ONLINE APPENDIX

Supporting Information

Political Institutions, Energy Transitions, and Air Quality: Evidence from Global Urban Areas

To be published as Online Appendix. *Also available via Harvard Dataverse at: https://doi.org/10.7910/DVN/PFTKFN*

Contents

1.1 Only Cities Proximate to Operating or Retired Coal Power Plants

Figure S1: Staggered difference-in-differences for $PM_{2.5}$ Rates / Proximity to Operating or Retired Plants Only. Outcome variable is the number of cases attributable to this pollutant, before and after retirement; the model uses bootstrapped standard errors and a varying base period with no covariates. The sample includes only cities within 50KM of a retired coal power plant or within 50KM of a currently operating coal power plant to improve comparability. The models split the data by type of plant phasing out.

Figure S2: Staggered difference-in-differences for $NO₂$ Rates / Proximity to Operating or Retired Plants Only. Outcome variable is the number of cases attributable to this pollutant, before and after retirement; the model uses bootstrapped standard errors and a varying base period with no covariates. The sample includes only cities within 50KM of a retired coal power plant or within 50KM of a currently operating coal power plant to improve comparability. The models split the data by type of plant phasing out.

2 Staggered Difference-in-Differences

2.1 Simple Aggregation

Table S1: Signif. codes: * confidence band does not cover 0

Control Group: Never Treated, Anticipation Periods: 0

Estimation Method: Doubly Robust. Model 1: PM2.5 mortality rate, varying base period, no covariates; Model 2: PM2.5 mortality rate universal base period, no covariates; Model 3: PM2.5 mortality rate varying base period, covariates; Model 4: PM2.5 mortality rate, universal base period, covariates; Model 5: PM2.5 mortality rate, $100KM$ from retired unit, varying period, no covariates; Model 6: PM2.5 mortality rate, 150KM from retired unit, varying base period, no covariates; Model 7: PM2.5 mortality rate, 50KM from high capacity unit, varying base period, no covariates; Model 8: PM2.5 mortality rate, 50KM from low capacity unit, varying base period, no covariates; Model 9: NO2 mortality rate, varying base period, no covariates; Model 10: NO2 mortality rate universal base period, no covariates; Model 11: NO2 mortality rate varying base period, covariates; Model 12: NO2 mortality rate, universal base period, covariates; Model 13: NO2 mortality rate, 100KM from retired unit, varying period, no covariates; Model 14: NO2 mortality rate, 150KM from retired unit, varying base period, no covariates; Model 15: NO2 mortality rate, 50KM from high capacity unit, varying base period, no covariates; Model 16: NO2 mortality rate, 50KM from low capacity unit, varying base period, no covariates

2.2 Cohort Aggregation

Figure S3: Staggered differences-in-differences, cohort aggregation $(PM_{2.5}$ Rates). The figure shows the group-average treatment affect on the treated by group, defined as the year of exposure.

Figure S4: Staggered differences-in-differences, cohort aggregation $(PM_{2.5}$ Rates), large coal power plants. The figure shows the group-average treatment affect on the treated by group, defined as the year of exposure (only exposure to large power plants).

Figure S5: Staggered differences-in-differences, cohort aggregation $(PM_{2.5}$ Rates), small coal power plants. The figure shows the groupaverage treatment affect on the treated by group, defined as the year of exposure (only exposure to small power plants).

Figure S6: Staggered differences-in-differences, cohort aggregation $(NO₂$ Rates). The figure shows the group-average treatment affect on the treated by group, defined as the year of exposure.

Figure S7: Staggered differences-in-differences, cohort aggregation $(NO₂ Rates), large coal power plants. The figure shows the group-average$ treatment affect on the treated by group, defined as the year of exposure (only exposure to large power plants).

Figure S8: Staggered differences-in-differences, cohort aggregation $(NO₂ Rates)$, small coal power plants. The figure shows the group-average treatment affect on the treated by group, defined as the year of exposure (only exposure to small power plants).

2.3 Only Retired Plants (No Mothballed or Shelved)

Figure S9: Staggered differences-in-differences, event study ($PM_{2.5}$ Rates). Outcome variable is the number of cases attributable to this pollutant, before and after retirement. Model 1 employs a varying base period with no time-varying covariates. Model 2 uses a varying base period with time-varying covariates. Model 3 employs a universal base period with no time-varying covariates. Model 4 uses a universal base period with time-varying covariates.

