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OPTIMAL HARVEST POLICY WITH

FI R S T-OR D E R AU T O R E G R E S S I V E

PRICE PROCESS

PEICHEN GONG*

ABSTRACT
The optimal harvest decision policy for even-aged stand management when
timber price follows a first-order autoregressive process is investigated. It is
proved that the expected present value of an even-aged stand at any age is an
increasing and convex function of the timber price in the previous year, pro-
vided that the maximum age the stand is allowed to grow is sufficiently high.
The optimal decision rule at each age depends on the current annual timber
growth, the price autocorrelation coefficient, and the discount rate. A critical
annual timber growth rate is defined by the timber price autocorrelation coef-
ficient and the discount rate. When stand age is low such that the annual
growth rate is higher than this critical rate, it is optimal either to wait inde-
pendent of the observed price or to harvest the stand when the observed price
is relatively low. At higher ages when the annual timber growth rate is lower
than the critical rate, there exists an age-dependent reservation price and it is
optimal to harvest when the observed price is equal to or greater than the
reservation price. The optimal harvest policy when timber price process is
random walk has similar properties. A simulation method for determining the
optimal decision rules is developed. The effects of price autocorrelation coeffi-
cient on the optimal harvest policy and on the expected gain of adaptive deci-
sion making are examined using an example.

Keywords: Decision analysis, even-aged stand, reservation price, stochastic
optimization, uncertainty.

~
INTRODUCTION

Interest in determining adaptive timber harvest policies has
increased greatly in the last decade. Traditionally, timber
harvest decision analysis aims at determining the optimal
harvest schedule or cutting budget based on the assumption
that future stand (forest) states and timber prices are known
with certainty. On the other hand, it is a well-known fact
that stand growth (timber yield) is subject to random
variations and timber prices fluctuate unpredictably from
year to year. Recognizing that the decision at each time
point can be made based on the realized state of nature at
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that time point, stochastic (adaptive) optimization models
have been constructed and applied to determine optimal
harvest  policies  at  the stand-level  (Norstrom, 1975;
Lohmander, 1987; Brazee & Mendelsohn, 1988; Haight &
Holmes, 1991; Forboseh et al., 1996; Gong, 1998) as well as
at the forest-level (Hoganson & Rose, 1987; Gassmann, 1989;
Gong,  1994) .  An adapt ive  harvest  decis ion model
recognizes that the forest (stand) state and/or timber prices
in future periods are stochastic, and determines a set of
decision rules which specify the optimal harvest levels
corresponding to different states of nature. Experience
shows that it is much more difficult to formulate and solve
an adaptive decision model than a deterministic model.
However, the expected gain of implementing the adaptive
harvest policy (or the cost of ignoring uncertainty) is
substantial.

A relatively well-developed adaptive harvest decision
model is the reservation price model which determines the
minimum acceptable prices for harvesting an even-aged
stand at different ages. Initially, the reservation price model
recognizes a single product (timber assortment) and as-
sumes that the decision-maker is risk-neutral (Lohmander,
1987; Brazee & Mendelsohn, 1988). The model has been
extended to incorporate multiple products (Forboseh et al.,
1996) and risk−aversion (Gong, 1998). The reservation price
model assumes that timber prices in different decision pe-
riods are independent and identically distributed (iid).
Under this assumption, the expected present value (EPV)
of the stand, if it is not harvested now, is constant (is inde-
pendent of the current price). On the other hand, the profit
from harvesting the stand now increases when the current
price increases. Therefore, it is reasonable to harvest the
stand if price is high and wait if price is low.

In cases where the assumption of iid prices is not satis-
fied, it is not sure that the reservation price strategy is op-
timal, however. Suppose that prices in successive years are
positively correlated, for example. Then, when the current
price increases, both the profit from harvesting the stand
now and the EPV of the stand in the next year increase. It
might be possible that the latter increases faster than the
former and thus it might be optimal to wait when current
price is high. Clarke & Reed (1989) show that, if timber
growth is purely age-dependent and price process is geo-
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metric Brown motion, the optimal decision rule under tim-
ber growth and price uncertainties is to harvest an even−
aged stand at a fixed age. However, they pointed out that
this is no longer the case if, for example, fixed costs of post-
poning harvest were recognized. The analysis by Yin &
Newman (1995) indicate that, when price process is geo-
metric Brown motion, it is optimal to harvest if price is low
and wait if price is high.

