Online Appendix to "Suffrage Reform and Financial Volatility: Reconsidering the Great Reform Act"

GARY COX & SEBASTIAN SAIEGH

Appendix Contents

Α	Threat Perceptions and Agricultural Rents	$\dots \dots page 2$
В	Stationarity Tests	page 5
\mathbf{C}	VAR Model Selection	page 8
D	French Rentes	page 9
\mathbf{E}	Inter-market Connections	page 10
\mathbf{F}	Risk Decomposition	page 13
G	Largest Movements in Consol Prices	page 15
\mathbf{H}	Political Uncertainty and Consol Prices	page 16

A Threat Perceptions and Agricultural Rents

How did threat perceptions affected agricultural rents during the reform period? The geographical variation of rental values can be captured using the information in Clark (1998a). We merged the observations corresponding to the years 1831-1832 with the data on Swing riots compiled by Aidt and Franck (2015), for 35 of the county constituencies that returned MPs to the House of Commons. We restricted our analysis to leases whose value was determined on the basis of market conditions. The resulting sample consists of a total of 1,028 observations, with 353 corresponding to 1831 and 675 for 1832. With respect to its geographical coverage all 35 county constituencies are represented in the sample.¹

Table A1, columns (1)-(4), show our estimates of the relationship between the number of Swing riots that happened within a radius of 10 kilometers from each constituency and agricultural rents.² Column (1) shows a specification without any control variables. To account for potential confounders, we augment equation (1) with a battery of control variables. Following Aidt and Franck (2015), we include indicators capturing political, institutional, economic, and demographic of each constituency (reported in their Table II, column (5)), as well as contextual variables associated with the 1831 Whig electoral victory (cf. their Table VIII, column (5)).³ The results are reported in column (2). In column (3) we show a specification where counties with less than 10 observations are excluded from the analysis. Finally, to capture rental agreements that were closer to the peak of the Swing riots, we restrict our analysis to the year 1831 in the specification reported in column (4). According to Aidt and Franck (2015), threat perceptions induced voters to support for pro-reform politicians. We examine the effect of the share of seats won by Whigs in the 1831 election on rental values in column (5). Most year-long contracts between landowners and tenant farmers in nineteenthcentury England would begin/end on Old Lady Day. Given the timing of the 1831 elections (28 April-1 June), we only include in our analysis the observations corresponding to 1832.

¹Norfolk and Buckinham are the two counties with the largest number of observations (197 and 172, respectively); while there are 19 counties with less than 10 observations.

 $^{^{2}}$ Our main results remain unchanged if we use 20,30,40, or 50 kilometers instead of 10.

³The whole set of variables includes: Whig share 1826, Whig share 1826 Squared, Reform support in 1830, County constituency, Narrow franchise, Patronage index, Emp. fract. index, Agriculture (emp. share), Trade (emp. share), Professionals (emp. share), Population, Population density, Thriving economy, Declining economy, Petitions against Catholic relief, Petitions for Catholic relief, Petitions against slavery, Petitions against reform, Petitions for reform, Growth in poor law expenses, Special commission, and Share of harsh sentences.

			~		
	(1)	(2)	(3)	(4)	(5)
Area	1.116^{***}	1.092^{***}	0.965^{***}	0.836***	1.168^{***}
	(0.141)	(0.137)	(0.186)	(0.274)	(0.105)
Riots within 10km	0.127	-0.501	0.096	-0.146	
	(0.101)	(0.361)	(0.114)	(0.150)	
Area * Riots	0.001	0.001	0.003	0.014^{*}	
	(0.004)	(0.004)	(0.004)	(0.007)	
Whig Share 1831					0.051
					(0.059)
Area * Whig Share					0.001
					(0.002)
Constant	3.383	36.891	5.126	13.080^{*}	-2.461
	(3.358)	(91.369)	(3.975)	(6.501)	(4.907)
R^2	0.83	0.85	0.77	0.75	0.89
Observations	1028	1028	944	353	675

Table A1: Threat Perceptions and Agricultural Rents

Robust standard errors, clustered at the county level, in parentheses. * indicates significance at a 10% level; ** indicates significance at a 5% level; ** indicates significance at a 1% level.

