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Formal Model

The strategic interaction features a politician, a set of J firms indexed by j, and a continuum of individuals

of mass 1 indexed by i. Individuals are located in D districts indexed by d. The size of each district is

βd, where βd < 1
2 for all d. In broad strokes, firms produce a good that creates emissions that a politician

seeks to regulate by setting a cap. Individuals have preferences over consumption of the good but also incur

disutility from pollution damages, and must decide whether or not to vote for the politician.

Firms engage in production of a good xj sold at market price p. I assume that firms are price takers, i.e.,

the market is competitive. I make this restriction because inter-firm strategic interactions are not of direct

relevance or interest to the political problem that will be outlined below (i.e., I do not focus on the prices of

produced goods in the empirical analysis). Market demand is p = P (X), where X =
∑

j xj is total output.

Firms have production costs cj(xj). Production of xj leads to emissions ej = δjxj . Let E =
∑

j ej . The

parameter δj determines how “dirty” firm j’s production process is. I will assume that cj(xj) = c(xj) =
1
2x

2
j

and that δj = δ for all j, so firms are symmetric both in their costs of production as well as their mapping

from production to emissions. Symmetry is used to facilitate presentation of results but is not necessary.

The politician sets a cap on emissions L ∈ [0, L̂] which places a limit on the maximum amount of emissions.

Furthermore, firms receive initial allowances ēj for free, which effectively subsidize emissions. If a firm wants

to emit more than ēj , it must purchase allowances at a price σ, which in reduced-form captures the price

of allowances on the secondary market (i.e., traded between firms). The system of free allowance allocation

in the European Union required commitment on behalf of policymakers to abstract away from strategic

behavior among economic agents within the permit market (Metcalf 2009; Verde et al. 2019). Profits for

firm j are thus

πj(xj , ej) = pxj − c(xj)− σ(ej − ēj).

As firms produce, individuals within the polity consume. Let individuals have the following utility

function:

Uid(x) = u(x) + z −Dd(E) + εid,

where u(x) = log(x) is utility from consuming the good produced by firms, z is income spent on other goods,

and Dd(E) = 1
2E

2 is the damage function from emissions in district d. The damage function captures the

disutility that individuals incur from firms’ negative externalities involved in production (i.e., emissions).

That damage is homogeneous across districts is a simplifying assumption to ease presentation of the model

but not necessary for the results. Finally, εid ∼ U [− 1
2ωd

, 1
2ωd

] is an individual-specific valence shock drawn
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from a district-specific distribution. Notice that within districts, individuals are identical in their preferences

over consumption, but receive idiosyncratic shocks to their utility. These represent other electorally salient

issues other than consumption of the good x and the pollution it creates. Based on their utility consumption

and damage, individuals decide whether to vote for the politician or not as in a simple probabilistic voting

model (Lindbeck and Weibull 1987).

Finally, given firms’ profits and individuals’ expected vote decisions, the politician chooses the cap L

to maximize a convex combination of social welfare (as determined by the economic model) and political

support (as determined by the probabilistic voting model that derives from the economic model). Let W (L)

be social welfare and Λ(L) be the politician’s expected vote share, both to be derived. Thus, the politician’s

utility can be expressed as

V (L) = αΨΛ(L) + (1− α)W (L) +
∑
j

νjbj(ēj).

The parameter α ∈ [0, 1] modulates the politician’s relative preference for maximizing social welfare versus

maximizing votes. The case of α = 1 is a politician purely interested in reelection; the case of α = 0 is a

politician functioning like a utilitarian social planner. The parameter Ψ > 0 represents the benefits of holding

office. Finally, for technical reasons, suppose that the politician receives an infinitesimal benefit bj(ēj) from

providing free allowances to firm j; I assume the functions bj(·) are increasing and strictly concave, but take

all νj → 0 in the analyses. These additively separable benefits allow for the characterization of each firm’s

endowment rather than simply solving for the aggregate cap L. Substantively, one could interpret these

terms as the politician’s idiosyncratic affinities for each firm.

I make one assumption about the size of the cap relative to other parameters, which is that there is relative

scarcity between the maximum cap and the number of firms in the economy. In reality, EU leaders were

guided by documents like the Kyoto Protocol burden-sharing agreement and could not design an infinitely

large cap.

Assumption 1 L̂ < aδJ − 1.

The timing of the model is:

1. The politician commits to an allocation plan (ē1, . . . , ēJ) which creates a cap L.

2. Firms receive their free allowances and produce (x1, . . . , xJ) generating emissions (e1, . . . , eJ).

3. Individuals make consumption decisions and vote for the politician or not.
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I solve for the subgame perfect equilibrium of the game via backward induction. I first derive the equilibrium

of economic actors and then use that to find the politician’s optimal cap.