Figure S10: Staggered differences-in-differences, event study ($PM_{2.5}$ Rates) by capacity. Outcome variable is the number of cases attributable to this pollutant, before and after retirement. The model employs a varying base period with no time-varying covariates.

Figure S11: Staggered differences-in-differences, event study $(NO₂)$ Rates). Outcome variable is the number of cases attributable to this pollutant, before and after retirement. Model 1 employs a varying base period with no time-varying covariates. Model 2 uses a varying base period with time-varying covariates. Model 3 employs a universal base period with no time-varying covariates. Model 4 uses a universal base period with time-varying covariates.

Figure S12: Staggered differences-in-differences, event study $(NO₂)$ Rates) by capacity. Outcome variable is the number of cases attributable to this pollutant, before and after retirement. The model employs a varying base period with no time-varying covariates.

3 Robustness Checks: Alternative Estimators (Standard Two-Way Fixed Effects)

3.1 Variations of Fixed Effects

3.1.1 City and Year FE

Table S2: Standard TWFE: Mortality Rates. The outcome variable for both models is number of cases attributable to each pollutant per 100,000 inhabitants. The main independent variable is the interaction of proximity to a retired coal power plant (defined as being located within 50KM of a facility) and a binary variable that takes the value of 1 after retirement. The models control for the logged amount of carbon dioxide emissions to approximate energy-intensive activities. The standard errors are clustered at the city level. The sample includes only cities in proximity to retired or operating coal power plants to improve comparability. The models include city and year fixed effects.

 $***p<0.001;$ $**p<0.01;$ $p<0.05$

Table S3: Standard TWFE: Total Emissions. The outcome variable for the three models is the total emissions of each pollutant. The main independent variable is the interaction of proximity to a retired coal power plant (defined as being located within 50KM of a facility) and a binary variable that takes the value of 1 after retirement. The models control for the logged amount of carbon dioxide emissions to approximate energy-intensive activities. The standard errors are clustered at the city level. The sample includes only cities in proximity to retired or operating coal power plants to improve comparability. The models include city and year fixed effects.

3.1.2 City, Country, and Year FE

Table S4: Standard TWFE: Mortality Rates. The outcome variable for both models is number of cases attributable to each pollutant per 100,000 inhabitants. The main independent variable is the interaction of proximity to a retired coal power plant (defined as being located within 50KM of a facility) and a binary variable that takes the value of 1 after retirement. The models control for the logged amount of carbon dioxide emissions to approximate energy-intensive activities. The standard errors are clustered at the city level. The sample includes only cities in proximity to retired or operating coal power plants to improve comparability. The models include city, country, and year fixed effects

 $***p<0.001;$ $**p<0.01;$ $p<0.05$

Table S5: Standard TWFE: Total Emissions. The outcome variable for the three models is number of cases attributable to each pollutant per 100,000 inhabitants. The main independent variable is the interaction of proximity to a retired coal power plant (defined as being located within 50KM of a facility) and a binary variable that takes the value of 1 after retirement. The models control for the logged amount of carbon dioxide emissions to approximate energy-intensive activities. The standard errors are clustered at the city level. The sample includes only cities in proximity to retired or operating coal power plants to improve comparability. The models include city, country, and year fixed effects

3.2 Distance to Coal Power Plants

3.2.1 Mortality Rates Attributable to $PM_{2.5}$

 $***p<0.001;$ $**p<0.01;$ $p<0.05$

Table S6: Standard Two-Way Fixed Effects: Mortality Rates by Distance to the Closest Retired Unit. The outcome variable for the three models is the number of cases attributable to particulate matter per 100,000 inhabitants. The main independent variable is the interaction of proximity to a retired coal power plant (defined as being located within 50KM / 100KM / 150KM of a facility) and a binary variable that takes the value of 1 after retirement. The models control for the logged amount of carbon dioxide emissions to approximate energy-intensive activities. The standard errors are clustered at the city level. The sample includes only cities in proximity to retired or operating coal power plants to improve comparability (cities within 50KM / 100KM / 150KM of both retired or operating coal power plans). The models include city, country, and year fixed effects.

