
Proof 1 — Proof of Proposition 6: A Posteriori Contract for (TLS)
We start by restating the theorem for the reader’s convenience.

Proposition 21 (Restatement of Proposition 6). Consider Problem 1 with measurements (yi,Ai),
i 2 [n], and denote with �

� the squared residual error of the ground truth x
� over the set of inliers I,

i.e., �� ,P
i2I

��yi �A
T
i
x
�
��2
2
. Moreover, assume the measurement set contains at least n+d̄

2
+

�
�

c̄2

inliers, where d̄ is the size of a minimal set, and that every subset of d̄ inliers is nondegenerate. Then,
for any integer dJ such that d̄  dJ  (2↵� 1)n�

�
�

c̄2
, an optimal solution xTLS of (TLS) satisfies

kxTLS � x
�
k
2


2
p
dJ c̄

minJ⇢ITLS,|J |=dJ �min(AJ )

, (57)

where ITLS is the set of inliers selected by (TLS), AJ is the matrix obtained by horizontally stacking
all submatrices Ai for all i 2 J , and �min(·) denotes the smallest singular value of a matrix. Moreover,
if the inliers are noiseless, i.e., ✏ = 0 in eq. (17), and for a sufficiently small c̄ > 0, xTLS = x

�.

Proof. Call I(xTLS) the inlier set corresponding to an estimate xTLS (i.e., I(xTLS) , {i 2

[n] :
��yi �A

T
xTLS

��
2
 c̄}). Moreover, define the TLS cost at xTLS as:

f(xTLS) =
X

i2I(xTLS)

���yi �A
T
i xTLS

���
2

2

+ c̄
2
(n� |I(xTLS)|). (58)

We first prove that |I(xTLS)|� ↵n�
�
�

c̄2
. Towards this goal, we observe that the cost evaluated

at the ground truth x
� is:

f(x
�
) = �

�
+ c̄

2
(n� |I|) = �

�
+ c̄

2
(n� ↵n) (59)

which follows from the assumption that the inliers have squared residual error �
� and there are ↵n

of them. Now assume by contradiction that there exists an xTLS that solves (TLS) and is such that
|I(xTLS)|< ↵n�

�
�

c̄2
. Such an estimate would achieve a cost:

f(xTLS) =
X

i2I(xTLS)

���yi �A
T
i xTLS

���
2

2

+ c̄
2
(n� |I(xTLS)|) (60)

>

X

i2I(xTLS)

���yi �A
T
i xTLS

���
2

2

+ c̄
2

✓
n� ↵n+

�
�

c̄2

◆
(61)

� c̄
2

✓
n� ↵n+

�
�

c̄2

◆
= �

�
+ c̄

2
(n� ↵n) , (62)

which is larger than f(x
�
), hence contradicting optimality of xTLS, and implying |I(xTLS)|� ↵n�

�
�

c̄2
.

Since |I(x
�
)|= ↵n and |I(xTLS)|� ↵n�

�
�

c̄2
then:

|I(x
�
) \ I(xTLS)|

sets overlap in [n]z}|{
� 2↵n� n�

�
�

c̄2

using ↵n�
n+d̄
2 +

��
c̄2z}|{

� d̄, (63)
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The subset of measurements |I(x
�
) \ I(xTLS)| are simultaneously solved by xTLS and x

� (i.e.,
are such that

��yi �A
T
x
��
2
 c̄ for both x = x

� and x = xTLS). Therefore, we can follow the same
line of thoughts as in the proof of Proposition 5, and prove the first claim.

In the case of noiseless inliers, �� = 0 (or, equivalently, yi �A
T
x
�
= 0, for all i 2 I) and we can

always choose c̄ > 0 small enough such that the corresponding estimate xTLS satisfies the selected
measurements exactly, i.e., yi �A

T
xTLS = 0. Therefore, we can follow the same line of the proof

of Proposition 5 (for the case of noiseless inliers) to conclude xTLS = x
�. ⌅

Proof 2 — Proof of Theorem 12: Contract for Relaxation of (LTS1)
We start by restating the theorem for the reader’s convenience.

Theorem 22 (Restatement of Theorem 12). Consider Problem 1 with measurements (yi,Ai), i 2 [n],
and known outlier rate �. Call

...
I the set of uncorrupted measurements (y?

i
,A

?

i
), i 2 [n], where

the outliers are replaced by inliers and assume that the set of matrices A
?

i
, i 2

...
I , is k-certifiably

C-hypercontractive with k � 4. Moreover, assume � < �max =

k
2�1

q
1/(C(k/2)

k
2 23k�1). Then,

Algorithm 1 with relaxation order r � k outputs an estimate xlts�sdp1 (not necessarily in X) such
that:

err...I (xlts�sdp1)  (1 + C1(k,�)
2
k ) opt...

I
+ C2(k,�)

2
k

 
1

n

nX

i=1

���y?

i � (A
?

i )
T
x
?

���
k

2

! 2
k

, (64)

where C1(k,�) and C2(k,�) are given functions, err...I (x), 1

n

P
n

i=1

��y?

i
� (A

?

i
)
T
x
��2
2

is the residual
error of an estimate x with respect to the inliers

...
I , x? , argminx2X

1

n

P
n

i=1

��y?
i
� (A

?
i
)
T
x
��2
2

is the
best estimate from an oracle estimator that has access to all the inliers, and opt...

I
, err...I (x?

) is the
corresponding residual error with respect to the inliers

...
I .

The proof is an adaptation of Lemma 5.3 and Lemma 5.6 in [15] to the case of vector-valued
measurements. Let us start by clarifying all relevant notation:

L!,x ,

8
>>>><

>>>>:

!
2

i
= !i, i 2 [n]P
n

i=1
!i = ↵n

!i · (ȳi � yi) = 0 i 2 [n]

!i · (Āi �Ai) = 0 i 2 [n]

x 2 X

9
>>>>=

>>>>;

(constraints in (LTS1)) (65)

{yi,Ai}i2[n] (given measurements) (66)
{y

?

iA
?

i }i2[n], (uncorrupted measurements with outliers replaced by inliers) (67)

V , {ȳiĀi}i2[n], (auxiliary variables in (LTS1)) (68)
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err...I (x) ,
1

n

nX

i=1

���y?

i � (A
?

i )
T
x

���
2

2

(error of x w.r.t. uncorrupted measurements) (69)

err(x,V ) , 1

n

nX

i=1

���ȳi � Ā
T
i x

���
2

2

(cost in (LTS1) without exponent k/2). (70)

err!0(x,V ) , 1

n

nX

i=1

!
0

i

���ȳi � Ā
T
i x

���
2

2

(error w.r.t. set of measurements specified by !
0) (71)

Proof. The proof is quite involved and proceeds in two steps. First, we derive an sos proof that
states that the inliers picked up by any feasible solution for (LTS1) must also satisfy a desired error
bound. Then, we move to pseudo-expectations and conclude that the result of the moment relaxation
must satisfy the same bound, which can be manipulated into eq. (64).