Economic Equilibrium

I characterize the economic behavior of firms in the production and permit markets. Recall that firms

maximize profit

πj(xj , ej) = pxj − c(xj)− σ(ej − ēj).

Firms choose output xj taking as given the market price p and the price of permits σ. Maximizing profits

yields the first-order condition

p− c′(xj)− σδ = 0,

which yields optimal output

xj(p;σ) = p− σδ.

I now derive the equilibrium price of goods p and the equilibrium price of permits σ. To determine the

equilibrium price p of goods, I substitute into the market demand:

p = a−
∑
j

xj(p;σ) ⇔ p(σ) =
a+ σδ

1 + J
.

The equilibrium condition for the permits price σ requires that the demand for permits, which are firms’

emissions as induced by their optimal outputs, is equal to the cap L that the politician sets. This allows for

the expression of the permit price σ and the market price p in terms of the cap L:

∑
j

δxj(p;σ) = L ⇔ p(L) =
a

J
− L

δJ2
.

Furthermore, firms’ equilibrium output and emissions (which are all the same since firms are symmetric),

are equal to

x∗(L) =
L

δJ
.

e∗(L) =
L

J
.

Lemma 1 Given the politician’s choice of cap L, each firm produces x∗(L) = L
δJ which generates emissions
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e∗(L) = L
J .

Voter Decisions

Recall that individuals in district d have the following utility function:

Uid(x) = u(x) + z −Dd(E) + εid.

Individuals consume x based on the maximization of u(x) subject to the budget constraint px + z ≤ y,

which yields the first-order condition u′(x)− p = 0, defining an individual’s inverse demand curve. Suppose

that individual utility is u(x) = log(x) such that in this setup, individuals will demand x(p) = 1
p . Their

indirect utility is therefore U(x(p)) = log(1/p) + y − 1−Dd(E) + εid. Without loss of generality, normalize

each individual’s income y to 1.

Given their consumption and their disutility from pollution, individuals must decide whether to vote for

the politician or not. Normalize the utility from opposing the politician to zero. Thus individual i in district

d votes for the politician if and only if log(1/p)−Dd(E) + εid ≥ 0 ⇔ εid ≥ − log(1/p) +Dd(E).

Lemma 2 Voter i in district d voters for the politician if and only if εid ≥ − log(1/p) +Dd(E).

Given the voters’ decision rule, the probability that voter i supports the politician is P (εid ≥ − log(1/p)+

Dd(E)) = 1
2 + ωd(log(1/p) − Dd(E)). Then, using the fact that E = L in the permit market equilibrium,

total electoral support for the politician as a function of the cap is Putting things altogether yields

Λ(L) =
1

2
+
∑
d

βdωd

[
log(

δJ2

aδJ − L
)− L2

2

]
.

Furthermore, given the economic equilibrium and the choices of the consumers, we can compute social

welfare. Social welfare is total consumption/demand less the costs of the firm less the disutility from damage.

Let X(L) = Jx(L) be the total level of output supplied by firms. This can be expressed as

W (L) =

∫ X(L)

0

P (t) dt−
∑
j

c(x(L))−
∑
d

Dd(E).

Substituting in yields

W (L) =
2aδJL− L2J − L2 − δ2JL2

2δ2J
.
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Political Equilibrium

Finally, I characterize the politician’s setting of the cap. Recall the politician’s utility function,

V (L) = αΨΛ(L) + (1− α)W (L) +
∑
j

νjbj(ēj).

Applying the fact that
∑

j ēj = L, the maximization problem is

V = max
(ē1,...,ēJ )

αΨ

[
1

2
+
∑
d

βdωd

[
log(

δJ2

aδJ −
∑

j ēj
)−

(
∑

j ēj)
2

2

]]
+(1−α)

[
2aδJ

∑
j ēj − (

∑
j ēj)

2(J + 1 + δ2J)

2δ2J

]
+
∑
j

νjbj(ēj).

For a given firm j, the first-order condition ∂V
∂ēj

is

αΨ
∑
d

βdωd

[ 1

aδJ −
∑

j ēj
−
∑
j

ēj

]
+ (1− α)

[aδJ −
∑

j ēj(J + 1 + δ2J)

δ2J

]
+ νjb

′
j(ēj) = 0. (1)

This means that, to pin down the equilibrium vector of free allowances (which in this case means to be

able to distinguish each ēj rather than solve for a single cap L), it must be the case that

νjb
′
j(ēj) = νkb

′
k(ēk) ∀j, k = 1, . . . , J.