The dependent variable in all the models is the rental value of each property measured in pounds. For ease of interpretation, we also include in all models, each property's size, as well as its interaction with our main covariates of interest. As such, the latter represents the marginal change in rent in the pounds per acre metric. Overall, the point estimate on *Area* is quite stable across all the specifications in Table 1. We can calculate the average rent in pounds per acre in 1831 and 1832 using the estimates of the models presented in columns (4) and (5), respectively. In the former case, the rental value (evaluated at the means of the independent variables) amounts to \pounds 0.84. For the year 1832, the calculated average rent in pounds per acre is \pounds 1.17⁴ These estimates match almost exactly the calculations in Thompson (1907), and in Turner, Beckett and Afton (1997). Both studies use other sources to compute their rental values (mostly from private estate records). Therefore, we can be confident that the sample of plots of land held by charities is representative of agricultural rentals during this period.

⁴The average area for the 1831 observations is 32.5 acres; and, for the 1832 observations is 29.04.

Regarding threat perceptions, the results presented in Table A1 indicate that neither the Swing riots nor the share of Whig representation in the unreformed Parliament in 1832 had an effect on agricultural rents during the reform period. For example, consider the findings presented in column (1). The estimated rent per acre in a constituency that was not exposed to any riots within a radius of 10 km is \pounds 1.12 (with a standard deviation of \pounds 0.14). Based on these estimates, a three-standard deviation increase in the number of riots would be associated with a negligible rise in the average rent per acre: \pounds 1.15 (with a standard deviation of \pounds 0.08). The largest effect of Swing riots on agricultural rents corresponds to the model where the analysis is restricted to the year 1831 (column 4). Even in this case, rental values in places with and without riots are statistically indistinguishable. The estimated rent per acre in a constituency that was exposed the average number riots amounted to \pounds 1.04 (with a standard deviation of \pounds 0.21), compared to \pounds 0.84 (with a standard deviation of \pounds 0.27) in places without any riots.

B Stationarity Tests

Table B1: Unit Root Tests - Consols									
Augmented Dickey-Fuller									
	Test	Cri	tical Valu	les	Conclusion				
	Statistic	(1%)	(5%)	(10%)					
$Z(t)_t$	-10.228	-4.034	-3.447	-3.147	Reject				
$Z(t)_m$	-10.273	-3.504	-2.889	-2.579	Reject				
Z(t)	-9.831	-2.597	-1.950	-1.611	Reject				
	Phillips-Perron								
$Z(t)_t$	-10.202	-4.034	-3.447	-3.147	Reject				
$Z(t)_m$	-10.251	-3.504	-2.889	-2.579	Reject				
Z(t)	-9.812	-2.597	-1.950	-1.611	Reject				

Notes: The null hypothesis is that the series contains a unit root. MacKinnon (1991) critical values. $Z(t)_t$: model with trend and a constant term; $Z(t)_m$: model with a constant term; Z(t): model with no constant and no trend.

	KPSS Results				
	Lags	Statistic	Conclusion		
Trend Stationarity	1	.048	Do not reject		
Level Stationarity	1	.048	Do not reject		
	1%	5%	10%		
Critical Values (Trend)	0.216	0.146	0.119		
Critical Values (Level)	0.739	0.463	0.347		

Table B2: Stationarity Tests - Consols

Notes: The null hypothesis is that the series is stationary. Maximum number of lags chosen by Schwert (1989) criterion.