The optimal harvest policy depends on the price proc-
ess (for a numerical example, see e.g. Haight & Holmes,
1991). It should be emphasized that the future price proc-
ess is determined by many factors that evolve over time,
such as the age-distribution of the forest, timber demand,
and forest owners’ behavior (harvest policies). The age-dis-
tribution of the forest as well as timber demand is likely to
change over time, implying that the future price process
may differ from the past price process. The interactions
between timber price process and the optimal harvest policy
make it even more difficult (if possible) to verify which
stochastic process best represents the price movements in
the future. Anyway, it is widely accepted that future tim-
ber prices are uncertain. From a forest owner’s point of
view, it is reasonable to predict future prices based on the
past timber price series.

Previous studies show that timber prices in Sweden can
be better described by an AR(1) model (Lohmander, 1987;
Hultkrantz, 1995). Several numerical analyses using dis-
crete-state stochastic dynamic programming method indi-
cate that, in cases in which the price process is a stationary
AR(1), there exists a reservation price associated to each
age such that it is optimal to harvest if and only if the ob-
served price is equal to or higher than the age specific res-
ervation price (Lohmander, 1987; Haight & Holmes, 1991).
Yet there is no theoretical proof that such a harvest strat-
egy is optimal in general cases when timber price follows a
stationary AR(1) process. Moreover, the method used in
previous studies to determine the optimal harvest policy
with autoregressive prices recognizes only a finite number
of possible price levels.

The purpose of this study is to investigate the proper-
ties of the optimal harvest policy for even-aged stand man-
agement when timber price follows an AR(1) process, and
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to develop a method for numerically determining the opti-
mal harvest policy using continuous distributions of the
prices at different decision time points.

THE OPTIMAL HARVEST POLICY

We consider the optimal policy for harvesting an existing
stand, assuming that the value of bare land is known with
certainty and the objective is to maximize the expected
present value (EPV) of the stand. Future timber prices fol-
low a stationary AR(1) process,

( )α β ε−= + +1 ,t tp p t (1)

where α and β (α > 0, 0 < β < 1) are constants, ε(t), t = 1, ...,
are independent and identically distributed random vari-
ables. Assume that ε(t) has a doubly truncated normal dis-
tribution1 with zero mean and the following probability
density function.
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Given the price at age t − 1, the price at age t is also a doubly
truncated normal variable, and its probability density
function is
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where A(pt−1) = α + βpt−1 − ξ and B(pt−1) = α + βpt−1 + ξ are the
lower and upper bounds of pt conditional on pt−1, and

1 The doubly truncated distribution is used for generality. The truncation points
do not affect the analytical results and thus the analysis that follows applies to
untruncated normal distributions.
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Suppose that the permissible harvest age ranges from t0 to
T .  Once the stand reaches age T ,  it will be harvested
immediately. At any age t0 ≤ t < T, one can either accept the
prevailing price and harvest the stand or reject the price
and postpone the decision until the next year. Like in the
case with iid prices, the decision at each age involves a
comparison between the revenue of harvesting the stand
now and the EPV of the stand if it is harvested later. Given
a price at an age t, if the net revenue of harvesting at age t
is equal to or larger than the EPV of the stand when
harvested later, then the optimal choice is to harvest the
stand at age t. Otherwise, it is optimal to wait. Therefore,
the optimal decision rule at any age t0 ≤ t <  T  can be
described by the set of prices acceptable for harvesting, i.e.
the price interval(s) within which the net revenue from
harvesting is equal to or greater than the EPV of the stand
when harvested later.

Unlike in the case with iid prices, the price model (1)
implies that the EPV of the stand when it is harvested later
increases as the current price increases. Let W(t+1,pt) denote
the EPV of the stand at age t+1 conditional on the price at
age t. The optimal harvest rule at age t depends on whether
W(t+1, pt) is concave or convex in pt and how fast W(t+1, pt)
increases when pt increases. Thus, to characterize the
optimal harvest rule, we should examine the first and
second order derivatives of W(t+1,pt) with respect to pt at
different ages.