Sos proof of robust certifiability (adapted from Lemma 5.6 in [15]). For a given tuple
(!,x,V ) that satisfies L!,x, let !

0 be such that !
0

i
= !i iff i is an inlier and !

0

i
= 0 otherwise

(intuitively, !0 is the indicator for the subset of the selected measurements ! that are inliers).35

Then call the corresponding error err!0(x,V ) as in (71). We note that:

err!0(x,V ) =
1

n

nX

i=1

!
0

i

���ȳi � Ā
T
i x

���
2

2

=
1

n

nX

i=1

!
0

i

���y?

i � (A
?

i )
T
x

���
2

2

. (72)

The previous equality follows from the fact that (i) by definition, !0

i
= 1 implies !i = 1 and since

the tuple (!,x,V ) satisfies L!,x, then whenever !i = 1 we must have Āi = Ai and ȳi = yi, and (ii)
!
0

i
can only be 1 for inliers, for which Ai = A

?

i
and yi = y

?

i
. Therefore, err!0(x,V ) is essentially the

error attained by x, but restricted to the true inliers in the set of measurements selected by !.
We now show that any set of variables (!,x,V ) that are feasible for (LTS1) (i.e., that satisfy

the constraint set L!,x), must also satisfy the following bound

L!,x x
k
(err...I (x)� err!0(x,V ))

k
2  C1(k,�)(err(x,V ))

k
2 + C2(k,�)

1

n

nX

i=1

���y?

i � (A
?

i )
T
x
?

���
k

2

.

(73)

We start by noting that
P

n

i=1
!
0

i
� (1� 2�)n: this follows from the fact that the two sets, the

selected measurements {i : !i = 1} and the set of true inliers, have each size (1� �)n, hence their
intersection must contain at least (1� 2�)n measurements. Therefore:

1

n

nX

i=1

(1� !
0

i)
2

binary variablez}|{
=

1

n

nX

i=1

(1� !
0

i) = 1�
1

n

nX

i=1

!
0

i  1� (1� 2�) hence:

L!,x

Fact A13z}|{

!0
2

(
1

n

nX

i=1

(1� !
0

i)
2
 2�

)
. (74)

Now we note that from definition (69), we can expand err...I (x) as:

err...I (x) =
1

n

nX

i=1

!
0

i

���y?

i � (A
?

i )
T
x

���
2

2

+
1

n

nX

i=1

(1� !
0

i)

���y?

i � (A
?

i )
T
x

���
2

2

(75)

35Note that !0 is not required to (and typically does not) satisfy L!,x.
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Combining (75) and (72), and observing that the result is a sum of squares, we get:

!,x
4

err...I (x)� err!0(x,V ) =

error for uncorrupted measurements not selected by !0
z }| {
1

n

nX

i=1

(1� !
0

i)

���y?

i � (A
?

i )
T
x

���
2

2

� 0 (76)

Elevating both members of (76) to k/2, and then using the sos version of Hölder’s inequality
(Fact A23), we get:

L!,x !,x,V
k

(err...I (x)� err!0(x,V ))
k
2

using (76)z}|{
=

 
1

n

nX

i=1

(1� !
0

i)

���y?

i � (A
?

i )
T
x

���
2

2

! k
2

(77)



using (A67) in Fact A23z }| {
 
1

n

nX

i=1

(1� !
0

i)
2

! k
2�1 

1

n

nX

i=1

���y?

i � (A
?

i )
T
x

���
k

2

!


using (74)z }| {
(2�)

k
2�1

 
1

n

nX

i=1

���y?

i � (A
?

i )
T
x

���
k

2

!
. (78)

Note that Fact A23 requires the exponent to be � 1 and a power of 2, which in turns implies k

2
� 2

or k � 4, as required by the statement of the theorem. Now we observe that:

x
k

 
1

n

nX

i=1

���y?

i � (A
?

i )
T
x

���
k

2

!
(79)

adding/subtracting (A?
i )

Tx?

z}|{
=

 
1

n

nX

i=1

���y?

i � (A
?

i )
T
x+ (A

?

i )
T
x
?
� (A

?

i )
T
x
?

���
k

2

!
= (80)

using Fact A20z}|{
 2

k
1

n

nX

i=1

���y?

i � (A
?

i )
T
x
?

���
k

2

+ 2
k
1

n

nX

i=1

���(A?

i )
T
(x� x

?
)

���
k

2

. (81)

By certifiable hypercontractivity of A?

i
, i 2 [n]:

L!,x x
k 1

n

nX

i=1

���(A?

i )
T
(x� x

?
)

���
k

2

 C(k/2)
k
2

 
1

n

nX

i=1

���(A?

i )
T
(x� x

?
)

���
2

2

! k
2

. (82)

We can further bound the term above as follows:

L!,x x
k

 
1

n

nX

i=1

���(A?

i )
T
(x� x

?
)

���
2

2

! k
2

(83)

adding/subtracting y?
iz}|{

=

 
1

n

nX

i=1

����y
?

i + (A
?

i )
T
x+ y

?

i � (A
?

i )
T
x
?

���
2

2

! k
2

(84)

using Fact A19z}|{


 
1

n

nX

i=1

✓
2

���y?

i � (A
?

i )
T
x

���
2

2

+ 2

���y?

i � (A
?

i )
T
x
?

���
2

2

◆! k
2

(85)
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rearrangingz}|{
=

 
2
1

n

nX

i=1

���y?

i � (A
?

i )
T
x

���
2

2

+ 2
1

n

nX

i=1

���y?

i � (A
?

i )
T
x
?

���
2

2

! k
2

(86)

using Fact A15z}|{
 2

k
2

 
2
1

n

nX

i=1

���y?

i � (A
?

i )
T
x

���
2

2

! k
2

+ 2
k
2

 
2
1

n

nX

i=1

���y?

i � (A
?

i )
T
x
?

���
2

2

! k
2

(87)

rearrangingz}|{
= 2

k

 
1

n

nX

i=1

���y?

i � (A
?

i )
T
x

���
2

2

! k
2

+ 2
k

 
1

n

nX

i=1

���y?

i � (A
?

i )
T
x
?

���
2

2

! k
2

. (88)

Finally, using again the sos version of Hölder’s inequality

L!,x x
k

 
1

n

nX

i=1

���y?

i � (A
?

i )
T
x
?

���
2

2

! k
2


1

n

nX

i=1

���y?

i � (A
?

i )
T
x
?

���
k

2

. (89)

Combining the above:

L!,x x
k

 
1

n

nX

i=1

���y?

i � (A
?

i )
T
x

���
k

2

!
(90)

(81)z}|{
 2

k
1

n

nX

i=1

���y?

i � (A
?

i )
T
x
?

���
k

2

+ 2
k
1

n

nX

i=1

���(A?

i )
T
(x� x

?
)

���
k

2

(91)

(82)z}|{
 2

k
1

n

nX

i=1

���y?

i � (A
?

i )
T
x
?

