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ABSTRACT

Greater emphasis in recent years on sustainable resource management in for-
estry has generated higher demand for information on various nontimber val-
ues. Since most of the nontimber resources are not exchanged in conventional
markets, their economic values are not readily available. This paper estimates
the demand for and the economic value of a popular nontimber resource, rec-
reational moose hunting in Ontario, using the travel cost method. In view of
censored and truncated nature of moose hunting trips data and the bag limit,
we used four alternative count data models, the Poisson, Geometric, the Nega-
tive Binomial type II and the Creel and Loomis models, to estimate the de-
mand for recreational moose hunting. The results indicate that the demand
for recreational moose hunting declines with higher travel cost and lower in-
come and that the demand is both price and income inelastic. The results also
indicate that truncation reduces the magnitude of both price and income
elasticities. Finally, the estimated consumer surplus varies widely across model
specifications. A direct implication of this result is that it is not only impor-
tant to generate meaningful economic values of various nontimber resources,
but it is also important to select the most appropriate set of values from a
number of alternatives. Given the data and institutional characteristics, we
recommend that the estimated benefits from the truncated Geometric and the
Creel and Loomis models (C$175 to C$210 per moose hunting trip) should be
used for policy purposes.

Keywords: Nontimber values, travel cost method, truncation, count data mod-
els, recreational moose hunting.

INTRODUCTION

A typical forest in Canada provides not only timber but
also a wide variety of nontimber goods and services. These
include wildlife habitat, wilderness areas and recreation
services such as canoeing, boating, hiking, wildlife-view-
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ing, fishing, hunting and skiing. Greater emphasis on inte-
grated resource management in forestry since the late 1970s
has generated higher demand for information on various
nontimber values. However, most of the nontimber goods
and services are not exchanged in conventional markets and
hence, do not have market prices.

A number of methods have been used in recent years to
measure the values of various nonmarket goods and serv-
ices. These methods involve either asking directly the
recreationists about their values for the resource being stud-
ied (the contingent valuation method), or relying on infor-
mation about observed market choices related to recrea-
tional trips made by individuals (the travel cost methods).
Travel-cost demand models have been used extensively in
recreation demand studies for over 30 years. In a recent
study, Smith & Kaoru (1990) synthesized empirical results
from 77 travel cost recreation demand studies reported be-
tween 1970 and 1986 using meta analysis and found that
travel cost demand studies derived consistent and policy
relevant benefit estimates. Perhaps due to such consistency,
the travel cost method has been accepted as a tool for meas-
uring values (or benefits) of nonmarket goods and services
in the United States since 1979 (Water Resource Council,
1979). Very recently, it has also been recommended by the
Environmental Assessment Board of Ontario (EAB 1994) as
a tool for measuring nontimber forest values in Ontario.

Hunting moose (Alces alces) is a popular outdoor recrea-
tional activity in Ontario. During the Fall in each year,
northern Ontario attracts thousands of hunters from all over
Ontario and from neighbouring provinces or states. For
hunters residing in various northern Ontario communities,
work and social life are coordinated with the moose hunt-
ing season. Due to recent fiscal constraints and declining
budgets for managing forest resources in Ontario, consid-
erable attention has been focused on the potential for higher
user fees for hunting and other nontimber services. Imple-
mentation of any such changes to recreational moose hunt-
ing in Ontario requires a good understanding of price and
income sensitivity of the demand for moose hunting.

There are only a few empirical studies on the demand
for big game hunting in the literature. Adamowicz (1983)
applied the contingent valuation method to evaluate the
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demand for bighorn sheep hunting in Alberta. Condon &
Adamowicz (1995) also applied the contingent valuation
method to evaluate the demand for moose hunting in New-
foundland. Boxall (1995) used a modified travel cost model
to evaluate the demand for recreational hunting of Ante-
lope in Alberta. Creel & Loomis (1990, 1992) and Offenbach
and Goodwin (1994) used variations of the basic travel cost
model to evaluate the demand for deer hunting in Califor-
nia and Kansas respectively. Boyle & Clark (1993) applied
the contingent valuation method to determine the economic
value of recreational moose hunting in Maine.

Since the mid 1980s, the economic value of big game
hunting has also been investigated in Scandinavia. For ex-
ample, Johansson et al. (1988) used the contingent valua-
tion approach to estimate the economic value of moose
hunting and to determine the effects of changes in moose
population on hunters” willingness to pay for recreational
moose hunting in the county of Vasterbotten in Sweden.
Mattsson (1990 a, b) has also applied the contingent valua-
tion approach to determine the extent and economic val-
ues of moose hunting in Northern and Southern regions of
Sweden. These studies not only provide the economic val-
ues of moose hunting in Sweden but also disaggregate to-
tal economic values of moose hunting into meat and rec-
reational components.

No systematic attempt has been made in the past to de-
termine the economic value of recreational moose hunting
in Ontario. The major objective of this paper is to bridge
this gap by providing estimates of the demand for moose
hunting trips in Ontario. The second objective is to evalu-
ate the adequacy of conventional count data models for
modelling the demand for recreational moose hunting and
explore the usefulness of three alternative count data mod-
els for this purpose.

Section two provides a brief overview of moose man-
agement and moose hunting in Ontario. A conceptual travel
cost model for moose hunting is given in section three. Sec-
tion four deals with four alternative count data models.
Section five concentrates on data description, empirical
specification and estimation of the demand for moose hunt-
ing trips. This section also includes discussions of results
and estimated benefits of recreational moose hunting. Sec-
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tion six summarizes the major findings and offers some
concluding remarks.

AN OVERVIEW OF MOOSE MANAGEMENT AND MOOSE
HuNTING IN ONTARIO

Moose forms an essential component of the boreal forest
ecosystem. By feeding on young deciduous trees and
shrubs, moose protects young conifers from competing veg-
etation. Moose herds also add nutrient to the forest floor.
For adequate food and shelter requirements, moose often
prefers to live at the edge of a forest. Natural disturbances
such as forest fire and insect outbreak and small and mid-
sized logging operations are helpful for expanding moose
population in the boreal forest.