Let us consider the decision at age T−1. The choice is
between harvesting the stand at age T−1 or at age T, since
the stand is not allowed to grow over age T. Let V(t) denote
the per unit area volume of timber at age t, L be the value
of bare land, r be the discount rate and δ = 1/(1+r) the
discounting factor. Knowing the price of timber at age T−1,
the EPV of the stand at age T is

( ) ( ) ( )α β
− −= + +

1 1, .
T TW T p p V T L (3)
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 If the stand is harvested at age T−1, the net revenue is

( ) ( )1 11, 1 .T TT p p V T L− −Π − = − + (4)

Given a pT−1, the expected gain from harvesting the stand
at age T−1 is

( ) ( ) ( )
( ) ( ) ( ) ( )
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Assume that V(T−1) > δβV(T) (which is satisfied when T
is sufficiently large), then the expected gain G(T−1, pT−1) ≥
0 if pT−1 ≥ −

*
1Tp  where
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Therefore, the optimal price interval for harvesting at age
T−1 is [ −

*
1Tp ,+∞]. In other words, it is optimal to harvest the

stand at age T−1 if the observed price pT−1 ≥ −
*

1Tp , and to
wait one year and harvest the stand at age T if pT−1 < −

*
1Tp .

The decision rule is similar as in situations in which prices
in different periods are independent and identically
distributed, although the reservation price may be different.

Based on the decision rule at age T−1, we can determine
the EPV of the stand at age T−1 (conditional on the price at
age T−2) and the decision rule at age T−2. Given a price at
age T−2, the EPV of the stand at age T−1 is
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Using Equation (3) and the reservation price function (5),
the EPV can be expressed as
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where z = ( −
*

1Tp  − α − βpT−2), φ(z) is the probability density
at z (see Equation (2)), and

( ) ( )
ξ

φ ε ε
−

Φ = ∫
z

z d

is the accumulative distribution function of the random
error term in the price model (1). The first-order derivative
of W(T−1, pT−2) with respect to pT−2 is

( ) ( ) ( ) ( ) ( )β δβ β−′ − = − − − − Φ  21, 1 1 .TW T p V T V T V T z   (6)

Given that V(T−1) ≥ δβV(T), it can be seen from (6) that
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The second-order derivative is
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It follows from the probability density function (2) that
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Thus, W(T−1, pT−2) is an increasing and convex function of
pT−2.

The expected gain of harvesting the stand at age T−2,
given a price pT−2, is

( ) ( ) ( )δ− − −− = − + − −2 2 22, 2 1, .T T TG T p p V T L W T p

G(T−2,pT−2) is a concave function of pT−2 because W(T−1,pT−2)
is convex in pT−2. This implies that, theoretically, there are
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five possible cases concerning the set of prices within which
G(T−2, pT−2) ≥ 0 (i.e. when it is optimal to harvest the stand
at age T−2):

(i) It is empty.
(ii) It is equal to the set of the possible prices at age T−2.
(iii) It consists of an upper part of the possible price

interval.
(iv) It consists of a lower part of the possible price interval.
(v) It consists of an interval somewhere between the

minimum and maximum possible prices.

Lohmander (1987, Appendix M1) depicted and explained
the first four cases2. Case (v) comes from the fact that the
EPV of the stand when it is harvested later, W(T−1, pT−2), is
convex in the price at age T−2. Let Π(T−2, pT−2) = pT−2V(T−2)
+ L denote the net revenue from harvesting now. Both Π(T−
2, pT−2) and δW(T−1, pT−2) increase when the current price
pT−2 increases. However, it is possible that Π(T−2, pT−2)
increases faster than δW(T−1, pT−2) does when pT−2 is low,
but δW(T−1, pT−2) increases faster than Π(T−2, pT−2) does
when pT−2 is high. Hence, it might be possible that the
expected gain of harvesting now is greater than zero only
if the current price is not too low and not too high (see
Figure 1). If the price is very high, the expected price next
year is also high and it would be better to harvest next year,
provided that the stand is growing sufficiently fast. If the
current price is very low, the stumpage value and thus the
opportunity cost  of  wait ing are  low.  Under certain
circumstances, it is optimal to wait one or two years.

Recognizing the five possible cases, the optimal decision
rule at age T−2 can be generally described as to harvest the
stand if and only if the observed price − − − ∈ 

1 2
2 2 2,T T Tp p p ,

where −
1

2Tp  and −
2

2Tp  denote the minimum and maximum
prices acceptable for harvesting (see Table 1). In what fol-
lows, I will first prove that this general decision rule is
optimal at the other decision time points, and then discuss
which of the five cases is more likely to be true at different
ages.

