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A Proofs and Additional Formal Results

Assumption A.1. The players’ preferences are such that no neighbor sues over the de-
veloper’s break-even project, but all neighbors sue over the developer’s ideal project.
Formally, x̂i(c) < x̂i(c) < x̂D and x < x1 < x2 < x̂D, where x1 = x̃(c) and x2 = x̃(c).

Lemma A.1. |x0 − x̂i(ci)| < |x̃(ci)− x̂i(ci)|.

Proof of Lemma A.1. The lemma states that reversion policy x0 is closer to the ideal point x̂i(ci)
then is the lawsuit threshold x̃(ci). Assume not, then by the symmetry of the utility function
vi(x0, ci) < vi(x̃(ci), ci) and the neighbor would strictly prefer not to sue for proposal x̃(ci) a
contradiction of the definition of x̃(ci).

Lemma A.2. x̃(c) < x̃(c).

Proof of Lemma A.2. Let x̂i(c) < x̂i(c) (by the assumptions on the neighbors’ ideal points) and
x̃(ci) > x̂i(ci) for all ci (by the definition of x̃(ci) in Lemma 1). We consider two main cases.

Case 1. x̂i(c) < x̂i(c) < x0 or x0 < x̂i(c) < x̂i(c). Define x̃0(ci) = max{x0, 2x̂i(ci) − x0} and
x̃(ci) as defined in Lemma 1. Since vi is strictly concave and κP/(ρ̃i(1, n)− ρ̃i(0, n)) is constant in

1



x, then it follows that |x̃(c)−x̃0(c)| < |x̃(c)−x̃0(c)|. Moreover, x̃0(c) ≤ x̃0(c) since x̂i(c) < x̂i(c),
and then:

x̃(c) = x̃0(c) + |x̃(c)− x̃0(c)| < x̃0(c) + |x̃(c)− x̃0(c)| = x̃(c)

Case 2. x̂i(c) < x0 < x̂i(c). Consider two subcases:

• Case 2a: x̂i(c) < x̃(c) < x0 < x̂i(c) < x̃(c). This is not possible since by the definition of
x̃(·), x0 ≤ x̃(ci) for all ci.

• Case 2b: x̂i(c) < x0 < x̂i(c) < x̃(c) < x̃(c). In this case, the relative distance between
the weak opponent’s ideal size (x̂i(c)) and the lawsuit threshold (x̃(c)) and the default size
(x0) is smaller than for the strong opponent. This combined with the fact that c < c implies
that the utility gain from a lawsuit is strictly smaller for the weak opponent. Since the strong
opponent is indifferent between a lawsuit at x̃(c), this implies the weak opponent strictly
prefers not to sue, a contradiction of the definition of x̃(c).

By the pigeonhole principle, this leaves the only remaining, viable ordering for Case 2 as: x0 <
x̃(c) < x̃(c). We have thus shown that x̃(c) < x̃(c).

A.1 Deriving the Developer’s Belief at a Representative Meeting

Let ai(ci) be the strategy used by a neighbor i of type ci ∈ {c, c}. Since neighbors are behavioral
and thus behave independently and have the same incentives, then we can compactly write the weak
opponents’ strategy as a and the strong opponents’ strategy as a. While we assume players use pure
strategies in the main text, here we will allow a, a ∈ (0, 1). Let aW and aS be the total number of
weak and strong type attendees at the meeting, respectively. Similarly, letmW andmS be the total
number of weak and strong type attendees observed at the meeting, respectively. The total number
of attendees is a = aW + aS and the total number of observed attendees ism = mW +mS .