Until the early 1960s, moose habitat management was
not a major concern in Ontario and free and unlimited
moose hunting was allowed. It is believed that the intro-
duction of mechanical logging in the 1960 and subsequent
large clear-cutting operations caused significant damage to
the habitat requirements for moose and other wildlife in
the boreal forest. Shrinking food and shelter requirements
coupled with the provision of unlimited hunting contrib-
uted to a steady decline in moose population during the
1960s and 1970s. In the early 1980s, it was estimated that
there were only 80,000 moose in this province and the popu-
lation was declining. There was an immediate need to take
some measures to stabilize and reverse that declining trend.
Two major programs were introduced in 1983. The first one
is called the Featured Species Management Program. This pro-
gram attempts to manage the supply side of the problem
by incorporating moose habitat requirements directly into
the forest management plans and by prescribing the har-
vesting procedure, the time of harvest and the size of clear-
cuts (OMNR 1988). The second program is called the Selec-
tive Harvest System which attempts to manage the demand
side of the problem. Under the Selective Harvest system,
the Ontario Ministry of Natural Resources (OMNR) area
teams responsible for each Wildlife Management Unit
(WMU) recommend, based on population estimates and
population targets, how many adult moose especially cows
can be harvested. The validation tags required for hunting
adult moose are allocated based on such recommendations
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from each WMU. The key consideration in the selective
harvest program is that there are enough adult moose left
in the forest to sustain a healthy breeding population. Since
the overall growth of the moose population is not affected
significantly by the current level of harvest of calves, no
validation tag is necessary for hunting calves in Ontario.

Licensing and Regulations for Moose Hunting in On-
tario

Moose hunting season begins on September 17 and ends
on December 15 each year in Ontario. The length of the
hunting season varies somewhat depending on the loca-
tion of a particular WMU, the type of licence and the equip-
ment used to hunt. Ontario offers two different types of
moose hunting licenses. One type for Ontario residents, and
the other for non-residents. In general, the resident license
fee is much lower than that of non-residents. A regular
moose hunting licence purchased by a resident of Ontario
allows him/her to hunt a calf anywhere in this province
when the hunting season is open. However, a special vali-
dation tag is necessary to hunt an adult moose, bull or cow
(OMNR 1994). The validation tag states the sex of the ani-
mal, the WMU for which the tag is valid, and the condition
under which the animal may be taken. These tags are allo-
cated through a lottery. No hunter should have more than
one validation tag at the time of hunt.

The Selective Harvest System essentially imposes a quota
on harvest. The quota represents the number of adult moose
that can be harvested. In general, the number of validation
tags issued is higher than the quota because not all hunt-
ers are successful on their hunt. The quota setting process
takes this into account.

Trae CoNCEPTUAL MODEL

The demand for recreational moose hunting in the travel
cost framework can be undertaken within the domain of
neoclassical utility maximization. In this context, a repre-
sentative consumer or household maximizes utility subject
to budgetary and time constraints. Define x to be a vector
of quantities of market goods with the corresponding price
vector p, and r to be the vector of quantities of recreational
goods and services including recreational moose hunting,
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with the corresponding price vector p,. The budget con-
straint of a representative consumer can be written as:

Y=wl, =plx+p,r. 1)
Similarly, the time constraint can be written as:
T-T,-T,=0, (2)

where Yis full income, w is the market wage, T is total avail-
able time, T, is time spent at work and T, is the leisure time.
Note that both sets of prices, p, and p, are likely to be af-
fected by the value of consumer’s time (i.e., the wage rate).
Denoting the quality characteristics of the ith hunting site
as q,, the utility function for a recreationist can be written
as:

u=ux,r,q). (3)

Maximization of equation (3) subject to full income and time
constraints given in equations (1) and (2), yields a set of
ordinary demand functions for the market goods and the
recreational services. Thus, the ith consumer’s demand
function for moose hunting at the jth site is:

rijzf(px’pr’y’q)‘ (4)

Since it is difficult to measure the flow of recreational
moose hunting services represented by r; in equation (4),
the number of moose hunting trips are used as surrogates.
Estimated coefficients of the ordinary demand function are
often used to determine the value of recreational services.
In particular, integration of the area under the demand
function between any two prices yields a Marshallian con-
sumer surplus measure:

2

p

CS= jf(px’prlqu)dp (5)

1

p
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Consumer surplus per trip or per hunter can be calculated
and total economic value of moose hunting for a particular
site can be derived. The effects of changes in site quality
characteristics on the value of moose hunting can also be
determined (Bockstael, McConnell & Strand, 1991).!

EcoNoMETRIC MODELS OF MoosE HUNTING

The dependent variable in this study is the number of
moose hunting trips taken by registered Ontario hunters
during the hunting season of 1992. Hunting trips occur as
nonnegative integers and no data is available for individual
hunters taking zero trips. The sample is, therefore, censored
and truncated. The truncation occurs at the zero trip level.
So, the distribution of the dependent variable can be char-
acterized by truncated count data models.

Since count data models explicitly recognize the
nonnegative discrete nature of the dependent variable, they
are particularly suitable for modelling moose hunting trips
and similar recreational activities. Indeed, a number of re-
cent studies such as Shaw (1988), Smith (1988), Creel &
Loomis (1990, 1992), Grogger & Carson (1991), Hellerstein
(1991), Offenbach & Goodwin (1994) and Englin &
Shonkwiler (1995) have applied count data models in rec-
reational demand analysis. In search for an appropriate
specification of the demand for moose hunting in Ontario,
we present four alternative count data models. One of these
four models (i.e., the geometric distribution) has not been
used in the valuation of big game hunting in the past.

The Poisson Distribution Model

The Poisson distribution forms the foundation for count
data models. The basic Poisson model can be written as:

B exp(-A)A*

Prob (Y, =k;k=0,1,2,...)= f(k) o

Vi>0, (6)

where Y, is the ith observation on the number of moose
hunting trip, k = 0,1,2... are the set of possible nonnegative

! The analytical framework presented in this section takes into consideration

the number of moose hunting trips but does not deal with the institutional con-
straint that the moose hunting season for an individual hunter ends as soon as
he bags a moose. We address this issue in the following section.
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integer values that Y, can take and A is the Poisson param-
eter to be estimated. This model can be extended to a re-
gression framework and heterogeneity can be introduced
by making A4 a positive function of the explanatory vari-
ables such that:

A; =exp(X7B), (7)

where, X, is a matrix of explanatory variables including a
constant and Bis a conformable matrix of unknown param-
eters to be estimated. The exponential form of (7) guaran-
tees non-negativity of A. Thus, the basic Poisson model cap-
tures the discrete and nonnegative nature of the depend-
ent variable and allows one to draw inference on the prob-
ability of trip occurrence.

The structure of a truncated Poisson distribution is
slightly different. Noting that Prob(Y =0) = /(Y = 0) = exp(-
A), and that the probability of observing Y, given that it
exceeds the truncation point, k, is f(Y;) = f(Y,)/[1-F(k)],
the Poisson probability distribution for counts with left
truncation at k = 0 can be written as:

exp(-1) AF 1
k! ' (1 - exp(-l)) -8

Prob(Y; = k |k > 0) =

Since exp(—A) is less than one, multiplication of the stand-
ard probabilities by the factor [1 — exp(-4)]™" inflates the
probabilities. Allowing A to vary as in (7), the zero-trun-
cated Poisson log-likelihood function is:

InL= i{—/li +k X, B—In(k!)—In[1-exp(-A, )]}. 9)

i=1

A distinctive feature of the Poisson model is that the con-
ditional mean of the distribution is equal to its conditional
variance (Larson, 1974). This equidispersion property is not
always satisfied in reality. In some cases, the value of the
conditional variance exceeds the value of conditional mean.
This is called overdispersion. In the presence of overdis-
persion, the estimated regression parameters from an
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untruncated Poisson model are consistent but their stand-
ard errors are downwardly biased. However, the truncated
Poisson estimators are both biased and inconsistent in the
presence of overdispersion (Grogger & Carson, 1991). It is,
therefore, important to test for the presence of overdis-
persion in the data set.