2 Lohmander described Cases (i), (ii) and (iv) as the results of nonstationary
price process. However, each of these cases may be valid when price process is
a stationary AR(1).
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Assume that W(t+1,pt),  t0<t ≤ T−2, increases when pt
increases and is convex in pt. Then, the expected gain of
harvesting at age t, G(t,pt) = ptV(t) + L − δW(t+1, pt), is
concave in pt. Like the decision rule at age T−2, the optimal
decision rule at age t can be expressed as to harvest the
stand if and only if the observed price pt ∈[ 1 2,t tp p ]. The EPV
of the stand at age t conditional on the price at age t−1 is

δW (t + 1, p t)

p tV (t )+ L

P ric e a t  ag e  t

V
al

u
e

FIGURE 1. THE EXISTENCE OF AN OPTIMAL RESERVATION PRICE INTERVAL.

TABLE 1. FIVE POSSIBLE CASES OF THE OPTIMAL DECISION RULE.
Case Reservation prices (pT−2 ≤ pT−2) Decision

i pT−2 ≥ Β  or pT−2 ≤ A Wait

ii pT−2 ≤ A and pT−2 ≥ Β Harvest

iii pT−2  ∈(A,B) and pT−2 ≥ Β Harvest if pT-2≥  pT−2  ,
wait if pT-2 < pT−2

iv pT−2 ≤ A and pT−2 ∈(A,B) Harvest if pT-2 ≤ pT-2 ,
wait if pT-2 > pT-2

v pT−2  ∈(A,B)  and pT−2 ∈(A,B) Harvest if pT-2 ≤ pT-2 ≤ pT-2   ,
wait otherwise

A and B are the lower and upper limits of the possible price, respectively.
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Price at age t

ptV(t) + L

δW(t+1,pt)
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Consider the case when A(pt−1) < 1
tp  <

2
tp  < B(pt−1), that is,

harvesting at age t is optimal if the observed price is not
very low and not very high. In this case, we have G(t, 1

tp ) =
G(t, 2

tp ) = 0, and because G(t, pt) is concave in pt, G′(t, 1
tp ) >

0 and G′(t, 2
tp ) < 0. Let z1 = ( 1

tp −α−βpt−1) and z2 = ( 2
tp −α−

βpt−1). As pt is normally distributed with mean (α+βpt−1),
W(t,pt−1) can equivalently be expressed as
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The first order derivative of W(t, pt−1) with respect to pt−1 is
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Similarly, we have
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where dW(t+1, α + βpt−1 + z)/d(α + βpt−1 + z) = dW(t+1, pt )/dpt
> 0. Thus, dW(t, pt−1)/dpt−1 > 0.

From Equation (7), we get the second-order derivative
of W(t, pt−1) with respect to pt−1.
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Since W(t+1, pt) is convex in pt, G’(t, 1
tp ) > 0 and G’(t, 2

tp ) <
0, we have d2W(t, pt−1)/d(pt−1)

2>0. Therefore, W(t, pt−1) is an
increasing and convex function of pt−1.

In a similar way, one can prove that W(t, pt−1) is an
increasing and convex function of pt−1 with each of the other
possible cases of  the optimal decision rule at  age t .
Therefore, if W(t+1, pt), t0 < t ≤ T−2, increases when pt
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increases and is convex in pt, then the EPV of the stand at
age t, W(t, pt−1), is an increasing and convex function of the
price at age t−1. We have proved that W(T−1, pT−2) is an
increasing and convex function of pT−2. Thus, one can
conclude that the EPV of the stand at any age t ∈ [t0+1, T−
1], W(t, pt−1), is an increasing and convex function of the
price in the previous year pt−1.

Therefore, the expected gain of harvesting the stand at
any age t ∈ [t0, T−2] is concave in pt. This means that the
optimal decision rule at any age t ∈ [t0, T−2] is, in general,
to harvest the stand if and only if the observed price pt ∈
[ 1

tp , 2
tp ] ,  where 1

tp  and 2
tp  are  the  lower  and upper

reservation prices associated with age t.

It was pointed out that the reservation price interval is a
general expression of five decision rules (see Table 1).
Which of the decision rules is optimal depends on timber
growth, the discount rate, the bare land value, the price
model coefficients (α and β), and the possible range of
random price variations. However, it is possible to show
under what conditions each of the decision rules may be
optimal. In fact these conditions can be described as
whether V(t) is greater, equal to, or smaller than δβV(t+1),
or equivalently whether the annual timber growth rate at
age t is smaller, equal to, or greater than (1 + r − β )/β.