���
k

2

+ 2
k
C(k/2)

k
2

 
1

n

nX

i=1

���(A?

i )
T
(x� x

?
)

���
2

2

! k
2

(92)

(88)z}|{
 2

k
1

n

nX

i=1

���y?

i � (A
?

i )
T
x
?

���
k

2

(93)

+2
k
C(k/2)

k
2

0

@2
k

 
1

n

nX

i=1

���y?

i � (A
?

i )
T
x

���
2

2

! k
2

+ 2
k

 
1

n

nX

i=1

���y?

i � (A
?

i )
T
x
?

���
2

2

! k
2

1

A (94)

(89)z}|{
 2

k
1

n

nX

i=1

���y?

i � (A
?

i )
T
x
?

���
k

2

(95)

+2
k
C(k/2)

k
2

0

@2
k

 
1

n

nX

i=1

���y?

i � (A
?

i )
T
x

���
2

2

! k
2

+ 2
k
1

n

nX

i=1

���y?

i � (A
?

i )
T
x
?

���
k

2

1

A (96)

rearrangingz}|{
= C(k/2)

k
2 2

2k

✓
err...I (x)z }| {

1

n

nX

i=1

���y?

i � (A
?

i )
T
x

���
2

2

◆ k
2

(97)

+

⇣
2
k
+ C(k/2)

k
2 2

2k

⌘
1

n

nX

i=1

���y?

i � (A
?

i )
T
x
?

���
k

2

. (98)
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Hence, together with (78):

L!,x x
k
(err...I (x)� err!0(x,V ))

k
2  (2�)

k
2�1

C(k/2)
k
2 2

2kerr...I (x)
k
2 (99)

+(2�)
k
2�1

⇣
2
k
+ C(k/2)

k
2 2

2k

⌘
1

n

nX

i=1

���y?

i � (A
?

i )
T
x
?

���
k

2

. (100)

Applying Fact A17 to the right-hand-side with a = err...I (x), b = err!0(x,V ),
�

k
2 = (2�)

k
2�1

C(k/2)
k
2 2

2k, and exponent k/2:

L!,x x
k
(err...I (x)� err!0(x,V ))

k
2 

=�
k
2�1

C(k/2)
k
2 23k�1

z }| {
2

k
2 (2�)

k
2�1

C(k/2)
k
2 2

2k
(err...I (x)� err!0(x,V ))

k
2 (101)

+2
k
2 (2�)

k
2�1

C(k/2)
k
2 2

2k
(err!0(x,V ))

k
2 (102)

+(2�)
k
2�1

⇣
2
k
+ C(k/2)

k
2 2

2k

⌘
1

n

nX

i=1

���y?

i � (A
?

i )
T
x
?

���
k

2

. (103)

Rearranging the terms:

L!,x x
k
(1� �

k
2�1

C(k/2)
k
2 2

3k�1
)(err...I (x)� err!0(x,V ))

k
2  �

k
2�1

C(k/2)
k
2 2

3k�1
(err!0(x,V ))

k
2

+(2�)
k
2�1

⇣
2
k
+ C(k/2)

k
2 2

2k

⌘
1

n

nX

i=1

���y?

i � (A
?

i )
T
x
?

���
k

2

.

(104)

Noting that choosing � <
k
2�1

s
1

C(k/2)
k
2 23k�1

makes the constant 1� �
k
2�1

C(k/2)
k
2 2

3k�1 positive,

we can divive both members of the inequality (104) by such constant and obtain:

L!,x x
k
(err...I (x)� err!0(x,V ))

k
2 

�
k
2�1

C(k/2)
k
2 2

3k�1

1� �
k
2�1

C(k/2)
k
2 23k�1

(err!0(x,V ))
k
2 (105)

+

(2�)
k
2�1

⇣
2
k
+ C(k/2)

k
2 2

2k

⌘

1� �
k
2�1

C(k/2)
k
2 23k�1

1

n

nX

i=1

���y?

i � (A
?

i )
T
x
?

���
k

2

, (106)

Now defining C1(k,�) ,
�

k
2�1

C(k/2)
k
2 23k�1

1��
k
2�1

C(k/2)
k
2 23k�1

and C2(k,�) ,
(2�)

k
2�1

✓
2
k
+C(k/2)

k
2 22k

◆

1��
k
2�1

C(k/2)
k
2 23k�1

, and noting that

x
k
err(x,V ) � err!0(x,V ),36 we finally get:

L!,x x
k
(err...I (x)� err!0(x,V ))

k
2  C1(k,�)(err(x,V ))

k
2 + C2(k,�)

1

n

nX

i=1

���y?

i � (A
?

i )
T
x
?

���
k

2

, (107)

which matches our claim in (73).

36This follows from the definition of the two errors: err(x,V ) � err!0(x,V ) =
1
n

Pn
i=1

��ȳi � ĀT
i x

��2

2
�

1
n

Pn
i=1 !

0
i

��ȳi � ĀT
i x

��2

2
=

1
n

Pn
i=1(1� !0

i)
��ȳi � ĀT

i x
��2

2
, which is a sum of squares.
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Completing the proof by moving to pseudo-distributions. Consider a pseudo-distribution
µ̃ that satisfies L!,x. Using the sos proof in (73) and thanks to Fact A10, we conclude that if µ̃
satisfies L!,x then it must also satisfy:

Ẽµ̃

h
(err...

I (x) � err!0(x,V ))
k
2

i
 C1(k,�)

by definition this is copt
k
2
lts�sdp1z }| {

Ẽµ̃

h
err(x,V )

k
2

i
+C2(k,�)

 
1

n

nX

i=1

���y?

i � (A
?

i )
T
x
?

���
k

2

!
.

(108)

Elevating to the power 2

k
both sides and recalling that (a+ b)

q
 a

q
+ b

q for any 0 < q < 1:

⇣
Ẽµ̃

h
(err...

I (x) � err(x,V ))
k
2

i⌘ 2
k
 C1(k,�)

2
k coptlts�sdp1 + C2(k,�)

2
k

 
1

n

nX

i=1

���y?

i � (A
?

i )
T
x
?

���
k

2

! 2
k

.

(109)

Now using the sos version of Hölder’s inequality for pseudo-expectations (Fact A7, eq. (A17)):

Ẽµ̃

⇥
err...

I (x) � err!0(x,V )
⇤ k
2  Ẽµ̃

h
(err...

I (x) � err!0(x,V ))
k
2

i
, (110)

and therefore (109) becomes:

Ẽµ̃

⇥
(err...

I (x) � err!0(x,V ))
⇤
 C1(k,�)

2
k coptlts�sdp1 + C2(k,�)

2
k

 
1

n

nX

i=1

���y?

i � (A
?

i )
T
x
?

���
k

2

! 2
k

.

(111)

By linearity of the pseudo-expectation and rearranging:

Ẽµ̃

⇥
err...