 $\mathfrak{p} < 0.001; \; \text{``} \mathfrak{p} < 0.01; \; \text{``} \mathfrak{p} < 0.05$

Table S7: Standard Two-Way Fixed Effects: Mortality Rates by Distance to the Closest Retired Unit. The outcome variable for the three models is the number of cases attributable to nitrogen dioxide per 100,000 inhabitants. The main independent variable is the interaction of proximity to a retired coal power plant (defined as being located within 50KM / 100KM / 150KM of a facility) and a binary variable that takes the value of 1 after retirement. The models control for the logged amount of carbon dioxide emissions to approximate energy-intensive activities. The standard errors are clustered at the city level. The sample includes only cities in proximity to retired or operating coal power plants to improve comparability (cities within 50KM / 100KM / 150KM of both retired or operating coal power plans). The models include city, country, and year fixed effects

3.2.3 Emissions of $PM_{2.5}$

 $***p<0.001;$ $**p<0.01;$ $p<0.05$

Table S8: Standard Two-Way Fixed Effects: Emissions by Distance to the Closest Retired Unit. The outcome variable for the three models is the level of emissions from particulate matter. The main independent variable is the interaction of proximity to a retired coal power plant (defined as being located within 50KM / 100KM / 150KM of a facility) and a binary variable that takes the value of 1 after retirement. The models control for the logged amount of carbon dioxide emissions to approximate energy-intensive activities. The standard errors are clustered at the city level. The sample includes only cities in proximity to retired or operating coal power plants to improve comparability (cities within 50KM / 100KM / 150KM of both retired or operating coal power plans). The models include city, country, and year fixed effects

3.2.4 Emissions of $NO₂$

 $***p<0.001;$ $**p<0.01;$ $p<0.05$

Table S9: Standard Two-Way Fixed Effects: Emissions by Distance to the Closest Retired Unit. The outcome variable for the three models is the level of emissions from nitrogen dioxide. The main independent variable is the interaction of proximity to a retired coal power plant (defined as being located within 50KM / 100KM / 150KM of a facility) and a binary variable that takes the value of 1 after retirement. The models control for the logged amount of carbon dioxide emissions to approximate energy-intensive activities. The standard errors are clustered at the city level. The sample includes only cities in proximity to retired or operating coal power plants to improve comparability (cities within 50KM / 100KM / 150KM of both retired or operating coal power plans). The models include city, country, and year fixed effects

3.2.5 Emissions of $CO₂$

 $***p<0.001;$ $**p<0.01;$ $p<0.05$

Table S10: Standard Two-Way Fixed Effects: Emissions by Distance to the Closest Retired Unit. The outcome variable for the three models is the level of emissions of carbon dioxide. The main independent variable is the interaction of proximity to a retired coal power plant (defined as being located within 50KM / 100KM / 150KM of a facility) and a binary variable that takes the value of 1 after retirement. The models control for the logged amount of carbon dioxide emissions to approximate energy-intensive activities. The standard errors are clustered at the city level. The sample includes only cities in proximity to retired or operating coal power plants to improve comparability (cities within 50KM / 100KM / 150KM of both retired or operating coal power plans). The models include city, country, and year fixed effects

3.3 Coal Power Plant Capacity

3.3.1 Mortality Rates Attributable to $PM_{2.5}$ by Capacity

∗∗∗p < 0.001; ∗∗p < 0.01; [∗]p < 0.05

Table S11: Standard Two-Way Fixed Effects: Mortality Rates by Capacity of the Closest Retired Coal Unit. The outcome variable for the three models is the number of cases attributable to particulate matter per 100,000 inhabitants. The main independent variable is the interaction of proximity to a retired coal power plant (defined as being located within 50KM of a facility) and a binary variable that takes the value of 1 after retirement. The models control for the logged amount of carbon dioxide emissions to approximate energy-intensive activities. The standard errors are clustered at the city level. The sample includes only cities in proximity to retired or operating coal power plants to improve comparability (cities within 50KM of both retired or operating coal power plans). The models include city, country, and year fixed effects. In Model 1, the independent variable measures distance to any retiring coal power plant; in Model 2 the independent variable measures distance to only large (above 300MW) power plants; in Model 3, the independent variable measures distance to only small (below 300 MW) power plants.