Cameron & Trivedi (1990) have developed two regres-
sion-based tests for overdispersion in the Poisson model.
While both tests evaluate the null hypothesis of equidis-
persion, the alternative hypotheses are different. The al-
ternative hypotheses in the first and second tests are: H:
Variance = 2 x Mean; and Variance = [mean + (mean)?*] respec-
tively. Very recently, Gurmu (1991) has developed score
tests for overdispersion in the Poisson model truncated at
zero. The null hypothesis of equidispersion is tested against
untruncated or truncated at zero negative binomial mod-
els alternatives in these tests. Most of the tests for
overdispersion in the untruncated Poisson regression mod-
els available in the literature can be obtained as special
cases of the score tests. These features motivated us to em-
ploy Gurmu’s score tests in this study.

Geometric Distribution Model

Geometric distribution is an alternative to the Poisson dis-
tribution if the data is overdispersed and displays a quick
decay process. Note that the Poisson distribution also ad-
mits the discrete decay phenomenon but only when A < 1.
Following Mullahy (1986), the geometric distribution of the
number of moose hunting trips, Y; can be defined as:

Prob (Y, =k;k=0,1,2,..)= A*(1+ 1) . (10)

The mean and variance of this distribution are, A and (1+A4)
respectively. The model is parameterized such that A; =
exp(X:B), where X is the matrix of explanatory variables
including an intercept. The log-likelihood function of the
geometric distribution can be written as:

InL = i{kln(/li)—(k+1)1n(1+/li)}_ (11)
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The log-likelihood function of the left truncated geomet-
ric distribution can be written as:

InL = i{(k—1)1n(/li)—k1n(1+li)}. (12)

Negative Binomial Distribution Models

If a sample is both truncated and overdispersed, the nega-
tive binomial family of models offers another set of attrac-
tive alternatives to the Poisson count data model. Such al-
ternatives can be justified on the grounds that measurement
errors and/or omission of explanatory variables could in-
troduce additional heterogeneity and hence, overdispersion
in the data. Under such circumstances, it is assumed that
the dependent variable is measured with a multiplicative
error term y; which captures unobserved heterogeneity and
that this error is uncorrelated with the explanatory vari-
ables. If the error term, u, follows a Gamma distribution, a
two parameter negative binomial model may be defined as
follows (Hausman et al., 1984):

Prob(Y; =k;k=0,1,2,...)=
_ F(k+V) . \% V. A k
T T(k+1)-T(v) {v+l} {v+l}' (13)

The mean and variance of this distribution are A and [ +
A?/ V] respectively. The parameter v is called the precision
parameter (Winkelmann & Zimmermann, 1995). To ensure
non-negativity of A, the model is parameterized by letting
A; = exp(X;B) where X, is a vector of explanatory variables.
A wide range of model specifications con be obtained by
setting the parameter v as a function of explanatory vari-
ables such that:

v, = (1/at) (exp(X{B))m; Vo>0, (14)

where m is an arbitrary constant. When m = 0, the preci-
sion parameter v; is constant and equal to 1/« . The vari-
ance of the distribution becomes A (1 + ad). This specifica-
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tion is known as the Type II Negative Binomial model in
the literature (Cameron & Trivedi, 1986; Gurmu, 1991). Such
a model has been used by Creel & Loomis (1990) and
Offenbach & Goodwin (1994), among others, to analyse the
demand for big game hunting in the United States. An al-
ternative specification of the Negative Binomial (NB) model
can be obtained by setting m = 1. In this case, the variance
of the distribution is, Var (Y;) = [E(Y,)x(1 + &)]. This speci-
fication is called the NB Type I model. By varying the value
of m, one can obtain a wide variety of parametric specifi-
cations for the negative binomial model. By replacing v with
1/ o, the NB Type II probability distribution can be writ-
ten as:

Prob(Y;=k;k=0,1,2,...)=
I(k+1/ax)
CT(k+1)-T(Ye)

(ed) - (A+ad) g5

The geometric and Poisson count data models can be
obtained as special cases of the negative binomial model
given in equation (15). For example, one obtains geometric
distribution as a special case of the NB distribution for =1
while the Poisson distribution is obtained as a limiting case
when o approaches 0. For a sample of n independent ob-
servations, the log likelihood functions of untruncated and
left truncated NB Type II distributions respectively are as
follows:

InL= i{m (F(k " é)) ~In(T(k +1))

—ln(l"(%)j+kln(a/li)—(k+é)log(1+a/li)}, (16)

InL= { ~In(T(k+1)) - 1%1“(%)]

+kln(oA,) - (k )1n(1+ocl) ln[l—(1+0d,-)_l/a]}. (17)
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Creel and Loomis Model

Although the count data models discussed above take into
account the discrete and nonnegative nature of the depend-
ent variable, a key feature of moose hunting regulation in
Ontario is not considered in these models. Since it is ille-
gal for a hunter to shoot more than one adult moose dur-
ing a particular hunting season, the hunting season for a
hunter ends as soon as he bags a moose. Suppose at a given
travel cost, a hunter was willing to make three moose hunt-
ing trips to a particular site. During the first visit he sees a
moose and decides to bag it. As a result, his hunting sea-
son ends after the first trip. This raises the possibility that
the estimated consumer surplus may not duly reflect the
true willingness to pay for moose hunting trips if the insti-
tutional constraint is not incorporated in the model. The
extent of departure, however, will depend on the number
of fewer trips a hunter makes relative to the number of trips
he would like to make. If a hunter bags a moose during the
first visit although he was willing to make three trips, the
actual demand curve for moose hunting trips will lie be-
low the desired demand curve. Note that the desired de-
mand curve is unobservable due to the institutional con-
straint. If the observed number of trips are used to approxi-
mate the desired demand for moose hunting, the estimated
economic benefits could be downwardly biased.

Creel & Loomis (1992) developed a model which ac-
counts for bag limits. If p is the probability of making a
moose hunting trip (k) and g is the probability of bagging a
moose (B) during a hunting season, then the joint density
for k and B is given by:

flk,B)=p*(1-q) " " (1-p)""
£(0,1)=0. (18)

This joint density implies an econometric model with two
endogenous variables, the number of trips taken, k, and
whether or not a moose is bagged, B. Note that k is a non-
negative integer while B is a discrete {0, 1} variable.