We will characterize the developer’s belief at a meeting in several steps. First, what is the proba-
bility that there are 0 ≤ z ≤ a weak type neighbors in the meeting, i.e. Pr(aW = z)? This can be
formally represented by a binomial distribution that characterizes the probability of z “successes”
(i.e., weak opponents) out of a independent trials. One wrinkle is that the probability of “success”
and “failure” depend in part on the weak opponents’ strategies and in part on the prevalence of
weak opponents in the neighborhood. Formally,

Pr(aW = z) =

(
a

z

)
(aω)z(1− aω)a−z
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For example, in an unrepresentative meeting equilibrium in which a = 0 (and letting 00 = 1), this
collapses to

Pr(aW = z) =

(
a

z

)
0z1a−z =

{
1 if z = 0

0 if z > 0

Next, given an arbitrary number of z weak opponents in attendance at a meeting of size a, what
is the probability that all m observed attendees are weak opponents (i.e. Pr(m = mL|aW = z))?
Given that m attendees are independently sampled without replacement, the probability that only
weak opponents are sampled can be written as follows (with some abuse of notation):

z

a
× ...× z − (m− 1)

a− (m− 1)

This is more precisely written as

Pr(m = mW |aW = z) =
m−1∏
y=0

z − y

a− y

For example, suppose that there are 4 weak opponents in attendance in a meeting attended by 10
neighbors total and only 2 weak opponents are observed by the developer. What is the probability
of this occurring?

Pr(m = mW = 2|aW = 4) =
4

10
× 3

9
=

6

45
≈ 0.13

To see where this comes from, note that the first draw yields a weak opponent with probability
4/10 since 4 of the 10 attendees are weak opponents. The second draw yields a weak type with
probability 3/9 since 3 of the remaining 9 attendees are weak opponents.

Recall that what the developer cares about is whether there is a strong opponent that could sue
her. So, a key factor in her decision making will be her belief that there are any strong opponents
who could sue her—i.e., the probability there are strong opponents at the meeting—given that she
observes mW and mS . Of course, if mS > 0, then she knows for sure that there is at least one
strong opponent who would sue her, so she makes her decision anticipating the possibility of such
a suit.

However, if she only observes weak opponents so that mW = m and mS = 0, she has an infer-
ential problem. There are two scenarios. First, it is possible that there are only weak opponents in
attendance, in which case she would only need to compromise with them (a “partial compromise”).
Second, it is possible there are strong opponents in attendance, but she just didn’t see them, in
which case she would want to compromise with the (unobserved) strong opponents to prevent a
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lawsuit (a “full compromise”). We use the previous two probabilities to formally characterize the
developer’s belief about the probability that all attendees are actually weak opponents when she
only observes weak opponents, i.e. Pr(aW = a|m = mW )? We do so using Bayes’ rule,

Pr(aW = a|mW = m) =
Pr(mW = m|aW = a) Pr(aW = a)∑a
z=0 Pr(mW = m|aW = z) Pr(aW = z)

We can immediately make one simplification. Since Pr(mW = m|aW = z) = 0 for all z < m, we
can simplify to:

Pr(aW = a|mW = m) =
Pr(mW = m|aW = a) Pr(aW = a)∑a
z=m Pr(mW = m|aW = z) Pr(aW = z)

Next, note that the numerator (and one term in the denominator) is:

Pr(mW = m|aW = a) Pr(aW = a) =

[
m−1∏
y=0

a− y

a− y

] [(
a

a

)
(aω)a(1− aω)a−a

]
= (aω)a

Finally, we can write the developer’s belief as follows:

Pr(aW = a|mW = m) =
(aω)a

(aω)a +
∑a−1

z=m Pr(mW = m|aW = z) Pr(aW = z)

A.1.1 Developer Beliefs at a Representative Meeting with Pure Strategies

To develop intuition, let’s consider how this belief looks for a representative meeting equilibrium
where all neighbors use pure strategies (implying a = 1) and in a neighborhood of size 3 (i.e.,
n = a = 3) with a meeting with channel 2 (i.e.,m = 2).

Pr(aW = 3|mW = 2) =
ω3

ω3 +
∑2

z=2

[∏1
y=0

z−y
3−y

] [(
3
z

)
ωz(1− ω)3−z

]
=

ω3

ω3 +
[∏1

y=0
2−y
3−y

] [(
3
2

)
ω2(1− ω)1

]
=

ω3

ω3 +
[
2
3
× 1

2

]
[3ω2(1− ω)1]

=
ω3

ω3 + ω2(1− ω)

= ω
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So, conditional on observing 2 weak opponents at a representative meeting, she believes all atten-
dees are weak opponents with probability ω and she believes there is at least one strong opponent
with probability 1− ω.