Let g(t) denote the annual timber growth rate at age t.
Assume that the timber yield function V(t) is concave. g(t)
decreases as the stand age increases. Let t  denote the stand
age at which the annual timber growth rate equals (1 + r −
β )/β . Then, g(t) > (1 + r − β )/β and V(t) < δβV(t+1) for t <
t ; and g(t) < (1 + r − β )/β and V(t) > δβV(t+1) at any age t
> t .

First, let us consider the optimal decision rule at age t >
t . From the inequalities (6’) and Equation (7) it can be
shown that, dW(t+1, pt)/dpt ≤ βV(t+1) and hence

( ) ( ) ( ) ( ) ( )
, 1,

1 0.t t

t t

dG t p dW t p
V t V t V t

dp dp
δ δβ

+
= − ≥ − + >

The expected gain of harvesting at age t increases when
pt increases. Note that
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( ) ( ) ( )
( ) ( )

δ

δ α β

= + − +

 ≤ + − + + + 

, 1,

( 1) .
t t t

t t

G t p p V t L W t p

p V t L p V t L (8)

Obviously, G(t, pt) < 0 when pt < [δαV(t+1) − L(1−δ)]/(V(t) −
δβV(t+1)). Thus, at any age t > t  the equation G(t, pt) = 0
has only one solution 1

tp , and the optimal decision rule is
to harvest the stand at age t if and only if the observed
price pt ≥ 1

tp  (Case iii). However, it is possible that the
optimal reservation price 1

tp  is smaller than the minimum
possible price, then the stand should be harvested with
probability 1 (Case ii). Also, it may be possible that 1

tp  is
greater than the maximum possible price, and then the
stand should never be harvested at this age (Case i).

If t  is an integer and t ≥ t0, a decision should also be
made at age t . The fact that g( t ) = (1+r−β)/β implies V( t )
= δβV( t +1), V( t +1) > δβV( t +2), and consequently V( t ) >
(δβ)2V( t +2). Note that

( ) ( )( ) ( )δ α β α β + ≥ + + + + 1, 2 ,t tW t p p V t L

where the  r ight-hand-s ide is  the  expected revenue
(discounted to age t +1) if the stand is harvested at age t
+2. Therefore,

( ) ( )
( )( ) ( )

( ) ( ) ( )
( ) ( ) ( )

δ α β α β

δβ

δ α αβ δ

≤ +

 − + + + + 
 = − + 

− + + + −

2

2

2 2

,

2

2

2 1 .

t t

t

t

G t p p V t L

p V t L

p V t V t

V t L

Since V( t ) > (δβ)2V( t +2), we have ( ), tG t p  < 0 if

( ) ( ) ( ) ( )
( ) ( ) ( )

δ α αβ δ

δβ

+ + − −
< =

− +

2 2

2

2 1
.

2
l

t

V t L
p p t

V t V t

In words, when the stand age equals t , it is optimal to
wait if  the observed price is  low. Because V( t +1)  >
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δβV( t +2), we have ( ) ( )1, 1t tdW t p dp V tβ+ ≤ +  and thus

( ) ( ) ( )δβ≥ − + =
,

1 0.t

t

dG t p
V t V t

dp

Since ( ), tG t p  is concave in tp , >( , )/ 0t tdG t p dp  when tp  is
low and it approaches to zero when tp  is extremely high.
Therefore, ( ), tG t p  increases as tp  increases from ( ).lp t
If ( ), tG t p  reaches 0 at a 1

tp , then it is optimal to harvest
the stand when the observed price is equal to or greater
than 1

tp  (Case iii or ii, depending on whether 1
tp  is greater

or smaller than the minimum possible price at age t ). If
the reservation price 1

tp  is greater than the maximum
possible price, or if the reservation price does not exist (i.e.
there is no 1

tp  such that ( ) =1, 0tG t p ), then it is optimal to
wait and harvest the stand at a higher age (case i).