I (x)

⇤
 Ẽµ̃ [err!0(x,V )] + C1(k,�)

2
k coptlts�sdp1 + C2(k,�)

2
k

 
1

n

nX

i=1

���y?

i � (A
?

i )
T
x
?

���
k

2

! 2
k

.

(112)

Noting that !,x
4

{err(x,V )� err!0(x,V ) � 0},37 and using Fact A10, we get Ẽµ̃ [err!0(x,V )] 

Ẽµ̃ [err(x,V )]. Moreover, we observe

Ẽµ̃ [err(x,V )] =

⇣
Ẽµ̃ [err(x,V )]

k
2

⌘ 2
k

Fact A7, eq. (A17)z}|{


⇣
Ẽµ̃

h
err(x,V )

k
2

i⌘ 2
k
= coptlts�sdp1 (113)

concluding that Ẽµ̃ [err!0(x,V )]  Ẽµ̃ [err(x,V )]  coptlts�sdp1. Using this inequality in (112):

Ẽµ̃

⇥
err...

I (x)

⇤
 (1 + C1(k,�)

2
k ) coptlts�sdp1 + C2(k,�)

2
k

 
1

n

nX

i=1

���y?

i � (A
?

i )
T
x
?

���
k

2

! 2
k

(114)

37This again follows from the definition of the errors err(x,V ) and err!0(x,V ), whose difference is a sum of squares.
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Applying Hölder’s inequality (Fact A7, eq. (A17)) one last time, we get err...I (Ẽµ̃ [x])  Ẽµ̃ [err...I (x)],
which leads to:

err...I (Ẽµ̃ [x])  (1 + C1(k,�)
2
k ) coptlts�sdp1 + C2(k,�)

2
k

 
1

n

nX

i=1

���y?

i � (A
?

i )
T
x
?

���
k

2

! 2
k

. (115)

Finally, we need to prove that coptlts�sdp1  opt...
I

. Towards this goal, we observe that the
(pseudo-)distribution supported on the point (!

?
,x

?
,V ) where !

?

i
= 1 for the true inliers and

zero otherwise is feasible for L!,x, hence by optimality copt
k
2
lts�sdp1 

⇣
1

n

P
n

i=1

��ȳi � Ā
T
i
x
?
��2
2

⌘ k
2 , from

which it follows:

coptlts�sdp1 
1

n

nX

i=1

���ȳi � Ā
T
i x

?

���
2

2

ȳi, Āi are inliers or zeroz}|{


1

n

nX

i=1

���y?

i � (A
?

i )
T
x
?

���
2

= opt...
I
. (116)

Substituting (116) back into (115):

err...I (Ẽµ̃ [x])  (1 + C1(k,�)
2
k ) opt...

I
+ C2(k,�)

2
k

 
1

n

nX

i=1

���y?

i � (A
?

i )
T
x
?

���
k

2

! 2
k

, (117)

which proves the claim of Theorem 12.
⌅

Proof 3 — Proof of Proposition 13: Contract for Relaxation of (LTS2)
We start by restating the proposition for the reader’s convenience.

Proposition 23 (Restatement of Proposition 13). Consider Problem 1 with measurements (yi,Ai),
i 2 [n], and outlier rate � < 0.5 (or, equivalently, inlier rate ↵ = 1�� > 0.5). Call I the set of inliers
and assume that the set of matrices Ai, i 2 I, is k-certifiably (

↵
2
⌘
2
(1�2c̄)

2

32c̄
, 2c̄, 2Mx)-anti-concentrated

for some ⌘ > 0. Then, Algorithm 2 with relaxation order r � k/2 outputs an estimate xlts�sdp2 (not
necessarily in X) such that:

kxlts�sdp2 � x
�
k
2
 Mx

✓
↵ ⌘

2
+ 2

1� ↵

↵

◆
. (118)

Towards proving the proposition we need to prove two technical lemmas (Lemmas 24 and 25
below). These lemmas extend results [37] to vector-valued and noisy measurements, and while in [37]
they have been proposed to attack the high-outlier case (i.e., for list-decodable regression), we show
they are also useful to prove estimation contracts for the low-outlier case.

Note that the two lemmas below use a subset of constraints compared to the one in the constraint
set of (LTS2) (i.e., the set M!,x below does not contain the constraint

P
n

i=1
!i = ↵n): this will

allow us to use them also to discuss the performance of (MC) and (TLS) later on.

Lemma 24 (Adapted from Lemma 4.1 in [37]). Consider the following constraint set, for given
measurements (yi,Ai), i 2 [n], a constant c̄ � 0, and where X is an explicitly bounded basic

8



semi-algebraic set ( cf. Assumption 2):

M!,x
.
=

8
<

:

!
2

i
= !i, i 2 [n]

!i ·
��yi �A

T
i
x
��2
2
 c̄

2
i 2 [n]

x 2 X

9
=

; . (119)

For any t � k and set of n measurements with at least ↵n inliers, such that for the set of inliers
I, the set of matrices Ai, i 2 I, is k-certifiably (

↵
2
⌘
2
(1�2c̄)

2

32c̄
, 2c̄, 2Mx)-anti-concentrated,38

M!,x !,x
t

(
1

|I|

X

i2I

!i kx� x
�
k
2

2


↵
2
⌘
2
M

2
x

4

)
. (120)

Proof. We follow the same logic as the proof of Lemma 4.1 in [37], but provide a slightly simpler
derivation, based on our definition of certifiable anti-concentration. We first observe that for the
inliers (i.e., i 2 I) it holds:39

M!,x x
t
!i ·

���AT
i (x� x

�
)

���
2

2

adding/subtracting yiz}|{
= !i ·

���(yi �A
T
i x

�
)� (yi �A

T
i x)

���
2

2

(121)

Fact A19z}|{
 !i ·

✓
2

���yi �A
T
i x

�

���
2

2

+ 2

���yi �A
T
i x

���
2

2

◆
(122)

!i1 and Fact A13z}|{
 2

���yi �A
T
i x

�

���
2

2

+ 2 · !i ·

���yi �A
T
i x

���
2

2

(123)

(since (!,x) satisfy M!,x, and inliers by definition satisfy
���yi �A

T
i x

�

���
2

2

 c̄
2)

 4c̄
2
. (124)

Since the set of matrices Ai, i 2 I, is k-certifiably (
↵
2
⌘
2
(1�2c̄)

2

32c̄
, 2c̄, 2Mx)-anti-concentrated, then

there exists a univariate polynomial p such that for every i 2 I and for every t � k:

from (124)z }| {⇢
!i ·

���AT
i (x� x

�
)

���
2

2

 4c̄
2

� using (32) with � = 2c̄z }| {
x
t
p
2

⇣
!i ·

���AT
i (x� x

�
)

���
2

⌘
� (1� 2c̄)

2 (125)

and

kxk
2

2
 Mx

Fact A19z }| {
x
t
kx� x

�
k
2

2
 4M

2

x (126)
using certifiable anti-concentration in eq. (33)z }| {

x
t

(
kx� x

�
k
2

2
·
1

|I|

X

i2I

p
2

⇣���AT
i (x� x

�
)