We can generalize this to a neighborhood of an arbitrary size n and a meeting channel of arbitrary
sizem:

Pr(aW = n|mW = m) =
ωn

ωn +
∑n−1

z=m

[∏m−1
y=0

z−y
n−y

] [(
n
z

)
ωz(1− ω)n−z

]
Note that the product inside the summation in the denominator is a ratio of falling factorials:[

m−1∏
y=0

z − y

n− y

]
=

(z)m
(n)m

=
z!(n−m)!

n!(z −m)!

We can use this fact to simply each term in the summation:

Pr(aW = n|mW = m) =
ωn

ωn +
∑n−1

z=m

(
n−m
z−m

)
ωz(1− ω)n−z

The summation yields a tidy expression:

Pr(aW = n|mW = m) =
ωn

ωn + (ωm − ωn)
= ωn−m

Then, in a representative meeting with n attendees, after having observed m weak opponents, the
developer believes that there are only weak opponents in the meeting with probability ωn−m. She
believes there is at least one strong opponent with probability 1− ωn−m.

The developer’s “inferential problem” is the fact that neither of these quantities is zero or one. Her
inferential problem becomes “worse” when ωn−m → 1

2
.

A.2 Weak Opponents’ Incentives in the Unrepresentative Meeting Equilib-
rium

We consider the strategic calculations of a neighbor i who is a weak opponent. Let h̃i be his belief
that at least one strong opponent will attend the meeting. He gets the following payoff from not
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attending an unrepresentative meeting:

(1− h̃i)vi(xM , c)︸ ︷︷ ︸
All other neighbors
are weak opponents
(no attendance)

+ h̃ivi(x1, c)︸ ︷︷ ︸
At least one other neighbor

is a strong opponent

However, what happens if he deviates and attends the meeting? Since observing weak opponents
at the meeting is off the equilibrium path, perfect Bayesian equilibrium does not pin down the
developer’s belief in that situation. By Assumption 2, if she observes any strong opponents, she
(correctly) believes there is a strong opponent at the meeting who is eligible to sue. And, if she
observes all weak opponents, she believes there are no strong opponents in the meeting.

There are two scenarios in which the developer observes only weak opponents. First, all neigh-
bors could be weak opponents, and without the deviation, there would be no meeting attendance.
The weak opponent i believes this happens with probability (1 − h̃i). Second, the neighborhood
could have a mix of weak and strong opponents (probability h̃i), but with the deviation, only weak
opponents are randomly chosen to be observed. In this situation, suppose that a deviating weak
opponent i believes only weak opponents are chosen with probability ϕ̃.

Recall that each neighbor i believes there will be a successful lawsuit with probability ρ̃i(si, n).
Moreover, since each neighbor’s cost is private information, a neighbor i only learns the types of
them attendees whose types are revealed.1 Let x′

2 ≡ min{x2, xM} Then, the expected payoff to a
weak opponent i for deviating and attending the meeting is:

(1−h̃i)vi(x2, c)

+ h̃iϕ̃
[
(1− ρ̃i(0, n))vi(x

′
2, c) + ρ̃i(0, n)vi(x0, c)

]
+ h̃i(1− ϕ̃)vi(x1, c)

− k

From Assumption 2, it follows that ϕ̃ = 0. Then the condition reduces to

(1− h̃i)vi(x2, c) + h̃ivi(x1, c)− k

Then there is no incentive to deviate if

(1− h̃i)vi(xM , c) + h̃ivi(x1, c) ≥ (1− h̃i)vi(x2, c) + h̃ivi(x1, c)− k

1. It is possible that a given neighbor i ends up knowing the types of m + 1 neighbors if she is not among the m
whose types are publicly revealed. This won’t dramatically change our analysis, and we thus ignore it to make our
results more parsimonious.
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This reduces to

vi(xM , c) ≥ vi(x2, c)−
k

1− h̃i

(A.1)

Since vi(·, c) is decreasing for xM > x̂i(c) and x2 > x̂i(c), then there exists a threshold xurM > x2

where (A.1) binds. Then for all xM ≤ xurM , a weak opponent has no incentive to deviate.
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