By conditioning the joint distribution on k >0, we obtain
the truncated distribution as,
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£k, Blk>0)=p*(1-9) g (1-p)"". (19)

The marginal density for k can be obtained by summing

over B. Note that truncation only affects the terms of the

joint distribution involving the probability p; the probabil-

ity of bagging a moose is not affected by the truncation.

Creel & Loomis (1992) use the following logistic parameteri-
zation for p and g:

— 1 . j— 1
p_1+e_xﬁ’ q_1+e’z¢’ (20)
where X and Z are matrices of explanatory variables and S
and ® are conformable vectors of parameters. Creel &
Loomis (1992) used a set of three explanatory variables,
travel cost, income and hunting quality for both p and g.
The last variable in this set, measured by the number of
legal deers seen by a hunter on the last trip of the season at
a particular site, is assumed to have a positive effect on the
number of trips and on the probability of bagging an ani-
mal. Unlike the three previous count data models, the de-
sired demand for moose hunting is not proxied by the ex-
pected number of hunting trips (E(k)). Instead, it is meas-
ured by the expected number of trips given that no moose
has been bagged (i.e., E(k | B=0)). This conditional expec-
tation readily incorporates the influence of a bag limit on
the desired number of hunting trips. Assuming that the
probability of making k trips follows a logistic distribution,
it can be shown that E(k | B =0) = p/(1-p) = exp(XP) (see
the Appendix for details).

The likelihood functions of Creel and Loomis model
along with those of the Poisson, geometric and the NB type
IT count data models are implemented in TSP (Hall, 1995)
to obtain the results of the demand for moose hunting trips
in Ontario.

EMPIRICAL SPECIFICATION AND ESTIMATION OF COUNT
Data MODELS

This section describes data and explains the specification
and estimation of empirical count data models. The results
of the demand for moose hunting trips in Ontario obtained
from alternative count data models are also discussed in
this section.
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Data Description

The data used in this study relate to the 1992 moose hunt-
ing season at Wildlife management Unit #21A (WMU21A)
located in northern Ontario. It is one of the most popular
WMUs for moose hunting because of its remoteness and
moose population density. During the 1992 season some
1286 hunters received moose validation tags to hunt an
adult moose at WMU21A and about 99% of these hunters
were from Ontario.

Most of the data came from the Ontario Ministry of Natu-
ral Resources records.? The round trip distance for each
hunter from his/her home-town to WMU21A was multi-
plied by cost per kilometre (35.3 cents for a mid-size car
for the 1992-93 season) obtained from the Canadian Auto-
mobile Association (CAA) to calculate vehicle related costs
(CAA 1994). A licence fee of $26.50 per resident hunter per
season was added to the vehicle related costs (level one).
A $10.00/hunter/season equipment cost and a $15.00/
hunter/day food and lodging costs were also added to the
travel costs (level two).

The treatment of time is an important but controversial
issue in travel cost analysis. There is general agreement in
the profession that time plays an important role in recrea-
tional decisions and that the opportunity cost of time spent
travelling should be included in the costs of travel. How-
ever, there is no universally accepted method for incorpo-
rating the opportunity cost of time in recreational demand
analysis (Bockstael et al., 1987; Cesario, 1976; DeSerpa, 1971;
Shaw, 1992; Smith et al., 1983). The approach used by

2 The Wildlife branch of the OMNR annually compiles data on moose valida-
tion tag applications and lottery results. The first database records the applica-
tion serial number, the applicant’s postal code and his or her first and second
choices of the WMUs to which the application should be entered for the draw.
The second database contains application serial numbers of the hunters who
won the draw along with the type of moose (cow or bull) they can hunt and the
designated WMU where they can hunt. After matching the application serial
numbers from the two databases, the postal code from the first database and
the designated WMU from the second database give the origin-destination com-
bination for each hunter. The OMNR uses Conquest, a software package mar-
keted by Compusearch Micromarketing Data and Systems of Toronto, to com-
pute the distance a hunter travels to go moose hunting. Using the latitudes and
longitudes of the WMU centroid and the postal code of a hunter, the program
computes the “as the crow flies” distance between the hunter’s origin and the
designated WMU. The distance calculated by Conquest is scientific and reli-
able.
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Cesario (1976) is simpler than other approaches and has
been widely used in recreation demand analysis. Conse-
quently, following Cesario (1976) we value both travel time
and on-site time at one-third of the wage rate. The cost of
time for each hunter was calculated assuming a 40 hour
work week and a 52 week year. The cost of time thus ob-
tained was added to “level-two” travel costs. The resulting
travel cost figures were used in our analysis.®> The income
variable consists of 1991 average employment income and
1991 average other income at the Enumeration Area (EA)
level. This information is based on 1991 census data and
was adjusted to 1992 level using consumer price index
(CPI).*

Available OMNR documents did not contain any infor-
mation on the number of moose hunting trips taken by each
individual hunter with a moose validation tag. Hunters
with moose validation tags for WMU21A in 1992 were con-
tacted over telephone for this and a number of related in-
formation during July-September 1994. Just over 200 hunt-
ers provided information on the number of hunting trips
made to the WMU21A, duration of each trip, number of
hunters in each group and the number of moose hunted. A
number of inconsistent responses were discarded. The fi-
nal sample consists of 194 hunters.®

3 One of the few problems that still plague the Travel Cost Method is the
calculation of the opportunity cost of time travelling and spent on site (Randall,
1994). A reviewer of the journal correctly points out the tentativeness of the
approach we followed in this paper. Ideally, one should include questions to
reveal individual hunter’s opportunity cost of time spent travelling and on site.
Unfortunately, no data on the opportunity cost of time for individual moose
hunters’ in this specific sample were available.

* In a typical recreation demand analysis (travel cost or contingent valuation)

the income variable is often subject to substantial measurement error. This is
because income is measured at the mid-value of a range (say, $50,000-$60,000).
Also, there are good reasons to believe that individual recreationists misquote
their income figures. In light of these problems, we believe that the average
income at the EA level provides a better approximation of an individual hunter’s
income (if the EA is fairly small) than the income figures obtained through sur-
veys.

5 Since in a telephone interview it is unlikely to contact more frequent visitors
to the hunting site more often than the less frequent ones, there is no endog-
enous stratification discussed by Shaw (1988) in our sample. Note, however,
some hunters had problem remembering the number of moose hunting trips
about two years after the 1992 hunting season. Only those hunters were in-
cluded in the sample who could remember the number of moose hunting trips
in 1992 with certainty.
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Empirical Specification

Before the beginning of moose hunting season each year,
potential moose hunters must decide whether or not to
hunt. If the decision is yes, a hunting license must be pur-
chased. This license allows a hunter to shoot a calf only. To
obtain a moose validation tag, a group of 3 to 5 hunters
give their preferences for alternative hunting sites. The
successful hunters receive moose validation tags which
specify the sex of the animal (bull or cow), the WMU for
which the tag is valid and the condition under which the
animal can be taken. After this stage, regulation prohibits
a hunter to hunt an adult moose at another WMU other than
the designated one. So, the possibility of substitution is
zero. In this paper, we focus on the trip frequency stage of
the moose hunting decision process.