	Table D0.	01110 11000		L I CHUIL I				
	Augmented Dickey-Fuller							
	Test	Cri	tical Valu	les	Conclusion			
	Statistic	(1%)	(5%)	(10%)				
$Z(t)_t$	-9.621	-4.034	-3.448	-3.148	Reject			
$Z(t)_m$	-9.660	-3.504	-2.889	-2.579	Reject			
Z(t)	-9.541	-2.598	-1.950	-1.611	Reject			
	Phillips-Perron							
$Z(t)_t$	-9.709	-4.034	-3.448	-3.148	Reject			
$Z(t)_m$	-9.759	-3.504	-2.889	-2.579	Reject			
Z(t)	-9.543	-2.598	-1.950	-1.611	Reject			

Table B3: Unit Root Tests - French Rentes

Notes: The null hypothesis is that the series contains a unit root. MacKinnon (1991) critical values. $Z(t)_t$: model with trend and a constant term; $Z(t)_m$: model with a constant term; Z(t): model with no constant and no trend.

	~				
	KPSS Results				
	Lags	ags Statistic Conclusio			
Trend Stationarity	1	.041	Do not reject		
Level Stationarity	1	.041	Do not reject		
	1%	5%	10%		
Critical Values (Trend)	0.216	0.146	0.119		
Critical Values (Level)	0.739	0.463	0.347		

Table B4: Stationarity Tests - French Rentes

Notes: The null hypothesis is that the series is stationary. Maximum number of lags chosen by Schwert (1989) criterion.

				Co	onsol Return	s				
				Gewe	ke/Porter-H	udak				
Power	Ords	Es	st d Sto	dErr t	t(H0: d=0)	P>t	Assym	. SE	z(H0: d=0) P>z	
	0.4	7	-0.234	0.175	-1.337	0.2	52	0.434	-0.540	0.589
	0.45	9	-0.061	0.228	-0.267	0.7	99	0.346	-0.176	0.860
	0.5	11	0.100	0.236	0.421	0.6	85	0.293	0.340	0.734
	0.55	14	-0.124	0.198	-0.628	0.5	43	0.244	-0.511	0.609
	0.6	18	0.265	0.222	1.196	0.2	50	0.204	1.301	0.193
					Philips					
Power	Ords	Es	st d Sto	d Err t	t(H0: d=0)	P>t			z(H0: d=1) P>z	
	0.4	6	0.573	0.373	1.536	0.1	75		-1.633	0.103
	0.45	8	0.542	0.250	2.170	0.0	62		-2.019	0.044
	0.5	10	0.516	0.212	2.429	0.0	36		-2.388	0.017
	0.55	13	0.287	0.184	1.562	0.1	42		-4.009	0.000
	0.6	1/	0.511	0.163	3.128	0.0	06		-3.142	0.002
Dowor	Ordo		at d Cta	الم الم	KODINSON	D>+				
Power		- E: 7		0 1/16	1 079	P>L 0.0	02			
	0.4	,	-0.288	0.140	-1.576	0.0	74			
	0.45	9 11	0.133	0.200	0.561	0.5	74 20			
	0.5	13	-0.024	0.233	-0.102	0.5	20			
	0.55	15	0.124	0.157	1 214	0.2	38 41			
	0.0	17	0.200	Frenc	h Rentes Ret	urns				
				Gewe	ke/Porter-H	udak				
Power	Ords	Es	st d Sto	dErr t	t(H0: d=0)	P>t	Assym	. StdEr	z(H0: d=0) P>z	
	0.4	7	-0.234	0.177	-1.323	0.2	, 57	0.434	-0.540	0.589
	0.45	9	0.061	0.241	0.254	0.8	08	0.346	0.177	0.860
	0.5	11	0.051	0.185	0.277	0.7	89	0.293	0.175	0.861
	0.55	14	0.131	0.138	0.945	0.3	65	0.244	0.537	0.592
	0.6	18	0.263	0.181	1.456	0.1	66	0.204	1.291	0.197
					Phillips					
Power	Ords	E	st d Sto	d Err t	t(H0: d=0)	P>t			z(H0: d=1) P>z	
	0.4	6	0.282	0.173	1.634	0.1	53		-2.743	0.006
	0.45	8	0.432	0.230	1.874	0.0	98		-2.506	0.012
	0.5	10	0.385	0.189	2.040	0.0	69		-3.031	0.002
	0.55	13	0.348	0.137	2.547	0.0	24		-3.667	0.000
	0.6	17	0.436	0.178	2.456	0.0	25		-3.623	0.000
					Robinson					
Power	Ords	E	st d Sto	d Err t	t(H0: d=0)	P>t				
	0.4	7	-0.183	0.146	-1.258	0.2	44			
	0.45	9	0.102	0.206	0.493	0.6	32			
	0.5	11	0.067	0.162	0.410	0.6	89			
	0.55	13	0.131	0.137	0.953	0.3	57			
	06	17	0.261	0.179	1.463	0.1	61			