3.3.2 Mortality Rates Attributable to $NO₂$ by Capacity

 $***p_{0.001}; **p_{0.01}; *p_{0.05}$

Table S12: Standard Two-Way Fixed Effects: Mortality Rates by Capacity of the Closest Retired Coal Unit. The outcome variable for the three models is the number of cases attributable to nitrogen dioxide per 100,000 inhabitants. The main independent variable is the interaction of proximity to a retired coal power plant (defined as being located within 50KM of a facility) and a binary variable that takes the value of 1 after retirement. The models control for the logged amount of carbon dioxide emissions to approximate energy-intensive activities. The standard errors are clustered at the city level. The sample includes only cities in proximity to retired or operating coal power plants to improve comparability (cities within 50KM of both retired or operating coal power plans). The models include city, country, and year fixed effects. In Model 1, the independent variable measures distance to any retiring coal power plant; in Model 2 the independent variable measures distance to only large (greater than 300MW) power plants; in Model 3, the independent variable measures distance to only small (smaller than 300 MW) power plants.

3.3.3 Emissions of $PM_{2.5}$ by Capacity

 $\frac{1}{x^{n*}}p < 0.001; \frac{1}{x}p < 0.01; \frac{1}{x}p < 0.05$

Table S13: Standard Two-Way Fixed Effects: Emissions by Capacity of the Closest Retired Coal Unit. The outcome variable for the three models is emissions of particulate matter. The main independent variable is the interaction of proximity to a retired coal power plant (defined as being located within 50KM of a facility) and a binary variable that takes the value of 1 after retirement. The models control for the logged amount of carbon dioxide emissions to approximate energy-intensive activities. The standard errors are clustered at the city level. The sample includes only cities in proximity to retired or operating coal power plants to improve comparability (cities within 50KM of both retired or operating coal power plans). The models include city, country, and year fixed effects. In Model 1, the independent variable measures distance to any retiring coal power plant; in Model 2 the independent variable measures distance to only large (above 300MW) power plants; in Model 3, the independent variable measures distance to only small (below 300 MW) power plants.

3.3.4 Emissions of $NO₂$ by Capacity

∗∗∗p < 0.001; ∗∗p < 0.01; [∗]p < 0.05

Table S14: Standard Two-Way Fixed Effects: Emissions by Capacity of the Closest Retired Coal Unit. The outcome variable for the three models is emissions of nitrogen dioxide. The main independent variable is the interaction of proximity to a retired coal power plant (defined as being located within 50KM of a facility) and a binary variable that takes the value of 1 after retirement. The models control for the logged amount of carbon dioxide emissions to approximate energy-intensive activities. The standard errors are clustered at the city level. The sample includes only cities in proximity to retired or operating coal power plants to improve comparability (cities within 50KM of both retired or operating coal power plans). The models include city, country, and year fixed effects. In Model 1, the independent variable measures distance to any retiring coal power plant; in Model 2 the independent variable measures distance to only large (above 300MW) power plants; in Model 3, the independent variable measures distance to only small (below 300 MW) power plants.

3.3.5 Emissions of $CO₂$ by Capacity

 $\frac{1}{x}$ *** $p < 0.001$; ** $p < 0.01$; * $p < 0.05$

Table S15: Standard Two-Way Fixed Effects: Emissions by Capacity of the Closest Retired Coal Unit. The outcome variable for the three models is emissions of carbon dioxide. The main independent variable is the interaction of proximity to a retired coal power plant (defined as being located within 50KM of a facility) and a binary variable that takes the value of 1 after retirement. The models control for the logged amount of carbon dioxide emissions to approximate energy-intensive activities. The standard errors are clustered at the city level. The sample includes only cities in proximity to retired or operating coal power plants to improve comparability (cities within 50KM of both retired or operating coal power plans). The models include city, country, and year fixed effects. In Model 1, the independent variable measures distance to any retiring coal power plant; in Model 2 the independent variable measures distance to only large (above 300MW) power plants; in Model 3, the independent variable measures distance to only small (below 300 MW) power plants.

