing when changing from $\chi \in \mathbf{R}^n$ to $\chi' \in \mathbf{R}^n$ if

$$R_{\lambda}(v_1 \mid \chi) \subset R_{\lambda}(v_1 \mid \chi).$$

Furthermore, our assumptions imply that

$$\max[\chi] < \max[\chi'] \Rightarrow R_{\lambda}(v_1 \mid \chi) \subseteq R_{\lambda}(v_1 \mid \chi').$$

The Speaker's optimal appointment function, denoted by $\alpha^* : \mathbf{R}^n \times [0,1] \rightarrow \{1, \ldots, n\}$, is any selection satisfying the following:

$$\alpha^*(\chi,\mu) = \operatorname*{argmax}_{i \in \{1,\dots,n\}} u_S(i,d_i^* \mid \chi_i).$$

For simplicity, we will suppose that *S* appoints according to the following selection:

$$\alpha^*(\chi,\mu) = \min\left[\underset{i \in \{1,\dots,n\}}{\operatorname{argmax}} u_S(i,d_i^* \mid \chi_i) \right].$$

With this terminology in hand, we have the following result that states that increasing electoral adversity induces *S* to pick a policy outsider.

Proposition 1 Suppose that S's leadership function, $\lambda : \mathbf{R} \times [0,1] \rightarrow \mathbf{R}$, is twice continuously differentiable in each of its arguments and satisfies the following conditions:

1. $\lambda(\chi_i \mid \mu)$ is insensitive to χ_i when $\mu = 0$:

$$\mu = 0 \Rightarrow \frac{\partial \lambda(\chi_i \mid \mu)}{\partial \chi_i} = 0 \text{ for all } \chi_i, \chi_j \in \mathbf{R}^2,$$

2. $\lambda(\chi_i \mid \mu)$ is strictly increasing in μ , and

3. the marginal impact of χ_i *on* $\lambda(\chi_i | \mu)$ *is increasing in* μ *:*

$$\frac{\partial^2 \lambda(\chi_i \mid \mu)}{\partial \chi_i \partial \mu} > 0.$$

Then for any $\chi \in \mathbf{R}^n$ *, S's optimal appointment function,* $\alpha^*(\chi, \mu) : \mathbf{R}^n \times [0, 1] \rightarrow \{1, 2, ..., n\}$ *, is weakly decreasing in* μ *.*

Proof: Suppose that *S*'s leadership function, λ , satisfies Conditions 1, 2, and 3. Condition 1 implies that the following is an optimal appointment function for *S* when $\mu = 0$:²⁹

$$\alpha^*(\chi,0)=1.$$

Now suppose that there exists $\mu' \in [0, 1)$ such that $\alpha^*(\chi, \mu') > 1$. (If there is no such value $\mu' \in [0, 1)$, the claim is true.) Then, to the contrary of the claim (for the purpose of reaching a contradiction), suppose that there exists $\hat{\mu} > \mu'$ such that

$$\alpha^*(\chi,\mu') < \alpha^*(\chi,\hat{\mu}).$$

This would imply that λ is decreasing in μ , resulting in a contradiction.

A.2 Result 2

Result 2 Holding each legislator i's reservation value, ρ_i , constant, the level of discretion S grants in equilibrium, $d_{i^*}^*$, increases as electoral adversity, μ , increases.

Result 2 follows from the following logic. In equilibrium, the discretion granted to legislator $i \in \mathcal{L}$ conditional on a = i will be

$$d_i^* \equiv d_i^*(\gamma_i, \chi_i) = \begin{cases} 0 & \text{if } \sup_{d \ge 0} \left[\eta(d \mid \gamma_i, \chi_i) + \lambda(\chi_i) \right] < 0, \\ \max[\rho_i, d_i^*] & \text{otherwise.} \end{cases}$$

Thus, in equilibrium, S should appoint any legislator $i^*(\gamma, \chi, \rho)$ satisfying the following:³⁰

$$i^* \equiv i^*(\gamma, \chi, \rho) \in \operatorname{argmax}_{i \in \mathcal{L}} \left[\eta(d_i^* \mid \gamma_i, \chi_i) + \lambda(\chi_i) \right].$$

²⁹Note that satisfaction of Condition 1 implies that we can write $\lambda(\chi_i \mid \mu) = 0$ for all $\chi_i \in \mathbf{R}$ when $\mu = 0$. ³⁰For simplicity, we suppose that i^* is unique.

A.3 Result 3

Result 3 In equilibrium, as any legislator i's reservation value, ρ_i , increases,

- 1. the probability that the Speaker appoints *i* in equilibrium (weakly) decreases, but
- 2. when i is appointed, the level of discretion S grants to i, d_i^* , (weakly) increases.

Result 3 follows from the following facts:

- 1. When $\rho_i < d_i^*$, the Speaker will assign legislator $i d_i^*$ if S appoints *i*.
- 2. If $\rho_i > d_i^*$, the Speaker will assign legislator $i \rho_i^*$ if *S* appoints *i*.
- 3. If ρ_i^* increases without bound, then *S* will "eventually" not appoint *i* in equilibrium, by the 2nd condition of Assumption 1 (that $\lim_{d\to\infty} \eta(d \mid \gamma_i) < 0$ for any $\gamma_i \neq 1$).

A.4 Result 4

Result 4 Reducing the maximal level of discretion that the Speaker can grant, \bar{d} , might cause either or both of the following to occur:

- Reduce the Ability of the Appointee. If the third party has an interest in maximizing the ability of the appointed legislator, χ_{i*}, then reducing d̄ may be counter to the third party's interests because doing so induces the Speaker to appoint a different legislator with lower ability.
- *Change the Appointee's Policy Goals.* If the third party has strict preferences over the appointee's policy goals, then reducing \overline{d} may be counter to the third party's interests because doing so induces the Speaker to appoint a legislator with different policy goals.

Furthermore, both effects of reducing \overline{d} *are more likely to occur in equilibrium when electoral adversity,* μ *, is high.*

Both claims in Result 4 follow from the same logic as Result 3. The second-order impact of electoral adversity, μ , follows from the same logic as Result 2.