���
2

⌘


↵
2
⌘
2
(1� 2c̄)

2
M

2
x

4

)
. (127)

38The constant “32
00 in the anti-concentration requirement is arbitrary (i.e., it just amounts to a re-scaling of the

parameter ⌘) and has been chosen to keep the result consistent with the original statement in [37].
39Observe the analogy with the proof of Proposition 5.
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Now we note that:

M!,x !,x
t

!i · p
2

⇣
!i ·

���AT
i (x� x

�
)

���
2

⌘ !
2
i = !iz}|{
=

⇣
!i · p

⇣
!i ·

���AT
i (x� x

�
)

���
2

⌘⌘2
(128)

=

calling h the homogeneous part of p and since p(0) = 1z }| {⇣
!i ·

⇣
1 + h

⇣
!i ·

���AT
i (x� x

�
)

���
2

⌘⌘⌘2
=

⇣
!i + !i · h

⇣
!i ·

���AT
i (x� x

�
)

���
2

⌘⌘2
(129)

!
2
i = !iz}|{
=

⇣
!i + !i · h

⇣���AT
i (x� x

�
)

���
2

⌘⌘2
= !

2

i ·

⇣
1 + h

⇣���AT
i (x� x

�
)

���
2

⌘⌘2
(130)

= !
2

i · p
2

⇣���AT
i (x� x

�
)

���
2

⌘ !i1z}|{
 p

2

⇣���AT
i (x� x

�
)

���
2

⌘
. (131)

Combining the conclusions in (125), (127), and (131) we obtain:

M!,x !,x
t 1

|I|

X

i2I

!i kx� x
�
k
2

2

since 1
(1�2c̄)2

p
2
�
!i ·

��AT
i (x� x�

)
��
2

�
� 1 per (125)

z }| {


1

|I|

X

i2I

!i kx� x
�
k
2

2
·

1

(1� 2c̄)2
p
2

⇣
!i ·

���AT
i (x� x

�
)

���
2

⌘
(132)

using !i · p
2
�
!i ·

��AT
i (x� x�

)
��
2

�
 p

2
���AT

i (x� x�
)
��
2

�
from (131)

z }| {


1

(1� 2c̄)2
kx� x

�
k
2

2
·
1

|I|

X

i2I

p
2

⇣���AT
i (x� x

�
)

���
2

⌘
using (127)z }| {


↵
2
⌘
2
M

2
x

4
, (133)

which concludes the proof. ⌅

Lemma 25 (Adapted from Lemma 4.2 in [37]). Under the same assumptions of Lemma 24, for any
pseudo-distribution µ̃ of level at least k satisfying M!,x,

1

|I|

X

i2I

Ẽµ̃ [!i] kvi � x
�
k
2


↵⌘Mx

2
, (134)

where the vectors vi are extracted from the pseudo-moment matrix by setting vi =
Ẽµ̃[!ix]

Ẽµ̃[!i]
if Ẽµ̃ [!i] > 0,

or vi = 0 otherwise, for i 2 [n].

Proof. By Lemma 24, we have M!,x !,x
k

n
1

|I|

P
i2I

!i kx� x
�
k
2

2


↵
2
⌘
2
M

2
x

4

o
. We also have:

M!,x !
2
{!

2
i
= !i} for any i. Therefore:

M!,x !,x
k

(
1

|I|

X

i2I

k!ix� !ix
�
k
2

2


↵
2
⌘
2
M

2
x

4

)
. (135)

Since µ̃ satisfies M!,x, then it also satisfies:

1

|I|

X

i2I

Ẽµ̃

h
k!ix� !ix

�
k
2

2

i


↵
2
⌘
2
M

2
x

4
. (136)
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Using the norm inequality for pseudo-distributions in Fact A8, we get
���Ẽµ̃ [!ix� !ix

�
]

���
2

2



Ẽµ̃

h
k!ix� !ix

�
k
2

2

i
; then observing that for any m-vector z, kzk

1


p
m kzk

2
or, equivalently,

kzk
2

1
 m kzk

2

2
(below we will apply this inequality to the vector of size |I| with entries zi =

1

|I|

���Ẽµ̃ [!ix]� Ẽµ̃ [!i]x
�

���
2

), and chaining the inequalities back to (136):

kzk21z }| { 
1

|I|

X

i2I

���Ẽµ̃ [!ix]� Ẽµ̃ [!i]x
�

���
2

!2 kzk21mkzk22z}|{


mkzk22 with m=|I|z }| {
1

|I|

X

i2I

���Ẽµ̃ [!ix]� Ẽµ̃ [!i]x
�

���
2

2

(137)

Fact A8z}|{


1

|I|

X

i2I

Ẽµ̃

h
k!ix� !ix

�
k
2

2

i (136)z}|{


↵
2
⌘
2
M

2
x

4
. (138)

Remembering that vi =
Ẽµ̃[!ix]

Ẽµ̃[!i]
if Ẽµ̃ [!i] > 0, or vi = 0 otherwise, and taking the square root of

both members in (138):

1

|I|

X

i2I,Ẽµ̃[!i]>0

Ẽµ̃ [!i] kvi � x
�
k
2

by def. of viz}|{
=

1

|I|

X

i2I

���Ẽµ̃ [!ix]� Ẽµ̃ [!i]x
�

���
2

(138)z}|{


↵⌘Mx

2
, (139)

concluding the proof of Lemma 25. ⌅

Proof of Proposition 13: First of all, we note that since T!,x in Algorithm 2 contains a superset
of the constraints in M!,x defined in Lemma 24, the conclusions of Lemma 25 and Lemma 24 still
hold if we replace M!,x with T!,x. Therefore we have that any pseudo-distribution of level at least
k (hence produced by a relaxation of order at least k/2) satisfying T!,x also satisfies:

1

|I|

X

i2I

Ẽµ̃ [!i] kvi � x
�
k
2


↵⌘Mx

2

|I|=↵nz }| {
()

X

i2I

Ẽµ̃ [!i] kvi � x
�
k
2


↵
2
⌘Mx n

2
. (140)

Let us define the set of outliers O , [n]\I. We observe that since Ẽµ̃ [!i]  1, then
P

i2O
Ẽµ̃ [!i] 

(1� ↵)n. Moreover, using the triangle inequality kvi � x
�
k
2
 2Mx, hence:

X

i2O

Ẽµ̃ [!i] kvi � x
�
k
2
 2nMx(1� ↵). (141)

Using Eq. (140) and Eq. (141):

nX

i=1

Ẽµ̃ [!i] kvi � x
�
k
2
=

X

i2I

Ẽµ̃ [!i] kvi � x
�
k
2
+

X

i2O

Ẽµ̃ [!i] kvi � x
�
k
2

(142)