3.4 All Cities

∗∗∗p < 0.001; ∗∗p < 0.01; [∗]p < 0.05

Table S16: Standard Two-Way Fixed Effects: Full Sample of All Cities. The outcome variables are: (1) the number of cases attributable to nitrogen dioxide per 100,000 inhabitants, (2) the number of cases attributable to particulate matter per 100,000 inhabitants, (3) emissions of particulate matter, and (4) emissions of nitrogen dioxide. The main independent variable is the interaction of proximity to a retired coal power plant (defined as being located within 50KM of a facility) and a binary variable that takes the value of 1 after retirement. The models control for the logged amount of carbon dioxide emissions to approximate energy-intensive activities. The standard errors are clustered at the city level. The sample includes all cities in the sample regardless of proximity to any coal facility. The models include city, country, and year fixed effects

 $***p<0.001;$ $**p<0.01;$ $p<0.05$

Table S17: Standard Two-Way Fixed Effects: Full Sample of All Cities. The outcome variables are: (1) the number of cases attributable to nitrogen dioxide per 100,000 inhabitants, (2) the number of cases attributable to particulate matter per 100,000 inhabitants, (3) emissions of particulate matter, and (4) emissions of nitrogen dioxide. The main independent variable is the interaction of proximity to a retired coal power plant (defined as being located within 50KM of a facility) and a binary variable that takes the value of 1 after retirement (it measures distance to the closest large coal power plant retired). The models control for the logged amount of carbon dioxide emissions to approximate energy-intensive activities. The standard errors are clustered at the city level. The sample includes all cities in the sample regardless of proximity to any coal facility. The models include city, country, and year fixed effects

4 Robustness Checks: Alternative Estimators (Fixed Effects Counterfactual Estimators)

- 4.1 Matrix Completion Method
- 4.1.1 Particulate Matter

Figure S13: FEct for Mortality Rates from $PM_{2.5}$. Results of the Fixed Effects Counterfactual Estimator using the number of cases attributable to particulate matter as the dependent variable, the matrix completion imputation algorithm, parallel computing, and 500 bootstrap runs [\(Liu, Wang and Xu,](#page-52-10) [2024\)](#page-52-10).

Figure S14: FEct for Emissions of $PM_{2.5}$. Results of the Fixed Effects Counterfactual Estimator using the number of cases attributable to particulate matter as the dependent variable, the matrix completion imputation algorithm, parallel computing, and 500 bootstrap runs [\(Liu, Wang and Xu,](#page-52-10) [2024\)](#page-52-10).

4.1.2 Nitrogen Dioxide

Figure S15: FEct for Mortality Rates from NO_2 . Results of the Fixed Effects Counterfactual Estimator using the number of cases attributable to nitrogen dioxide as the dependent variable, the matrix completion imputation algorithm, parallel computing, and 500 bootstrap runs [\(Liu, Wang and Xu,](#page-52-10) [2024\)](#page-52-10).

Figure S16: FEct for Emissions of NO_2 . Results of the Fixed Effects Counterfactual Estimator using the number of cases attributable to nitrogen dioxide as the dependent variable, the matrix completion imputation algorithm, parallel computing, and 500 bootstrap runs [\(Liu, Wang and Xu,](#page-52-10) [2024\)](#page-52-10).

4.2 Fixed Effects

4.2.1 Particulate Matter

Figure S17: FEct for Mortality Rates from $PM_{2.5}$. Results of the Fixed Effects Counterfactual Estimator using the number of cases attributable to particulate matter as the dependent variable, the fixed effects algorithm, parallel computing, and 500 bootstrap runs [\(Liu, Wang and Xu,](#page-52-10) [2024\)](#page-52-10).

Figure S18: FEct for Emissions of $PM_{2.5}$. Results of the Fixed Effects Counterfactual Estimator using the number of cases attributable to particulate matter as the dependent variable, the fixed effects algorithm, parallel computing, and 500 bootstrap runs [\(Liu, Wang and Xu,](#page-52-10) [2024\)](#page-52-10).

Figure S19: FEct for Mortality Rates from NO_2 . Results of the Fixed Effects Counterfactual Estimator using the number of cases attributable to particulate matter as the dependent variable, the fixed effects algorithm, parallel computing, and 500 bootstrap runs [\(Liu, Wang and Xu,](#page-52-10) [2024\)](#page-52-10).

Figure S20: FEct for Emissions of NO_2 . Results of the Fixed Effects Counterfactual Estimator using the number of cases attributable to particulate matter as the dependent variable, the fixed effects algorithm, parallel computing, and 500 bootstrap runs [\(Liu, Wang and Xu,](#page-52-10) [2024\)](#page-52-10).