The general specification of the travel cost model was
Y; = f(Prices (i.e. Travel costs), Income, 3, €;), (21)

where B is the vector of parameters and ¢; is a vector of
random disturbance terms. The dependent variable, Y; is
the number of moose hunting trips taken to WMU21A and
is truncated at zero as mentioned above.

During the 1992 hunting season, hunters in Ontario made
on an average 2.35 moose hunting trips (Table 1). This low
mean suggests that the normally distributed specification
may not provide a good approximation to the underlying
data generation process for moose hunting trips. Note also
that the data exhibit a quick decay process; about 78% of
the sample hunters made only one trip during this season
and the number of trips higher than one falls rapidly. This
suggests that the geometric distribution may be a reason-
able alternative to the Poisson count data models for this
particular data set. Finally, the variance of the dependent
variable is quite high, 12.89. Clearly, the equidispersion
property of the Poisson distribution is at stake. The NB Type
II also appears to be an attractive alternative to the Poisson
count model. Finally, the policy constraint embedded in the
Selective Harvest System in Ontario implies that Creel &
Loomis (1992) model is also an alternative to the basic count
data model.
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TaBLE 1: THE FREQUENCY DISTRIBUTION OF THE NUMBER OF MOOSE
HunTtING TRIPS.

NUMBER OF TRIPS FREQUENCY

1 152

2 10

3 3

4 6

5 4

6 2

7 1

8 0

9 4

10 1

12 5

15 3

20 3

Total 194.00
Mean: 2.345 Mode: 1

St. deviation: 3.590 Median: 1

Estimation, Results and Discussion

Since the decision to hunt and site choice have already been
made, the function we estimate for recreational moose hunt-
ing trips in Ontario may be called a participation equation.
In the past, researchers used Ordinary Least Squares (OLS)
to estimate such an equation. While the estimated coeffi-
cients are biased and inconsistent, we report OLS results
for comparative purposes. We used an exponential (i.e.,
semi-log) form for the continuous distribution estimators
and for all count data models, the Poisson, geometric, the
negative binomial type Il and the Creel and Loomis model.
The continuous distribution model with untruncated sam-
ple has been estimated by non linear least squares (NLS)
while the maximum likelihood procedure is used to esti-
mate its truncated counterpart.” The maximum likelihood
procedure is also used to estimate all count data models
including the Creel and Loomis model.

¢ Estimation programs were written in TSP to implement log likelihood func-
tions of different discrete distributions. These programs are available from the
authors on request.

7 For the empirical specification of truncated continuous model we followed
Creel and Loomis (1990) who suggest that the lower truncation be set at 0.5 and
not at zero. This is to ensure convergence in estimation and also to allow for a
better approximation by the normal distribution of an unknown count data-
generating-process (DGP)(Larson, p. 295).
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Table 2 presents parameters estimated from linear and
semi-log functions along with those obtained from
untruncated Poisson, geometric and negative binomial type
II distributions. The results obtained from the Creel and
Loomis model are also given in Table 2. The standard er-
rors of the coefficients were computed using the Eicker-
White procedure (Davidson and MacKinnon 1993, pp.552—-
556). The Eicker-White procedure generates a heteroske-
dasticity-consistent covariance estimate that is asymptoti-
cally valid when there is heteroscedasticity of unknown
forms (White, 1980). Since we have a wide range of moose
hunting trips in our sample and the data appear to be
overdispersed, we decided to use the heteroscedasticity-
consistent covariance matrix estimator to correct for the
overdispersion problem originating from an unknown form
of heteroscedasticity. Note that sample size 183 is a subset
of the original sample of 194. We employed Chebyshev’s
Empirical rule to remove extreme values of the dependent
variable from the sample.®* While the estimated parameters
from the OLS are not directly comparable to those from the
count data models, the parameters from nonlinear least
squares (NLS) model are. However, estimated price and
income elasticities are comparable across all models.

We assume that the probability of bagging a moose (q)
declines over the course of the hunting season for two rea-
sons. First, due to the availability of fewer adult moose
during the second and subsequent hunting trips. Second,
as the hunting season matures the weather gets cooler in
the study area. Cooler weather discourages mating calls and
moose tends to retreat into deep forest in preparation for
the winter. Such a pattern of moose behaviour could have

8 The number of moose hunting trips over 10 during the 1992 hunting season

are called “extreme values”. These are the hunters who live close to the hunt-
ing site. Since this particular information was collected about two years after
the 1992 hunting season, it is quite possible that some of these frequent visitors
have overstated the number of visits to the hunting site. To reduce any poten-
tial bias which can be introduced to the estimated benefits by these unusually
high numbers of trips, we used a statistical procedure, Chebyshev’s Empirical
rule, to remove them from the sample. According to Chebyshev’s Empirical rule,
there is a 95% probability that a random variable will have a mound-shaped
probability distribution if it takes on a value within two standard deviations
from the mean (Judge ef al., 1988, p. 42). The use of this rule has generated a
sample size of 183; the mean number of moose hunting trips declined by 33%
while its standard deviation declined by 54%. Obviously, a policy maker should
put more faith in the results obtained for the reduced sample.
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TABLE 2: ESTIMATES FOR RECREATIONAL Moose HUNTING TRriPs IN
ONTARIO: UNTRUNCATED DATA (SAMPLE SizE: 194 & 183) .