↵
2
⌘ Mx n

2
+ 2nMx(1� ↵). (143)
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Now note that any pseudo-distribution µ̃ satisfying T!,x is such that Ẽµ̃ [
P

n

i=1
!i] = ↵n (due to the

constraint
P

n

i=1
!i = ↵n in T!,x), hence by linearity

P
n

i=1
Ẽµ̃ [!i] = ↵n. Dividing both members

of (143) by
P

n

j=1
Ẽµ̃ [!j ] (where we switched to using j as an index to avoid confusion):

nX

i=1

Ẽµ̃ [!i]P
n

j=1
Ẽµ̃ [!j ]

kvi � x
�
k
2


1
P

n

j=1
Ẽµ̃ [!j ]

✓
↵
2
⌘ Mx n

2
+ 2nMx(1� ↵)

◆
(144)

=
1

↵n

✓
↵
2
⌘ Mx n

2
+ 2nMx(1� ↵)

◆
. (145)

Using Jensen’s inequality, we observe
����
P

n

i=1

Ẽµ̃[!i]Pn
j=1 Ẽµ̃[!j ]

vi � x
�

����
2


P

n

i=1

Ẽµ̃[!i]Pn
j=1 Ẽµ̃[!j ]

kvi � x
�
k
2
,

hence (165) becomes:
�����

nX

i=1

Ẽµ̃ [!i]P
n

j=1
Ẽµ̃ [!j ]

vi � x
�

�����
2


↵ ⌘ Mx

2
+ 2Mx

1� ↵

↵
, (146)

which, recalling that xlts�sdp2 =
P

n

i=1

Ẽµ̃[!i]Pn
j=1 Ẽµ̃[!j ]

vi, concludes the proof.
⌅

Proof 4 — Proof of Proposition 14: Contract for Relaxation of (MC1)
We start by restating the proposition for the reader’s convenience.

Proposition 26 (Restatement of Proposition 14). Consider Problem 1 with measurements (yi,Ai),
i 2 [n], and outlier rate � < 0.5 (or, equivalently, inlier rate ↵ = 1�� > 0.5). Call I the set of inliers
and assume that the set of matrices Ai, i 2 I, is k-certifiably (

↵
2
⌘
2
(1�2c̄)

2

32c̄
, 2c̄, 2Mx)-anti-concentrated

for some ⌘ > 0. Then, Algorithm 3 with relaxation order r � k/2 outputs an estimate xmc�sdp (not
necessarily in X) such that:

kxmc�sdp � x
�
k
2
 Mx

✓
↵ ⌘

2
+ 2

1� ↵

↵

◆
. (147)

Proof. First of all, we note that the constraint set M!,x in (MC1) is the same as Lemma 24
and Lemma 25. Therefore we have that any pseudo-distribution µ̃ of level at least k (hence produced
by a relaxation of order at least k/2) satisfying M!,x also satisfies:

1

|I|

X

i2I

Ẽµ̃ [!i] kvi � x
�
k
2


↵⌘Mx

2

|I|=↵nz }| {
()

X

i2I

Ẽµ̃ [!i] kvi � x
�
k
2


↵
2
⌘Mx n

2
. (148)

Let us define the set of outliers O , [n]\I. We observe that since Ẽµ̃ [!i]  1, then
P

i2O
Ẽµ̃ [!i] 

(1� ↵)n. Moreover, using the triangle inequality kvi � x
�
k
2
 2Mx, hence:

X

i2O

Ẽµ̃ [!i] kvi � x
�
k
2
 2nMx(1� ↵). (149)
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Using Eq. (148) and Eq. (149):
nX

i=1

Ẽµ̃ [!i] kvi � x
�
k
2
=

X

i2I

Ẽµ̃ [!i] kvi � x
�
k
2
+

X

i2O

Ẽµ̃ [!i] kvi � x
�
k
2

(150)


↵
2
⌘ Mx n

2
+ 2nMx(1� ↵). (151)

Let us call µ̃ the pseudo-distribution that achieves the optimal solution in (MC1), and observe
that the corresponding optimal objective

P
n

i=1
Ẽµ̃ [!i] � ↵n: this follows from optimality of µ̃ and

from the fact that the pseudo-distribution supported on the single point (x
�
,!

�
), where !

�

i
= 1 if

i 2 I or zero otherwise, is feasible for (MC1) and achieves an objective ↵n.
Now dividing both members of (159) by

P
n

j=1
Ẽµ̃ [!j ]:

nX

i=1

Ẽµ̃ [!i]P
n

j=1
Ẽµ̃ [!j ]

kvi � x
�
k
2


1
P

n

j=1
Ẽµ̃ [!j ]

✓
↵
2
⌘ Mx n

2
+ 2nMx(1� ↵)

◆
(152)


1

↵n

✓
↵
2
⌘ Mx n

2
+ 2nMx(1� ↵)

◆
. (153)

Using Jensen’s inequality
����
P

n

i=1

Ẽµ̃[!i]Pn
j=1 Ẽµ̃[!j ]

vi � x
�

����
2


P

n

i=1

Ẽµ̃[!i]Pn
j=1 Ẽµ̃[!j ]

kvi � x
�
k
2

hence (153)

becomes: �����

nX

i=1

Ẽµ̃ [!i]P
n

j=1
Ẽµ̃ [!j ]

vi � x
�

�����
2


↵ ⌘ Mx

2
+ 2Mx

1� ↵

↵
, (154)

which, recalling that xmc�sdp =
P

n

i=1

Ẽµ̃[!i]Pn
j=1 Ẽµ̃[!j ]

vi, concludes the proof. ⌅

Proof 5 — Proof of Proposition 15: Contract for Relaxation of (TLS1)
We start by restating the proposition for the reader’s convenience.

Proposition 27 (Restatement of Proposition 15). Consider Problem 1 with measurements (yi,Ai),
i 2 [n], and outlier rate � < 0.5 (or, equivalently, inlier rate ↵ = 1�� > 0.5). Call I the set of inliers
and assume that the set of matrices Ai, i 2 I, is k-certifiably (

↵
2
⌘
2
(1�2c̄)

2

32c̄
, 2c̄, 2Mx)-anti-concentrated

for some ⌘ > 0. Then, Algorithm 4 with relaxation order r � k/2 outputs an estimate xtls�sdp (not
necessarily in X) such that:

kxtls�sdp � x
�
k
2


↵Mxn

↵n�
��

c̄2

✓
↵ ⌘

2
+ 2

1� ↵

↵

◆
, (155)

where �
� ,P

i2I

��yi �A
T
i
x
�
��2
2

is the squared residual error of the ground truth x
� over the inliers I.