5 Robustness Checks: Sensitivity Analysis

5.1 Particulate Matter

Figure S21:

Figure S22:

Outcome: $\mathcal{PM}_{2.5}$ Emissions

Treatment:	Est.	S.E.	t-value $R_{Y\sim D \mathbf{X}}^2$ $RV_{q=1}$		$RV_{q=1,\alpha=0.05}$
<i>Post-Coal Unit Retirement $(50KM)$</i> -4.176 0.128 -32.686			1.4%	11.1%	10.5%
$df = 77384$					<i>Bound (1x Log(CO₂))</i> : $R_{Y \sim Z \mathbf{X},D}^2 = 6.1\%$, $R_{D \sim Z \mathbf{X}}^2 = 0.6\%$

5.2 Nitrogen Dioxide

Figure S23:

Outcome: Cases Attributable to $NO₂$ per 100,000

Treatment:	S.E.		t-value $R_{Y\sim D \mathbf{X}}^2$ $RV_{q=1}$		$RV_{q=1,\alpha=0.05}$	
$Post\text{-}Coal Unit Retirement (50KM) -4.399 0.117 -37.723$				1.8% 12.7%	12%	
$df = 77612$	<i>Bound (1x Log(CO₂))</i> : $R_{Y \sim Z \mathbf{X},D}^2 = 9.5\%, R_{D \sim Z \mathbf{X}}^2 = 0.6\%$					

Figure S24:

Outcome: $NO₂$ Emissions

Treatment:	S.E.		t-value $R_{Y\sim D \mathbf{X}}^2$	$RV_{q=1}$	$RV_{q=1,\alpha=0.05}$
Post-Coal Unit Retirement (50KM)		-0.861 0.021 -41.157	2.1%	13.7\%	13.1%
$df = 77308$					<i>Bound (1x Log(CO₂))</i> : $R_{Y \sim Z \mathbf{X},D}^2 = 14.3\%, R_{D \sim Z \mathbf{X}}^2 = 0.6\%$

6 Additional Figures

6.1 Maps of Fossil Fuel Infrastructure

Figure S25: Treated and Control Urban Areas. The map above shows in light blue coal power plants operating or under construction, in dark blue coal power plants that retired during the period of analysis, in purple cities close to operating coal power plants, in orange cities close to retired coal power plants, and in pink cities close to both retired and operated coal power plants. The rest of cities (those farther away from coal power facilities) are shown in grey.

Figure S26: Treated and Control Urban Areas. The map above shows in light blue coal power plants operating or under construction, in dark blue coal power plants that retired during the period of analysis, in purple cities close to operating coal power plants, in orange cities close to retired coal power plants, and in pink cities close to both retired and operated coal power plants. The rest of cities (those farther away from coal power facilities) are shown in grey.

Figure S27: North American Cities by Distance to Retired Coal Power Plants. The map above shows in red cities within 50KM from a retired coal power unit, in orange cities within 100KM from a retired coal power unit, in green cities within 150 kilometers, and in blue cities within 450 kilometers. The rest of cities (more than 450 kilometers from a retired coal power plant) are shown in grey. Retired coal power plants are shown in black triangles.

Figure S28: East, South, and Southeast Asian Cities by Distance to Retired Coal Power Plants. The map above shows in red cities within 50KM from a retired coal power unit, in orange cities within 100KM from a retired coal power unit, in green cities within 150 kilometers, and in blue cities within 450 kilometers. The rest of cities (more than 450 kilometers from a retired coal power plant) are shown in grey. Retired coal power plants are shown in black triangles.

Figure S29: North American Cities by Distance to Operating Coal Power Plants. The map above shows in red cities within 50KM from an operating coal power unit, in orange cities within 100KM from an operating coal power unit, in green cities within 150 kilometers, and in blue cities within 450 kilometers. The rest of cities (more than 450 kilometers from an operating coal power plant) are shown in grey. Operating coal power plants are shown in black triangles.

Figure S30: East, South, and Southeast Asian Cities by Distance to Operating Coal Power Plants. The map above shows in red cities within 50KM from an operating coal power unit, in orange cities within 100KM from an operating coal power unit, in green cities within 150 kilometers, and in blue cities within 450 kilometers. The rest of cities (more than 450 kilometers from an operating coal power plant) are shown in grey. Operating coal power plants are shown in black triangles.