'V ARIABLE LINEAR  NONLINEAR  PoissoN GEOMETRIC NB-Type I  CrEeEL &
Loowmis
Price -0.0058 -0.00256  —-0.00204 —0.00190 -0.00199  -0.00195
(6.78) (8.35) (13.91) (15.07) (14.73) (10.92)
Income 0.000043 -0.0000133 0.0000072  0.0000139 0.0000112  0.000015
(4.13) 0.94) (1.41) (5.39) (3.20) (3.65)
Constant 6.208 3.20 2.15 1.76 1.94 2.09
(7.54) (4.72) (7.73) (11.40) (8.92) (10.07)
Dummy q, - - - - - 0.296
(7.99)
Dummy q, - - - - - -0.186
(3.96)
Dummy q, - - - - - -0.274
(7.25)
a - - - - 0.163
(3.800) -
Log-L —468.64 —447.35 -323.05 —346.20 -305.32 —420.83
R%/ R2LRT 0.427 0.544 0.864 0.400 0.734 0.522
Price
Elasticity -4.896 -2.539 -2.016 -1.884 -1.964 -1.927
[79.222] [1.099] [0.873] [0.816] [0.793] [0.834]
Income
Elasticity 1.432 -0.583 0.314 0.603 0.304 0.663
[19.719] [0.204] [0.763] [0.211] [0.082] [0.232]
SAMPLE SizE: 183
Price -0.00245 -0.00140 -0.00135 -0.00124 -0.00135 -0.00104
(6.19) (9.05) (10.31) (10.47) (10.46) (7.28)
Income 0.0000091 0.0000052 0.0000048 0.0000040 0.0000048 0.000005
(1.19) (0.96) (1.21) (1.32) (1.22) (1.01)
Constant 3.733 1.514 1.495 1.433 1.495 1.548
(7.36) (5.52) (7.04) (7.89) (7.37) (6.65)
Dummy q, - - - - - 0.329
(8.63)
Dummy q, - - - - - -0.260
(5.44)
Dummy q; - - - - - -0.314
(7.71)
a - - - - 0.005
(0.147) -
Log-L -313.65 -304.33 -246.40 -299.49 -246.38 -366.64
R*/R? xr 0.340 0.404 0.412 0.162 0.409 0.295
Price
Elasticity -5.308 -1.451 -1.399 -1.292 -1.399 -1.779
[49.380] [0.547] [0.527] [0.487] [0.527] [0.646]
Income
Elasticity 0.500 0.227 0.210 0.175 0.209 0.381
[3.246] [0.081] [0.075] [0.062] [0.075] [0.213]

The figures in parentheses are “t” values while those in square brackets are
standard deviations. The critical value of “t” at 5% level of significance is 1.96.
The reported values of income and price elasticities are sample means of price

and income elasticities calculated at each data point.
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been captured by a variable measuring hunting quality (de-
fined as the number of legal moose seen during the last
two weeks of the hunting season). However, such infor-
mation is not available and we were not successful in link-
ing the probability of bagging a moose to the set of explana-
tory variables.” Based on above considerations and a failed
attempt to model q directly, we introduced two dummy
variables to capture the declining likelihood of bagging a
moose (D, =1 when 2, 3, 4 and 5 hunting trips are taken
and zero otherwise; and D,=1 when the number of trips is
6 or higher and zero otherwise).” The estimated coefficients
of these dummy variables are given in Table 2. Based on
these estimates, the probability of bagging a moose during
the first trip is 0.296 which declines to 0.11 during the sec-
ond, third, fourth and fifth trips. The probability of bag-
ging a moose declines to 0.022 for six or higher number of
trips. A similar but more pronounced declining pattern oc-
curs with the reduced data sample."

Based on a general R-squared measure of goodness of
fit for nonlinear regression models which is related to the
likelihood ratio test statistic for the joint significance of the
slope parameters, the Poisson distribution model gives the
best specification followed by the NB type II, nonlinear,
Creel and Loomis and the Geometric models. The compara-
tive picture remains unchanged for the reduced sample.”

° We made an attempt to estimate the probability of bagging a moose as a lo-
gistic function of the price (travel cost) and income variables. The coefficients
were not statistically significant.

10 This specification was selected after some preliminary statistical testing of a
more general model which included a larger number of dummy variables. The
dummies with insignificant parameters were excluded. The final specification
also yields a more pronounced declining probability of bagging a moose which
we expected.

! The parameters of the Creel and Loomis model have been estimated by maxi-
mizing the associated log likelihood function. The dummy variables were in-
cluded directly into the likelihood expression. Therefore, the coefficients of the
dummy variables are, indeed, the marginal probabilities of bagging a moose.

12 The R? g measure of goodness-of-fit is proposed by Kent (1983), Maddala
(1983) and Magee (1990). It is specified as follows:

Rip =1- exp(— LRT/ n),

where 7 is the number of observations and LRT is the likelihood ratio test sta-
tistic for the joint significance of the slope parameters. This measure lies be-
tween 0 and 1, is invariant to units of measurement and becomes larger as the
model “fits better”. It is also a more general goodness-of-fit measure in the sense
that R? y; is equal to R%,4 in a linear model (Cameron & Windmeijer, 1997).
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The estimated parameters from the truncated models are
presented in Table 3. In terms of the R? y; criterion, trunca-
tion improves the specification of all count data models.
However, the improvements are more dramatic for the geo-
metric distribution and the Creel and Loomis models than
for the other models. A comparison of the results in Table 3
with those in Table 2 clearly indicates the importance of
the quick decay process inherent in moose hunting trips
data. It is interesting to note that the maximized values of
the log-likelihood functions of the geometric and negative
binomial models are very close. Note also that the estimated
probabilities of bagging a moose in the truncated model
are the same as those obtained for the untruncated model.
Such a result stems from the fact that truncation does not
affect the probability of shooting a moose.

A “t” test indicates that the estimated value of the preci-
sion parameter in the negative binomial model is not statisti-
cally different from zero. To test the null hypothesis that « is
equal to one, we computed the t-statistic as t=(a—1)/SE(«).
While the null hypothesis was rejected for the untruncated
models, it could not be rejected for the truncated ones." This
confirms that when data truncation is taken into account,
geometric and negative binomial specifications yield simi-
lar results for this sample. In terms of the R ; criterion,
however, the Poisson model still offers a better goodness
of fit than the other models.

Across all of the model specifications, the price variable
has the expected negative sign. The income variable has
the expected positive sign in all but three cases. The number
of moose hunting trips goes down with higher costs of the
trip and lower income. Also, the number of moose hunting
trips is more responsive to price changes than to changes
in hunters’” income. The results also show that recreational
moose hunting trip in Ontario is a “normal good” (income
elasticity is positive and < 1 in most cases). It is interesting
to note the effects of extreme values and truncation on the
estimated values of price and income elasticities. Trunca-
tion reduces the absolute value of price and income
elasticities and the reductions are more pronounced for

3 The associated t-values are: —19.456 and —27.93 for untruncated models and
0.459 and 0.205 for truncated models.
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TABLE 3: ESTIMATES FOR RECREATIONAL M0OSE HUNTING TRIPS IN

ONTARIO: TRUNCATED DATA (SAMPLE SizE: 194 & 183).