Figure B1:	Fractional	Integration	Tests
------------	------------	-------------	-------

C VAR Model Selection

Table C1: VAR with Different Specifications					
Specification	k	р	Sample	\mathbb{R}^2 Consol	
(1)	2	3	1826m5 - 1835m12	0.18	
(2)	2	6	1826m8 - 1835m12	0.18	
(3)	2	12	1827m2 - 1835m12	0.27	
(4)	2	12	1827m2 - 1850m12	0.17	
(5)	3	3	1826m5 - 1835m12	0.17	
(6)	3	6	1826m8 - 1835m12	0.34	
(7)	5	3	1826m5 - 1835m12	0.24	
(8)	7	3	1826m5 - 1835m12	0.26	
(9)	7	6	1826m8 - 1835m12	0.60	
(10)	9	6	1826m8 - 1835m12	0.60	

Consol, Rentes; (2) Consol, Rentes; (3) Consol, Rentes; (4) Consol, Rentes;
 Consol, Rentes, Dutch; (6) Consol, Rentes, Dutch; (7) Consol, Rentes,
 Dutch, Pound, Bank England; (8) Consol, Rentes, Dutch, Pound, Bank England, British Railroad, British Banks; (9) Consol, Rentes, Dutch, Pound, Bank
 England, British Railroad, British Banks; (10) Consol, Rentes, Dutch, Pound,
 Bank England, British Railroad, British Banks; Gold, US Stock.

Comparison	LR	df	р	\mathbb{R}^2 Consol
(5) vs. (1)	484.32	16	0.000	0.17 vs. 0.18
(6) vs. (2)	513.97	31	0.000	0.34 vs. 0.18
(9) vs. (6)	2489.19	244	0.000	0.60 vs. 0.34
(10) vs. (9)	43.81	14	0.000	0.60 vs. 0.60

Table C2: Model Comparison

D French Rentes

	French 3% Rentes					
	Cap. Appr. Yield Tot. Ret					
1826	3.42	4.41	7.83			
1827	-0.72	4.44	3.72			
1828	10.00	4.04	14.04			
1829	13.45	3.56	17.01			
1830	-26.41	4.84	-21.57			
1831	10.48	4.38	14.86			
1832	0.74	4.35	5.08			
1833	8.05	4.02	12.08			
1834	4.49	3.85	8.34			
1835	2.37	3.76	6.13			
1836	0.32	3.75	4.07			
1826-36	2.38	4.13	6.51			

Table D1: Annualized Returns, 1826-1836

Source: www.globalfinancialdata.com

Figure D1: British and French Bond Prices, 1826-1836.

E Inter-market Connections

Table E1 shows the estimated slope parameter when the crisis quantiles are regressed on the non-crisis ones for the following sub-periods: March 1829/July 1832; June 1830/August 1831; October 1830/June 1831; and September 1831/April 1832.

Specification	Crisis Period	Coefficient	99%	Conf. Interval
(1)	1829m3 - 1832m7	0.99	0.93	1.07
(2)	1830m6 - 1831m8	1.11	0.88	1.37
(3)	1830m10 - 1831m6	0.89	0.61	1.16
(4)	1831m9 - 1832m4	0.84	0.37	1.30

Figure E1 presents the Q-Q (quantile-quantile) plots of the residuals generated using the model specification that minimizes the goodness-of-fit of the Consol equation (model 1 in Table C1); namely, a 2-dimensional VAR with 3 lags for the period between January 1826 to December 1835.