The second-order condition is

∂2V

∂ē2j
= αΨ

∑
d

βdωd

[ 1

(aδJ −
∑

j ēj)
2
− 1

]
− (1− α)

J + 1 + δ2J

δ2J
+ νjb

′′
j (ēj).

The second and third terms are always negative. By Assumption 1, the first term is always negative

as well, meaning that the politician’s problem is globally concave. Hence the choice of free allowances is a

maximum.

Lemma 3 Free allowances are allocated to each firm j by solving Equation 1.

The equilibrium is clearly summarized by Lemmas 1, 2, and 3. I now consider how free allowances change

when district attributes change. In particular, I focus on electoral uncertainty ωd and district size βd. Since

it is isomorphic to consider comparative statics with respect to the allowances given to firm j and the total

cap. So I take comparative statics with respect to the cap.
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First consider electoral uncertainty. Taking the cross-partial with respect to ωd yields

∂2V

∂L∂ωd
= αΨβd

( 1

aδJ − L
− L

)
,

which is negative if L > 1. If ∂2V
∂ēj∂ωd

< 0, then
∂ēj
∂ωd

≤ 0, which means that as ωd increases, firm j’s free

allowances decrease. Substantively, ωd represents electoral certainty or salience: a large value of ωd means

that environmental policy is highly salient, and that valence shocks do not shift voter utilities very much.

By contrast, a small ωd implies that the support of the valence shock is quite large, and there is a greater

amount of uncertainty about how voters in district d would vote (at least from the standpoint of a politician

who can influence electoral choices by implementing cap and trade regulations). Therefore, the comparative

static tells us that if
∂ēj
∂ωd

≤ 0, politicians allocate more free permits when there is more electoral uncertainty

in a particular district. The comparative static on ωd can be thought of as assessing the ex ante “swinginess”

of the district at large.

Similarly, for group size, we have

∂2V

∂L∂β
= αΨωd

( 1

aδJ − L
− L

)
,

which is negative if L > 1. This means that if the cap is big, then making districts larger decreases the

cap. A large cap means large pollution damages, and subjecting more individuals to that environmental

damage decreases vote share. But if the cap is small, then the consumption effects outweigh the damages,

so increasing district size would increase the size of the cap.

Proposition 1 If L > 1, free allowances are decreasing in electoral uncertainty ωd and district size βd. If

L < 1, free allowances are increasing in electoral uncertainty ωd and district size βd.
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Additional Figures and Tables

Poland Portugal Romania Slovakia Slovenia Spain Sweden United Kingdom
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Figure A.1: Cumulative Free Allowances and Verified Emissions, 2005-2022
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Figure A.2: Mean Free Allowances and Verified Emissions, 2005-2022
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Figure A.5: Predicted Free Allowances by Sector within Countries

A-11



Phase I (2005−2007) Phase II (2008−2012)

−60 −40 −20 0 −60 −40 −20 0

0.00

0.01

0.02

0.03

District Marginality

D
en

si
ty

Phase I (2005−2007) Phase II (2008−2012)

−40 −20 0 20 −40 −20 0 20

0.00

0.01

0.02

0.03

Labour Tendency

D
en

si
ty

Phase I (2005−2007) Phase II (2008−2012)

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0

1

2

Labour Majority

D
en

si
ty

Figure A.6: Density Plots of Marginality Measures across Phases
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(1) (2) (3) (4) (5)

Marginality 0.096∗∗∗ 0.096∗∗∗ 0.025 0.011 0.017
(0.031) (0.031) (0.018) (0.013) (0.014)

Observations 2,893 2,893 2,893 2,893 2,893
R2 0.314 0.699 0.014 0.066 0.029
Within R2 0.004 0.008 0.003 0.0006 0.002

Constituency fixed effects ✓
Installation fixed effects ✓
Sector fixed effects ✓
County fixed effects ✓
Region fixed effects ✓

Standard errors clustered by electoral constituency

Table A.1: Effects of Marginality on Disbursement of Free Allowances (without Trading
Phase FE)
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(1) (2) (3) (4) (5) (6)

Marginality 0.024 0.013 0.020 0.018 0.0008 0.007
(0.019) (0.014) (0.015) (0.020) (0.018) (0.018)

Observations 1,448 1,448 1,448 1,445 1,445 1,445
R2 0.051 0.117 0.054 0.031 0.070 0.024
Within R2 0.004 0.0009 0.002 0.002 2.77× 10−6 0.0003

Sector fixed effects ✓ ✓
County fixed effects ✓ ✓
Region fixed effects ✓ ✓
Trading Phase 2005-2007 2005-2007 2005-2007 2008-2012 2008-2012 2008-2012

Standard errors clustered by electoral constituency

Table A.2: Effects of Marginality on Disbursement of Free Allowances by Trading Phase
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