At any age t < t , g(t) > (1 + r − β )/β and V(t) < δβV(t+1).
From the inequality (8) we have G(t, pt) < 0 if pt > pl(t) =
[δαV(t+1) − L(1−δ)]/(V(t) − δβV(t+1)), which implies that,
when the stand age t < t , the optimal decision is to wait if
the observed price is high. Depending on the timber yield
function, the price model, bare land value and the discount
rate, pl(t) may lie outside the range of possible prices. Then,
the optimal decision is to wait independent of what the
observed price is (Case i). Suppose that pl(t) is larger than
the minimum possible price. Whether it is optimal to
harvest the stand when the observed price is lower than
pl(t) depends on the bare land value and the maximum
number of years one can wait. The optimal decision rule
might be to harvest the stand when the observed price is
relatively low (Case iv or v), or to wait independent of what
the observed price is (Case i).

Results from the foregoing analysis are summarized as
the follow. With a stationary AR(1) price process and a
given range of permissible harvest age [t0, T], the EPV of
an even-aged stand at any age t0 < t < T conditional on the
price at age t − 1, pt−1, is an increasing and convex function
of pt−1, provided that the maximum age T  the stand is
allowed to grow is sufficiently high. The optimal decision
rule depends on the age of the stand. When stand age is
high such that the current annual growth rate g(t) < (1 + r −
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β )/β, it is optimal to harvest the stand if and only if the
observed price is equal to or higher than the optimal
reservation price. An optimal reservation price may or may
not exist for the age t at which g(t) = (1 + r − β )/β. If the
optimal reservation price exists, it is optimal to harvest
when the observed price is equal to or higher than the
reservation price. Otherwise, the stand should not be
harvest at this age. At lower ages at which the annual
timber growth rate is high (i.e., when g(t) > (1+r − β )/β),
the optimal decision rule is either to harvest the stand when
price is relatively low or to wait no matter what the
observed price is.

It is worth pointing out that the analysis presented above
is valid even in situations in which α = 0 and β =1 (i.e. when
timber price process is random walk). In this case, the EPV
of the stand at any age t0 < t < T conditional on the price at
age t − 1, pt−1, is an increasing and convex function of pt−1,
given that the maximum age T the stand is allowed to grow
is sufficiently high. The reservation price rule is optimal at
high ages when the annual timber growth rate is lower than
the discount rate. When the stand age is low and the annual
timber growth rate is equal to or higher than the discount
rate, the optimal decision rule may vary from case to case.

The analysis with a stationary AR(1) price process can
also be generalized to the case when β =0 (i.e. when timber
prices in different years are independent and identically
distributed). In this case it can be seen from Equations (6)
and (7) that dW(t+1, pt)/dpt = 0 for t = t0, ..., T−2. Thus, the
expected gain of harvesting at any age t0 ≤  t < T, Q(t, pt) =
ptV(t) + L − δW(t+1, pt), increases monotonously as price pt
increases, and the optimal decision rule is to harvest if and
only if the observed price is equal to or greater than the
reservation price.

NUMERICAL METHODS FOR DETERMINING THE OPTIMAL

HARVEST POLICY

The optimal decision rule at each age t, and thus the optimal
harvest policy is defined in terms of solution(s) to the
equation ptV(t) + L − δW(t+1, pt) = 0. In situations in which
prices in different periods are independent and identically
distributed, one can calculate W(t+1, pt) analytically or
using numerical  integration methods and solve this
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equation recursively for t = T−1, ..., t0 to determine the
optimal reservation prices at different ages (see, e.g., Brazee
& Mendelsohn, 1988; Lohmander, 1987). When timber
prices are autocorrelated, W(t+1, pt) depends on pt and is a
multidimensional integral (except when t = T−1). It is
impossible to solve the multidimensional integral to
calculate W(t+1, pt) and determine the price interval within
which harvesting is optimal for each age t∈ [t0, T−1]. In
this case, the optimal harvest policy can be determined
using discrete-state stochastic dynamic programming.
Alternatively, one can use a simulation method to estimate
W(t+1, pt) based on the optimal decision rules at ages t+1
to T and determine the optimal price interval for each age
backwards from age T−1.