Figure E1: Q-Q (quantile-quantile) Plots

Figure E2 presents the relationship between the residuals of Consols and French Rentes (scaled by their standard deviation from the non-crisis period) obtained from our VAR model. The black dots correspond to observations from the crisis period, while the gray hollow circles correspond to those from the non-crisis period. The solid black line is the least-squares regression line for the observations corresponding to the crisis period, while the gray dashed line is the least-squares regression line for the non-crisis period.

The estimated coefficients associated with the residuals of French *Rentes* are positive and statistically different from zero: 0.274 (z-score 3.62) and 0.453 (z-score 3.93) for the crisis and non-crisis periods, respectively. Visual inspection confirms that the non-crisis period's slope is steeper than the one for the crisis period. A test of the equality of the slope parameters of the crisis versus the non-crisis periods, however, indicates that the null hypothesis that both coefficients are statistically similar cannot be rejected at conventional levels (p-value=0.195). Figure E3 shows the results of a similar exercise generated using the model specification that minimizes the goodness-of-fit of VAR model.

Figure E3: Contemporaneous Propagation of Shocks

F Risk Decomposition

Table F1: Consol Exc	ess Risk
3% Reduced Annuity	0.361***
	(0.123)
Crisis Period	0.533^{***}
	(0.084)
Constant	0.647^{***}
	(0.143)
R^2	0.58
Observations	37

Robust standard errors in parentheses. * indicates significance at a 10% level; ** indicates significance at a 5% level; *** indicates significance at a 1% level.

The dependent variable is the Consols' time-varying β_c coefficient estimated using the procedure described on pp. 21-22 of the manuscript. The variable 3% Reduced Annuity is the time-varying β coefficient for this security estimated using the procedure described on pp. 21-22 of the manuscript. The variable Crisis Period takes the value of 1 for the period between July 1830-March 1832, and zero otherwise. The estimated β coefficient of the 3% Reduced Annuities throught this period is 1.059 (see Figure F1 below). Therefore, according to the results presented in Table F1, we should expect $\hat{\beta}_c = 0.647 + 0.361 * 1.059 = 1.029$ when Crisis Period=0; and $\hat{\beta}_c = 0.647 + 0.533 + 0.361 * 1.059 = 1.562$ when when Crisis Period=1.

Figure F2: Bank of England/East India Company Excess Risk (1826-1835)

G Largest Movements in Consol Prices

Table G1:	Largest	Movements	in	Consol	Prices,	1830-	1832
	()						

Positive Returns				
Date	Change	Main reason given in Money Market and City Intelligence Account		
10 Nov. 1830	3.69	Market acknowledges "groundless fear"/Ministry's determination to remain in power		
9 May 1831	1.83	Peace in Europe/Success of Reform Bill		
11 Nov. 1830	1.79	Rebound from previous days		
8 Sept. 1830	1.48	State of affairs in France		
11 Apr. 1831	1.41	Rise in French Funds		
12 Jan. 1832	1.38	Good news on Belgian Treaty		
25 Mar. 1831	1.36	" better prospects at home and abroad"		
24 Mar. 1831	1.29	" difficult to say what is the real cause"/Opposite reactions to Reform Bill vote		
5 Apr. 1831	1.28	" confidence on the subject of reform"/Peace in Europe		
9 Nov. 1830	1.10	Explanation of Royal visit to London/End of panic		
		Negative Returns		
Date	Change	Main reason given in Money Market and City Intelligence Account		
8 Nov. 1830	-2.19	Postponement of King's visit to London/Tranquility could not be guaranteed		
4 Sept. 1830	-1.98	" still without any definite cause"		
4 Nov. 1830	-1.68	Rumours of Wellington resignation/Monetary Policy		
3 Nov. 1830	-1.65	Negative reaction to King's speech regarding Belgium		
4 Aug. 1831	-1.53	State of affairs in France/State of affairs in Holland		
20 Oct. 1830	-1.48	" no obvious cause"/Rumor: military assistance to Dutch		
19 Oct. 1830	-1.46	Bullish speculators/State of affairs in Ireland		
30 Aug. 1830	-1.38	Events in Brussels		
6 Aug. 1831	-1.24	Conflict between Dutch and Belgian Troops		
16 Nov. 1830	-1.19	Fall of Wellington/Liberal administration may tax Funds		

Dates corresponding to the time when the Swing riots were at the height of their activity (August 1830-February 1831) are highlighted in bold.