Proof. First of all, we note that the constraint set M!,x in (TLS1) is the same as Lemma 24
and Lemma 25. Therefore we have that any pseudo-distribution µ̃ of level at least k (hence produced
by a relaxation of order at least k/2) satisfying M!,x also satisfies:

1

|I|

X

i2I

Ẽµ̃ [!i] kvi � x
�
k
2


↵⌘Mx

2

|I|=↵nz }| {
()

X

i2I

Ẽµ̃ [!i] kvi � x
�
k
2


↵
2
⌘Mx n

2
. (156)
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Let us define the set of outliers O , [n]\I. We observe that since Ẽµ̃ [!i]  1, then
P

i2O
Ẽµ̃ [!i] 

(1� ↵)n. Moreover, using the triangle inequality kvi � x
�
k
2
 2Mx, hence:

X

i2O

Ẽµ̃ [!i] kvi � x
�
k
2
 2nMx(1� ↵). (157)

Using Eq. (156) and Eq. (157):

nX

i=1

Ẽµ̃ [!i] kvi � x
�
k
2
=

X

i2I

Ẽµ̃ [!i] kvi � x
�
k
2
+

X

i2O

Ẽµ̃ [!i] kvi � x
�
k
2

(158)


↵
2
⌘ Mx n

2
+ 2nMx(1� ↵). (159)

Let us call µ̃ the pseudo-distribution that achieves the optimal solution in (TLS1), and observe
that µ̃ achieves a cost:

Ẽµ̃

"
nX

i=1

!i ·

���yi �A
T
i x

���
2

2

+ (1� !i) · c̄
2

#
=

nX

i=1

Ẽµ̃


!i ·

���yi �A
T
i x

���
2

2

�
+

nX

i=1

(1� Ẽµ̃ [!i]) · c̄
2
.

(160)

Now observe that the pseudo-distribution supported on the single point (x�
,!

�
), where !�

i
= 1 if i 2 I

or zero otherwise, is feasible for (TLS1) and achieves an objective
P

i2I

��yi �A
T
i
x
�
��2
2
+ (1� ↵)nc̄

2.
Therefore, by using (160) and by optimality of µ̃:

nX

i=1

Ẽµ̃


!i ·

���yi �A
T
i x

���
2

2

�
+

=nc̄
2
�
Pn

i=1 Ẽµ̃[!i]c̄
2

z }| {
nX

i=1

(1� Ẽµ̃ [!i]) · c̄
2


X

i2I

���yi �A
T
i x

�

���
2

2

+

=nc̄
2
�↵n c̄

2

z }| {
(1� ↵)nc̄

2
. (161)

Rearranging the terms in the previous inequality:

nX

i=1

Ẽµ̃ [!i] �
1

c̄2

 
nX

i=1

Ẽµ̃


!i ·

���yi �A
T
i x

���
2

2

�
�

X

i2I

���yi �A
T
i x

�

���
2

2

+ ↵n c̄
2

!
(162)

�
1

c̄2

 
↵n c̄

2
�

X

i2I

���yi �A
T
i x

�

���
2

2

!
= ↵n�

1

c̄2

X

i2I

���yi �A
T
i x

�

���
2

2

. (163)

Now dividing both members of (159) by
P

n

j=1
Ẽµ̃ [!j ] and defining �

� ,P
i2I

��yi �A
T
i
x
�
��2
2
:

nX

i=1

Ẽµ̃ [!i]P
n

j=1
Ẽµ̃ [!j ]

kvi � x
�
k
2


1
P

n

j=1
Ẽµ̃ [!j ]

✓
↵
2
⌘ Mx n

2
+ 2nMx(1� ↵)

◆
(164)

using (163)z}|{


1

↵n�
��

c̄2

✓
↵
2
⌘ Mx n

2
+ 2nMx(1� ↵)

◆
. (165)
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Using Jensen’s inequality
����
P

n

i=1

Ẽµ̃[!i]Pn
j=1 Ẽµ̃[!j ]

vi � x
�

����
2


P

n

i=1

Ẽµ̃[!i]Pn
j=1 Ẽµ̃[!j ]

kvi � x
�
k
2

hence (165)

becomes: �����

nX

i=1

Ẽµ̃ [!i]P
n

j=1
Ẽµ̃ [!j ]

vi � x
�

�����
2


1

↵n�
��

c̄2

✓
↵
2
⌘ Mx n

2
+ 2nMx(1� ↵)

◆
, (166)

which, recalling that xtls�sdp =
P

n

i=1

Ẽµ̃[!i]Pn
j=1 Ẽµ̃[!j ]

vi, concludes the proof. ⌅

Proof 6 — Proof of Theorem 17: Contract for Relaxation of (LDR)
We start by restating the theorem for the reader’s convenience.

Theorem 28 (Restatement of Proposition 17). Consider Problem 1 with measurements (yi,Ai),
i 2 [n], and known outlier rate � (or, equivalently, known inlier rate ↵ = 1 � �), possibly with
� > 0.5. Call I the set of inliers and assume that the set of matrices Ai, i 2 I, is k-certifiably
(
↵
2
⌘
2
(1�2c̄)

2

32c̄
, 2c̄, 2Mx)-anti-concentrated for some ⌘ > 0. Then, with probability at least 1�

�
1�

↵

2

�N
↵

(over the draw of the samples in the algorithms), where N � 1 is a user-defined parameter, Algorithm 5
with relaxation order r � k/2 outputs a list L of size N/↵ such that there is an estimate x 2 L (with
x not necessarily in X) such that

kx� x
�
k
2
 ⌘Mx. (167)

Moreover, when ↵ � 0.01 ( i.e., at least 1% of the measurements are inliers) and N = 10, the relation
kx� x

�
k
2
 ⌘Mx holds with probability at least 0.99 over the draw of the samples.

Proof. Note that Lemma 24 and Lemma 25 use a subset of constraints compared to the set T!,x

in (LDR) (i.e., the set M!,x in the lemmas does not contain the constraint
P

n

i=1
!i = ↵n, while

T!,x does). Therefore, their conclusions will still hold in the context of (LDR). We start by proving
the following lemma, which shows that the pseudo-distribution µ̃ built by optimizing the moment
relaxation of (LDR) “spreads” (i.e., has enough support) across the inliers. The proof is an extension
of Lemma 4.3 in [37] to the case of vector-valued measurements.

Lemma 29 (Adapted from Lemma 4.3 in [37]). For any pseudo-distribution µ̃ satisfying T!,x that

minimizes
���Ẽµ̃ [!]

���
2

2

,
P

i2I
Ẽµ̃ [!i] � ↵

2
n.

Proof. Let u =
1

↵n
Ẽµ̃ [!]. Then, u is a non-negative vector satisfying

P
n

i=1
ui = 1. Let wt(I) =P

i2I
ui and let wt(O) =

P
i2O

ui, where O , [n] \ I is the set of outliers. Then, wt(I)+wt(O) = 1.
By contradiction, we show that if wt(I) < ↵, then there exists a pseudo-distribution satisfying

T!,x that achieves a lower value of
���Ẽµ̃ [!]

���
2

2

, hence contradicting optimality of µ̃. Towards this goal,
we define a pseudo-distribution µ̃

? which is supported on a single (!,x), the indicator vector 1I and
x
�. Therefore, Ẽµ̃? [!i] = 1 iff i 2 I and zero otherwise. Clearly, µ̃? satisfies T!,x. Therefore, any

convex combination µ̃� = (1� �)µ̃+ �µ̃
? also satisfies T!,x. We now show that whenever wt(I) < ↵,

then
���Ẽµ̃� [!]