Stochastic Dynamic Programming
If the possible timber price at each decision point in time is
described by a finite number of price states, then discrete-
state stochastic dynamic programming can be used to
determine the optimal decision for each possible price state
at each age (Norstrom, 1975; Lohmander, 1987; Haight &
Holmes, 1991). Let p(k), k = 1, ..., S, be the average price in
price state k. Define prob(k, j) as the price state transition
probability, i.e., the probability of being in price state j at
age t+1 given that the price state at age t is k. Let Zt(k) denote
the EPV of the stand at age t in price state k. Given a price
state k at age t, if the stand is harvested at age t, the net
revenue obtained from harvest ing is

( ) ( ) ( )Π = +  , .t p k p k V t L

If the stand is not harvested, the EPV of the stand at age
t+1 is

( ) ( ) ( )+
=

+ =   ∑ 1
1

1, , .
S

t
j

W t p k prob k j Z j (9a)

If Π[t, p(k)] ≥  δW[t+1, p(k)], then it is optimal to harvest
the stand at age t, otherwise it is optimal to wait. Thus, the
EPV of the stand at age t in price state k is

( ) ( ) ( ){ }δ= Π +      max , , 1, .tZ k t p k W t p k (9b)

Since the maximum rotation length is T, the EPV at age T
given price state k at age T−1 is

( ) ( ) ( ) ( )
=

 = +    ∑
1

, , .
S

j
W T p k prob k j p j V T L (10)
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Using the boundary condition [Equation (10)], one can solve
Equations (9b) and (9a) from age T−1 backward to t0. The
optimal solutions give the EPV, Zt(k), and the optimal de-
cision associated to each possible price state at each age
(i.e. the optimal harvest policy).

The advantage of stochastic dynamic programming is
that it is straightforward. For each price state at age t, the
net revenue from harvesting and the EPV of the stand if it
is not harvested at age t are calculated. If the former is equal
to or greater than the latter, then it is optimal to harvest
the stand. Otherwise, the optimal decision is to wait one
more year. The disadvantage is that only a finite number
of discrete price levels can be recognized. This would lead
to biased estimation of the EPV associated to very low and
very high prices, especially when the range of possible tim-
ber price and the number of decision periods are large. At
low stand ages, the bias in the EPV could be large enough
such that it leads to erroneous decisions for the extreme
price states.

Simulation Method
The simulation method estimates the EPV of the stand at
each age t conditional on the price at age t−1, W(t, pt−1), for
different pt−1, using simulated price scenarios, and then
determines the price interval within which it is optimal to
harvest the stand at age t−1 by finding the solution(s) to
the equation ( ) ( )δ− −− + − =1 11 , 0.t tp V t L W t p

Let + =  
1 1 1 1

1, ,...,t t t TP p p p  and + =  
2 2 2 2

1, ,...,t t t TP p p p  be two vec-
tors representing the minimum and the maximum prices
acceptable for harvesting at different ages from t to T. Let

( ) ( ) ( ) ( )− − + − − =  1 1 1 1 1, ,...,k k k k
t t t t t t T tP p p p p p p p  be a random timber

price series (price scenario) from age t to T, simulated using
the price model (1) with an initial price pt−1 at age t−1. Suppose
that 1

tP  and 2
tP  are known, then given a price scenario ( )−1

k
t tP p ,

the age at which the stand should be harvested is

 ( ){ }−= ≤ ≤ ≤ ≤1 2
1min : and ,k

k a a t at a p p p p t a T

and the present value at age t  associated with price
scenario ( )−1

k
t tP p  is

( ) ( ) ( ){ }δ −
− −  = + 

1 2 ( )
1 1, , .k

k

k k t t
t t t t t t kR P P P p p p V t L
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 Given a price pt−1 at age t−1, the EPV of the stand at age
t can be estimated by taking the average of the present
values associated with a larger number of random price
scenarios.

( ) ( )− −
=

 =  ∑ 1 2
1 1

1

1, , , .
N

k
t t t t t

k
W t p R P P P p

N (11)

Knowing the optimal harvest policy from age t to T, the
optimal price interval for harvesting the stand at age t−1,
[ 1

1tp − , 2
1tp − ], can be determined based on the solution(s) to

the following optimization problem.