H Political Uncertainty and Consol Prices

Table III. Descriptive Statistics							
Variable	Mean	Std. Dev.	Min.	Max.			
Daily Change in Price	008	0411	-2.19	3.69			
Swing Riots	8.125	36.868	0	228			
Contentious Gatherings	59.892	80.457	0	371			
Reform Bill Vote	0.022	0.149	0	1			
Elections	0.085	0.279	0	1			
Government Turnover	0.003	0.057	0	1			
Foreign News	0.130	0.336	0	1			
Settlement	0.027	0.159	0	1			
Shutting	0.186	0.389	0	1			

Table H1: Descriptive Statistics

Table H2: Unit Root Tests									
	Augmented Dickey-Fuller								
	Test	Cri	tical Valu	les	Conclusion				
	Statistic	(1%)	(5%)	(10%)					
$Z(t)_t$	-26.766	-3.960	-3.410	-3.120	Reject				
$Z(t)_m$	-26.720	-3.430	-2.860	-2.570	Reject				
Z(t)	-26.724	-2.580	-1.950	-1.620	Reject				
	Phillips-Perron								
$Z(t)_t$	-26.605	-3.960	-3.410	-3.120	Reject				
$Z(t)_m$	-26.564	-3.430	-2.860	-2.570	Reject				
Z(t)	-26.570	-2.580	-1.950	-1.620	Reject				

Notes: The null hypothesis is that the series contains a unit root. MacKinnon (1991) critical values. $Z(t)_t$: model with trend and a constant term; $Z(t)_m$: model with a constant term; Z(t): model with no constant and no trend.

Geweke/Porter-Hudak								
Power	Ords	Est d	StdErr	$t(H_0: d=0)$	P > t	Assym. SE	$z(H_0: d=0)$	P > z
0.4	16	0.462	0.241	1.921	0.077	0.219	2.109	0.035
0.45	22	0.094	0.199	0.470	0.644	0.175	0.533	0.594
0.5	31	0.047	0.148	0.318	0.753	0.140	0.335	0.737
0.55	43	0.072	0.122	0.589	0.559	0.114	0.629	0.530
0.6	61	0.026	0.107	0.242	0.810	0.093	0.278	0.781
				Phili	\mathbf{ps}			
Power	Ords	Est d	StdErr	$t(H_0: d=0)$	P > t		$z(H_0: d=1)$	P > z
0.4	15	0.891	0.160	5.568	0.000		-0.658	0.511
0.45	21	0.565	0.167	3.392	0.003		-3.110	0.002
0.5	30	0.474	0.139	3.400	0.002		-4.490	0.000
0.55	42	0.378	0.110	3.439	0.001		-6.282	0.000
0.6	60	0.270	0.101	2.659	0.010		-8.824	0.000
				Robin	son			
Power	Ords	Est d	StdErr	$t(H_0: d=0)$	P > t			
0.4	15	0.462	0.241	1.921	0.073			
0.45	21	0.093	0.199	0.470	0.643			
0.5	31	0.055	0.142	0.386	0.702			
0.55	43	0.050	0.120	0.416	0.679			
0.6	61	0.069	0.112	0.616	0.540			