Figure S31: Treated and Control Urban Areas (Global). The map above shows in purple cities close to operating coal power plants, in orange cities close to retired coal power plants, and in pink cities close to both retired and operated coal power plants. The rest of cities (those farther away from coal power facilities) are shown in grey.

Figure S32: World Cities by Distance to Operating Coal Power Plants. The map above shows in red cities within 50KM from an operating coal power unit, in orange cities within 100KM from an operating coal power unit, in green cities within 150 kilometers, and in blue cities within 450 kilometers. The rest of cities (more than 450 kilometers from an operating coal power plant) are shown in grey.

Figure S33: World Cities by Distance to Retired Coal Power Plants. The map above shows in red cities within 50KM from a retired coal power unit, in orange cities within 100KM from a retired coal power unit, in green cities within 150 kilometers, and in blue cities within 450 kilometers. The rest of cities (more than 450 kilometers from a retired coal power plant) are shown in grey.

Figure S34: Global Fleet of Coal Power Plants. The map above shows all operating, in construction, retired, shelved, and mothballed coal power plants ([Global Coal Plant Tracker](#page-52-9), [2024\)](#page-52-9).

6.2 Cities in Countries Experiencing Significant Macro-Level Institutional Change

Figure S35: Cities in Countries Experiencing Significant Macro-Level Institutional Change, This version of the map employs version 1 as described in the main text.

Figure S36: Cities in Countries Experiencing Significant Macro-Level Institutional Change. This version of the map employs version 2 as described in the main text.

References

- Anenberg, Susan C, Arash Mohegh, Daniel L Goldberg, Gaige H Kerr, Michael Brauer, Katrin Burkart, Perry Hystad, Andrew Larkin, Sarah Wozniak and Lok Lamsal. 2022. "Long-term trends in urban NO2 concentrations and associated paediatric asthma incidence: estimates from global datasets." The Lancet Planetary Health 6(1):e49–e58.
- Coppedge, Michael, John Gerring, Carl Henrik Knutsen, Staffan I Lindberg, Jan Teorell, David Altman, Michael Bernhard, Agnes Cornell, M Steven Fish, Lisa Gastaldi et al. 2021. "V-Dem codebook v11.".
- Crippa, M, D Guizzardi, M Muntean, E Schaaf and G Oreggioni. 2019. "EDGAR v5. 0 Global Air Pollutant Emissions, European Commission, Joint Research Centre (JRC)[data set].".
- Global Coal Plant Tracker. 2024. Accessed: 2024-09-16. URL: https://globalenergymonitor.org/projects/global-coal-plant-tracker/
- Hammer, Melanie S, Aaron van Donkelaar, Chi Li, Alexei Lyapustin, Andrew M Sayer, N Christina Hsu, Robert C Levy, Michael J Garay, Olga V Kalashnikova, Ralph A Kahn et al. 2020. "Global estimates and long-term trends of fine particulate matter concentrations (1998–2018)." Environmental Science & Technology 54(13):7879–7890.
- Lindberg, Staffan I, Michael Coppedge, John Gerring and Jan Teorell. 2014. "V-Dem: A new way to measure democracy." Journal of Democracy 25(3):159– 169.
- Liu, Licheng, Ye Wang and Yiqing Xu. 2024. "A practical guide to counterfactual estimators for causal inference with time-series cross-sectional data." American Journal of Political Science 68(1):160–176.
- Lührmann, Anna, Marcus Tannenberg and Staffan I Lindberg. 2018. "Regimes of the world (RoW): Opening new avenues for the comparative study of political regimes." Politics and governance 6(1):60–77.
- Polity, IV. 2011. "Polity IV project: political regime characteristics and transitions, 1800–2010.".
- Southerland, Veronica A, Michael Brauer, Arash Mohegh, Melanie S Hammer, Aaron Van Donkelaar, Randall V Martin, Joshua S Apte and Susan C Anenberg. 2022. "Global urban temporal trends in fine particulate matter (PM2· 5) and attributable health burdens: estimates from global datasets." The Lancet Planetary Health 6(2):e139–e146.
- Urban Air Quality Explorer. 2023. Accessed: 2024-09-16. URL: https://urbanairquality.online/

V-Dem Country-Year (Full + Others) v14 [original data]. 2024. Accessed: 2024- 09-16. URL: https://ourworldindata.org/democracy