���
2

2

<

���Ẽµ̃ [!]

���
2

2

for some � > 0, thus contradicting optimality of µ̃. We observe that:

u� =
1

↵n
Ẽµ̃� [!] =

1

↵n
(1� �)Ẽµ̃ [!] +

1

↵n
(�)Ẽµ̃? [!] = (1� �)u+

�

↵n
1I . (168)
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First, we compute the squared norm of u� using (168):

ku�k
2

2
=

observing 1T
I1I = ↵n and 1T

Iu = wt(I)
z }| {

(1� �)
2
kuk

2

2
+ 2�(1� �)

wt(I)
↵n

+
�
2

↵n
. (169)

Next, we lower bound kuk
2

2
in terms of wt(I) and wt(O). Observe that for any fixed values of

wt(I) and wt(O), the minimum of kuk2
2

is attained by the vector u such that ui =
1

↵n
wt(I) for

each i 2 I and ui =
1

(1�↵)n
wt(O) otherwise. This gives:

kuk
2

2
�

sum of u2
i for i 2 Iz }| {✓

wt(I)
↵n

◆2

↵n +

sum of u2
i for i 2 Oz }| {✓

1� wt(I)
(1� ↵)n

◆2

(1� ↵)n (170)

=
wt(I)2

↵n
+

(1� wt(I))2

(1� ↵)n

=
1

↵n
·

✓
wt(I)2 + (1� wt(I))2

✓
↵

1� ↵

◆◆
. (171)

Combining (169) and (171):

ku�k
2

2
� kuk

2

2
=

=(1��)
2
kuk22�kuk22z }| {

(�2�+ �
2
) kuk

2

2
+2�(1� �)

wt(I)
↵n

+
�
2

↵n
(172)

since (�2�+ �
2
)  0z}|{


�2�+ �

2

↵n

✓
wt(I)2 + (1� wt(I))2

↵

1� ↵

◆
+ 2�(1� �)

wt(I)
↵n

+
�
2

↵n
. (173)

Rearranging (note that this part slightly differs from [37], but with the same conclusion):

kuk
2

2
� ku�k

2

2
�

�

↵n

✓
(2� �)

✓
wt(I)2 + (1� wt(I))2

↵

1� ↵

◆
� 2(1� �)wt(I)� �

◆
(174)

=
�(2� �)

↵n

✓✓
wt(I)2 + (1� wt(I))2

↵

1� ↵

◆
�

2(1� �)

(2� �)
wt(I)�

�

(2� �)

◆
(175)

observing
2(1� �)

(2� �)
=

2(1� �)

2(1� �) + �
< 1 (for 0 < �  1)

and
1

(2� �)
 1 <

1� wt(I)
1� ↵

(for 0  wt(I) < ↵  1)

>
�(2� �)

↵n

✓
wt(I)2 + (1� wt(I))2

↵

1� ↵
� wt(I)�

1� wt(I)
1� ↵

�

◆
(176)

=
�(2� �)

↵n

✓
�wt(I)(1� wt(I)) + (1� wt(I))2

↵

1� ↵
�

1� wt(I)
1� ↵

�

◆
(177)

=
�(2� �)(1� wt(I))

↵n(1� ↵)
(�wt(I)(1� ↵) + (1� wt(I))↵� �) (178)

=

�0z }| {
�(2� �)(1� wt(I))

↵n(1� ↵)
(↵� wt(I)� �) . (179)
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Now whenever wt(I) < ↵, (↵� wt(I)� �) > 0 for a sufficiently small �. Thus we can choose a
small enough � > 0 such that kuk

2

2
� ku�k

2

2
> 0, which contradicts optimality of µ̃. ⌅

Using Lemma 25 and Lemma 29 we can finally prove the correctness of Theorem 17. Let µ̃ be
a pseudo-distribution satisfying T!,x that minimizes

���Ẽµ̃ [!]

���
2

2

. Such a pseudo-distribution exists
since the set contains at least the distribution with !i = 1 iff i 2 I and x = x

�.
From Lemma 25, we have 1

|I|

P
i2I

Ẽµ̃ [!i] kvi � x
�
k
2


↵⌘Mx
2

. Let Z
.
=
P

i2I

Ẽµ̃[!i]

|I|
(this is a

normalization factor, such that Ẽµ̃[!i]

Z|I|
is a valid pdf over the inliers, i.e., sums up to 1). By a rescaling,

we obtain:

X

i2I

Ẽµ̃ [!i]

Z|I|
kvi � x

�
k
2


1

Z

↵⌘Mx

2
. (180)

Using Lemma 29, Z � ↵. Therefore,

X

i2I

Ẽµ̃ [!i]

Z|I|
kvi � x

�
k
2


⌘Mx

2
. (181)

Let i 2 [n] be chosen with probability Ẽµ̃[!i]

↵n
. Then, we sample i 2 I with probability Z � ↵.

By Markov’s inequality:

P (kvi � x
�
k
2
 ⌘Mx) = P (kvi � x

�
k
2
 ⌘Mx|i 2 I) ·

�↵z }| {
P (i 2 I) (182)

� ↵ · P (kvi � x
�
k
2
 ⌘Mx|i 2 I) (183)

Markov’s inequality: P (X � a) 
E [X]

a
() P (X  a) � 1�

E [X]

a

� ↵

✓
1�

1

⌘Mx

Ei2I [kvi � x
�
k
2
]

◆
= ↵

 
1�

1

⌘Mx

X

i2I

Ẽµ̃ [!i]

Z|I|
kvi � x

�
k
2

!
(184)

using (181)z}|{
� ↵

✓
1�

1

⌘Mx

⌘Mx

2

◆
=

↵

2
. (185)

So we concluded that P (kvi � x
�
k
2
 ⌘Mx) �

↵

2
(this is the probability that a single draw

satisfies kvi � x
�
k
2
 ⌘Mx). Calling S (as in “success”) the event that kvi � x

�
k
2
 ⌘Mx, we get

that the probability of S after m draws is:

P (Sm) = 1�

failing m timesz }| {
(1� P (S))

m
� 1�

⇣
1�

↵

2

⌘m
(186)

Finally, choosing the number of draws m �
N

↵
, we obtain

P (Sm) � 1�

⇣
1�

↵

2

⌘N
↵ (187)

which matches the first claim in Theorem 17.
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Now the final claim (i.e., the claim that (167) is satisfied with probability at least 0.99 for
↵ � 0.01 and N = 10) is just a particularization of (187) to the given choice of N . In particular, we
first observe that the probability of success 1�

�
1�

↵

2

�N
↵ is a non-decreasing function of ↵. Then

we note that the function f(↵, N) , 1�
�
1�

↵

2

�N
↵ evaluated at ↵ = 0.01 and N = 10 is such that

f(0.01, 10) � 0.99, which concludes the proof.
⌅
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