Table H3: Semi-Parametric Tests of Fractional Integration

	5		0	0
	Consol I	Returns		
Swing Riots	-0.000	-0.000		
	(0.001)	(0.001)		
Contentious Gatherings	0.001**	0.001^{**}		
	(0.000)	(0.000)		
Reform Bill Vote	-0.026	-0.024		
	(0.049)	(0.052)		
Volatility			0.101	
			(0.120)	
Constant	-0.015	-0.015	-0.014	-0.015
	(0.011)	(0.011)	(0.014)	(0.010)
	Consol V	olatility	. ,	
Swing Riots		0.001	0.001	0.000
		(0.004)	(0.004)	(0.001)
Contentious Gatherings		0.002	0.003	0.000
Ũ		(0.002)	(0.002)	(0.000)
Reform Bill Vote		-0.198	-0.119	-0.008
		(1.491)	(1.307)	(0.217)
Elections	0.740*	0.647	0.713*	0.127**
	(0.420)	(0.442)	(0.427)	(0.064)
Government Turnover	2.915***	2.587***	2.752***	0.845**
	(0.571)	(0.670)	(0.640)	(0.348)
Foreign News	2.318***	2.200***	2.146***	0.459***
-	(0.305)	(0.345)	(0.350)	(0.169)
Settlement	2.180***	2.063**	2.025**	0.363
	(0.781)	(0.847)	(0.815)	(0.299)
Shutting	-0.144	-0.162	-0.151	-0.061
	(0.326)	(0.332)	(0.326)	(0.044)
Constant	-4.878***	-4.809***	-4.793***	-0.378***
	(0.416)	(0.428)	(0.410)	(0.129)
ARCH(1)	0.186***	0.186***	0.185***	-0.102***
	(0.045)	(0.047)	(0.047)	(0.032)
EARCH(1)	. ,	. ,	. ,	0.291***
~ /				(0.082)
GARCH(1)	0.686***	0.676***	0.673***	0.855***
	(0.058)	(0.062)	(0.061)	(0.050)
Observations	922	922	922	922

Table H4: Political Uncertainty and Consol Prices Time window of Swing riots/contentious gatherings: 15 Days

Robust standard errors in parentheses. * indicates significance at a 10% level; ** indicates significance at a 5% level; *** indicates significance at a 1% level.

	Consol I	Returns		
Swing Riots	-0.001	-0.001		
	(0.001)	(0.001)		
Contentious Gatherings	0.001^{***}	0.001^{***}		
	(0.000)	(0.000)		
Reform Bill Vote	-0.027	-0.025		
	(0.047)	(0.055)		
Volatility			0.093	
			(0.121)	
Constant	-0.016	-0.016	-0.013	-0.015
	(0.010)	(0.010)	(0.014)	(0.010)
	Consol V	olatility		
Swing Riots		0.002	0.002	0.001
		(0.009)	(0.009)	(0.001)
Contentious Gatherings		0.001	0.004	0.001
		(0.005)	(0.005)	(0.001)
Reform Bill Vote		-0.415	-0.142	0.028
		(1.752)	(1.531)	(0.211)
Elections	0.737^{*}	0.722*	0.768*	0.130**
	(0.410)	(0.426)	(0.419)	(0.063)
Government Turnover	2.781***	2.689***	2.751***	0.803**
	(0.604)	(0.844)	(0.784)	(0.343)
Foreign News	2.322***	2.295***	2.212***	0.461***
	(0.299)	(0.337)	(0.342)	(0.175)
Settlement	2.193***	2.151***	2.102***	0.383
	(0.764)	(0.820)	(0.796)	(0.295)
Shutting	-0.127	-0.122	-0.125	-0.055
	(0.322)	(0.334)	(0.330)	(0.042)
Constant	-4.868***	-4.842***	-4.837***	-0.361***
	(0.416)	(0.448)	(0.424)	(0.127)
ARCH(1)	0.185***	0.187***	0.183***	-0.098***
	(0.045)	(0.046)	(0.046)	(0.031)
EARCH(1)				0.282***
				(0.083)
GARCH(1)	0.684^{***}	0.680***	0.681^{***}	0.862***
	(0.059)	(0.063)	(0.061)	(0.049)
Observations	922	922	922	922

 Table H5: Political Uncertainty and Consol Prices

Robust standard errors in parentheses. * indicates significance at a 10% level; ** indicates significance at a 5% level; *** indicates significance at a 1% level.