V ARIABLE NONLINEAR Poisson GEOMETRIC NB-TyrE 11 CREEL &
Loowmis
Price —-0.00621 —-0.00416 —-0.00533 —0.00554 —-0.00573
(3.655) (9.608) (13.205) (11.610) (11.890)
Income —0.0000421 —-0.0000127 0.0000101 0.0000136 0.000016
(1.112) (0.905) (0.630) (0.657) (0.840)
Constant 5.042 3.507 2.845 2.71 3.232
(2.793) (5.220) (4.001) (3.410) (4.130)
Dummy q, - - - - 0.296
(7.99)
Dummy q, - - - - —-0.186
(3.96)
Dummy q; - - - - -0.274
(7.25)
o - - - 1.366
(1.715) -
Log-L -327.63 -191.52 -152.68 -152.51 —258.84
R*/R% &y 0.582 0.956 0.803 0.685 0.826
Price
Elasticity -0.541 -0.890 -0.569 -0.509 -0.523
[1.462] [0.551] [0.456] [0.433] [0.451]
Income
Elasticity -0.524 -0.181 0.098 0.120 0.131
[1.599] [0.193] [0.143] [0.182] [0.194]
SAMPLE Sizg: 183
Price —-0.00325 —-0.00330 —0.00482 —0.00631 —0.00488
(9.243) (10.009) (10.752) (3.902) (9.325)
Income 0.0000041 0.0000077 0.0000142 0.0000171 0.000017
0.477) (0.865) (1.400) (1.661) (1.331)
Constant 1.909 1.926 2.152 1.259 2.350
(4.163) (4.509) (4.399) (0.360) (4.540)
Dummy q, - - - - 0.329
(8.63)
Dummy q, - - - - —-0.260
(5.44)
Dummy q, - - - - -0.314
(7.71)
o - - - 14.45
(0.220) -
Log-L -213.18 -129.07 -109.49 -107.58 -213.82
R*/R% xp 0.314 0.694 0.589 0.516 0.625
Price
Elasticity -0.427 -0.783 -0.504 —-0.095 -0.430
[0.391] [0.350] [0.389] [0.107] [0.361]
Income
Elasticity 0.047 0.114 0.121 0.027 0.125
[0.106] [0.115] [0.107] [0.056] [0.196]

The figures in parentheses are “t” values while those in square brackets are
standard deviations. The critical value of “t” at 5% level of significance is 1.96. The
reported values of income and price elasticities are sample means of price and
income elasticities calculated at each data point.
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TaABLE 4: REsuLTs OF GURMU’S SCORE TEST FOR OVERDISPERSION IN THE
Poisson CounT DaTA MODELS.

ALTERNATIVE HYPOTHESIS GURMU’s “TAU” STATISTIC GURMU’S “TAU” STATISTIC
(UNTRUNCATED DATA) (TRUNCATED DATA)
Negative Binomial - Type II 11.314 12.263
(11.49) (12.49)
Negative Binomial - Type II 0.237 7.364
(0.45) (7.73)

The numbers in parentheses are the values of “tau” statistic corrected for
sample size. The “tau” statistic is distributed as a standard normal variate. The
critical value of a one-sided normal distribution at 5% level of significance is

1.645.

count data models than for the OLS and NLS models. In
general, removal of extreme values from the sample has a
dampening effect on the estimated parameters. Finally,
based on the R? ., values, the truncated count data models
seem to fit the data better than other models.

A closer look at the estimated parameters in Table 3 sug-
gests that price and income coefficients obtained from trun-
cated geometric and NB type II models are similar. How-
ever, these estimates are different than those obtained from
the truncated Poisson model. As noted earlier, the Poisson
model does not give the best coefficient estimates in the
presence of truncation. This is perhaps due to the mean-
variance equality constraint implicit in the Poisson model.
Imposition of this equality constraint would be incorrect
for the data used in this paper. We used Gurmu’s score test
to verify the legitimacy of the equidispersion constraint.
These results are presented in Table 4. The null hypothesis
of equidispersion is rejected in three out of four cases. The
null hypothesis is not rejected only when the untruncated
model is estimated with the reduced data sample (i.e., with
183 observation). These results along with the statistical
tests performed earlier imply that the NB type II and the
geometric model are the most appropriate count data speci-
fications of the demand for moose hunting trips in Ontario.

Estimated Benefits

The consumer surplus per moose hunting trip has been es-
timated following Creel and Loomis (1990). Since we used
an exponential (i.e., semi-log) specification for all count
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data and nonlinear models, the consumer surplus per trip
is equal to minus one over the estimated price coefficient.
Because of the functional specification, however, the stand-
ard errors of the estimated benefits do not exist and must
be obtained differently (Smith, 1988). Most analysts in the
past have used a linearization procedure based on a Taylor
Series approximation to derive the standard errors (e.g.,
Creel & Loomis, 1991; Englin & Shonkwiler, 1995). While it
is simple to implement, this procedure becomes less reli-
able in the presence of high non-linearities. In view of this
weakness, Creel & Loomis (1990, 1991) and Yen & Adamo-
wicz (1993) suggest the use of a Monte Carlo simulation
developed by Krinsky & Robb (1986) to generate standard
errors of the estimated consumer surplus. Such a procedure
is data intensive and hence, is not pursued here. Instead,
we use a third and simpler procedure which, to our knowl-
edge, has not been used before in recreational demand
analysis. This procedure is based on Fieller’s technique
which enables one to compute exact confidence intervals
for ratios of normally distributed variables (Miller et al.
1984). Since this is an exact procedure, the estimated confi-
dence intervals are useful for policy analysis.

The estimated benefits along with their standard errors
and exact 95% confidence intervals are presented in Table
5. All estimated consumer surplus values are statistically
different from zero. The estimated benefit per moose hunt-
ing trip varies widely across specifications. However, for
truncated geometric and the Creel and Loomis models the
values of consumer surplus are very close ($208 and $205
Canadian respectively). Since, the decay process, over-dis-
persion, truncated count characteristics of the dependent
variable and the institutional constraint (i.e., bag limit) have
been taken into account in the truncated geometric model
and in the Creel and Loomis model, the range of benefits
from $175 to $210 Canadian per moose hunting trip should
be preferred to the other estimates.!* These surplus meas-
ures indicate that hunters realize significant benefits from
recreational moose hunting in Ontario.

1* These benefit estimates are comparable to the net economic value of moose
hunting in Newfoundland ($114 to $251 per trip) estimated by Condon &
Adamowicz (1995) using the contingent valuation method.
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TaBLE 5: EsTiMATED CONSUMER SURPLUS ($ CDN) PER MooseE HUNTING
TrIP IN ONTARIO.

NATURE OF COUNT SPECIFICATIONS

& SampPLE SizE Linear” Nonlinear Poisson =~ Geometric ~ NB- Type Il Creel &
Loomis
Untruncated 194 202.28 389.90 490.79 525.27 501.80 513.65
(29.83) (46.67) (35.27) (81.74) (33.37) (63.17)

[0-857.91] [315.8-509.4] [430.2-571.3] [464.8-603.8] [443.9-577.0] [435.5-626.1]
Untruncated 183 323.04 715.26 741.62 803.40 742.10 957.53
(52.16) (78.99) (71.92) (76.77) (74.76) (232.24)

[0-1066.63] [588.0-912.9] [676.6-988.5 [676.6-988.5] [624.6-913.0] [754.4-1310.3]
Truncated 194 - 160.91 240.39 187.60 180.50 174.46
(26.76) (15.52) (15.76) (20.39) (15.76)

[104.7-346.9] [222.2-261.7] [163.4-220.3] [154.4-217.1] [149.7-208.9]
Truncated 183 - 307.53 303.00 207.54 158.3 204.94
(43.03) (25.33) (22.68) (35.00) (24.65)

[253.7-390.3] [250.0-384.5] [175.5-253.8] [105.3-318.0] [169.3-259.5]

The figures in parentheses are the linearized standard errors of the estimated consumer
surplus/trip while those in square brackets are the 95% confidence interval for the
estimated consumer surplus per trip.

For the linear model, we report only the nonnegative part of the confidence interval.

The estimated benefits presented in Table 5 have inter-
esting policy implications for sustainable forest manage-
ment in Ontario. Sustainable forest management involves
the identification of various timber and nontimber values,
their relative contributions to satisfy societal demand and
proper allocation of resources to ensure adequate provision
of all these values in the future. Recreational moose hunt-
ing is a nontimber value, the adequate provision of which
requires a higher emphasis on protecting moose habitats
in Ontario’s forest. A decision to provide higher protection
to moose habitats will impose additional constraint on tim-
ber production. Clearly, there is a trade-off in sustaining
these values. One can ask an interesting question in this
situation: Is the marginal benefit from recreational moose
hunting greater than the marginal cost (in terms of forgone
timber values)? The estimated benefits in Table 5 can be
used to provide an answer to this question. But which one
of the estimated benefits to be used? Since the estimated
benefit per moose hunting trip varies widely across mod-
els, it is important to choose the most appropriate model
under the circumstances. Otherwise, erroneous policy de-
cisions will result. For example, if we ignore the effect of
truncation and the quick decay process inherent in the sam-
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ple and choose the benefit estimate from the Poisson model
($490.79 per moose hunting trip), the total value of this re-
source will be inflated. Consequently, the future provision
of other competing values will suffer. Among other things,
the results in Table 5 clearly show that data characteristics
and institutional characteristics need to be taken into ac-
count in order to generate reliable benefit estimates for
policy purposes.

CONCLUDING REMARKS

The application of travel cost model with micro data has
brought considerable progress in econometric estimation.
A number of important sample characteristics such as cen-
soring, truncation and endogenous stratification are now
properly incorporated in recreational demand analysis.
Owing to these improvements, the travel cost method has
been accepted as a standard tool for measuring various
unpriced values by the Environmental Protection Agency
of the United States and the Environmental Assessment
Board of Ontario.

In this paper, we employed the travel cost method to
evaluate the demand for moose hunting trips in Ontario.
This is the first systematic attempt to estimate the value of
recreational moose hunting in Ontario. In view of censored
and truncated nature of moose hunting trips, we used four
alternative count data models based on the Poisson, geo-
metric and negative binomial distributions and the Creel
and Loomis model in our analysis. The coefficients for each
of these models were obtained through maximizing the
associated likelihood function while the standard errors of
the estimated coefficients were obtained through the
Eicher-White procedure. The results obtained from econo-
metric estimation can be summarized as follows:

(i) The demand for moose hunting trips decline with
higher travel costs and lower income. While the recreational
moose hunting trips in Ontario is a “normal good”, its de-
mand is more responsive to changes in travel costs than to
hunters” income.

(ii) The probability of shooting an adult moose during the
first trip is about 30% which declines to 11% during the
second to fifth trips. This probability declines to 2% for six
or higher number of trips.
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(iii) Truncation and extreme values have significant effects
on the estimated parameters and on price and income
elasticities. Removal of extreme values from the sample
reduces the estimated value of the parameter while trun-
cation reduces the absolute value of price and income
elasticities.

(iv) The null hypothesis of equidispersion is rejected in 3
out of four cases, implying that that the coefficient estimates
from the Poisson model may not be reliable for this data
set. The estimates from alternative count data models such
as the geometric, the NB type II and the Creel and Loomis
models should be preferred to those from the Poisson
model.

(v) The estimated consumer surplus varies widely across
model specifications. This raises an important question:
which one of the alternative benefit estimates should be
recommended to a policy maker? It depends on the under-
lying data characteristics and on the institutional con-
straints. A model which takes into account various data and
institutional characteristics in the analysis is likely to pro-
duce the most reliable benefit estimate. Based on this crite-
rion, we recommend that estimated benefits from the trun-
cated geometric model and the truncated Creel and Loomis
model ($175 to $210 per moose hunting trip) should be used
by policy makers.?

These results indicate that hunters realize significant
benefits from recreational moose hunting in Ontario. The
wide variation of estimated benefits across models imply
that it is not only important to obtain theoretically consist-
ent benefit estimates but it is equally important to select
the most appropriate set of results from a number of alter-
natives. Otherwise, erroneous policy choices will result.
Such policy choices may have detrimental consequences for
sustainable forest management.

Finally, timber management practices often generate
changes in the natural environment which have notable
temporal effects on forests. Once the effects of these changes

15 Since these results are based on just one season’s data from a specific hunting
site, due caution should be exercised before applying the results to other moose
hunting sites in Ontario.
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on unpriced forest values such as moose hunting, wildlife-
viewing etc. are known, the management practices could
be redesigned to ensure the flow of maximum overall ben-
efits from various forest resources. This is an important area
for future unpriced valuation research.
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APPENDIX: IMPLEMENTATION OF THE CREEL AND Loomis MODEL

In order to implement the Creel and Loomis model, we derived the
marginal density for k by summing the joint distribution, f(k, B), over B

which is given by,
f®)= f(0)+ f(k1) = p(1-0) " (L-p+pg), for k>0,
fky=1-p, for k=0. (A1)

Using the above expression, the mean and variance of k are derived as,

E(k) =p/(1=p+pq),and V(k) = (p —p* =p’q+p’)/ (1 —p+pqg)” respec-
tively.

To derive E(k | B = 0), however, we resorted to the following steps:
i) Derive the probability that B=0, (i.e., P(B=0)).

oo oo

P(B=0)= ZP(k =i,B=0)= (l—p)Z(p—pq)i = 1_1;—]3%. (A.2)
i=0 i=0

ii) Since by Bayes’ theorem, f(k|B = 0) =f(k)/{P(B = 0)}, we can derive,

k 1— k-1 1- 2
f(k|B:0):p(J;(i)0):p( q)lfp PP o o,

f(k[B=0)=1-p+pg, for k=0. (A.3)

iii) The expected value of this conditional distribution can be derived
as,

E(k|B=0)=0x (1—;o+;m1)+—(1 _(fj;q)z gi[iﬂi(l— e %~ (A.4)

Finally, if p depends on the explanatory variables according to lo-
gistic distribution given in eq. (20), the expected value, E(T | B=0) can

be computed as,
),

E(kB=0)= m

(A.5)

Further details of this model can be found in Creel & Loomis (1992).
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