( ) ( ) ( )
1

1 1 1Min 1 , .
t

t t tp
D p p V t L W t pδ

−
− − −= − + − (12)

Let A and B denote the lower and upper limits of the
possible price at age t−1, respectively. According to the results
from the theoretical analysis, we know that problem (12) may
have two, one, or no solution such that the objective function
D(pt-1) is approximately zero. In the first case, 1

1tp −  is equal to
the smaller one and 2

1tp −  the larger one of the two solutions. In
case there exists only one price (denoted by *

1tp − ) such that
D( *

1tp − ) ≈  0, then 1
1tp − = *

1tp − , 2
1tp − = B if ( ) ( )δβ− ≥1 ,V t V t  and

1
1tp −  = A, 2

1tp −  = *
1tp − if ( ) ( )1 .V t V tδβ− < Finally, if the optimal

objective function value D(pt-1) is significantly larger than
zero, then 1

1tp − = A, 2
1tp − = B if ( ) ( )1 , 0,AV t L W t Aδ− + − ≥ and

1
1tp − = B, 2

1tp − = B if ( ) ( )1 , 0.BV t L W t Bδ− + − <

The assumption on the maximum rotation length implies
that one should accept all possible prices and harvest the
stand once it reaches age T, i.e., 1

Tp  = A and 2
Tp = B. Knowing

1
Tp and 2

Tp , problem (12) can be solved backwards from age
T−1 to t0 to determine the optimal harvest policy within
the range of the permissible harvest ages.

It should be pointed out that the EPV estimated using
Equation (11) and consequently the solution to problem (12)
depend on the set of price scenarios used in the calcula-
tion. The EPV may be over- or underestimated, especially
when the number of price scenarios N is small, and thus
the price interval for harvesting determined by solving
problem (12) might be narrower or wider than the optimal
price interval. In other words, different solutions may be
obtained when problem (12) is solved repeatedly. Given
that the price scenarios are generated randomly each time
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the problem is solved, the average of the solutions obtained
by solving the problem for a number of times would better
approximate the optimal harvest policy than a single solu-
tion.

Compared with discrete-state stochastic dynamic pro-
gramming, the simulation method requires more calcula-
tions to estimate the EPV associated to different possible
prices. On the other hand, the simulation method is appli-
cable whether the range of possible timber price is small or
large. Another advantage of the simulation method is that
the variance of the present value of the stand at each age
can be estimated, and therefore the analysis can be extended
to situations in which the forest owner is not risk-neutral
(see, Gong, 1998).

Optimization Results
For demonstration purpose, the optimal harvest policy for a
Pinus contorta stand is determined using stochastic dynamic
programming and the simulation method described above.
Timber yields are estimated with the following function (Fridh
& Nilsson, 1980)

( ) ( )−= × − 2.896760630.3744 1 6.3582 .tV t

It is assumed that only pulpwood is produced. The price
process is estimated using the annual real price of pulp-
wood of pine species during 1970−96 (prices are inflated to
1996’s price level using the Swedish consumer price index).
The mean real price over this time period is 356.65 SEK/m3

(Swedish kronor per cubic meter) and the standard devia-
tion is 63.34 SEK/m3. The estimated price model is

( )ε−= + +1118.59 0.661 .t tp p t (p0)

The standard deviation of the random term is σ = 50.24,
and it is assumed that the upper and lower limits of the
random term are ±2σ , respectively.

In the calculations, a harvesting cost of 92.3 SEK/m3 was
deducted from timber price. Bare land value is 1500 SEK/
ha and the discount rate is 3%. The optimal rotation age
under deterministic assumptions is 45 years and the EPV
of the stand (at the age of 25 years) is 39931 SEK/ha. In the
stochastic analyses, the minimum and maximum rotations
were taken as 25 and 65 years, respectively. Moreover, it is
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assumed that when the stand age is 65 years it will be har-
vested only if the net revenue is greater than zero.

To test the effects of price autocorrelation, optimal har-
vest policies are determined using each of the following
hypothetical price models, in addition to the base case
model (p0).

( )ε σ= + =356.65 , 63.34;tp t (p1)

( )ε σ−= + + =1209.89 0.4 , 61.36;t tp p t (p2)

( )ε σ−= + + =152.47 0.85 , 35.27;t tp p t (p3)

( )ε σ−= + + =134.98 0.9 , 29.18;t tp p t (p4)

( )ε σ−= + + =117.49 0.95 , 20.91;t tp p t (p5)

( )ε σ−= + + =17.0 0.98 , 13.32;t tp p t (p6)

( )ε σ−= + =1 , 51.45;t tp p t (p7)

For price models (p1) and (p7), the standard deviation
of the random term were estimated using the past price
series. Price models (p2)−(p6) were constructed in such a
way that they are identical with the base case price model
with respect to the mean and variance of price in the long-
run.

The stochastic dynamic programming model was solved
using a price range between 50 and 655 SEK/m3 in 5 SEK/
m3 intervals. Price state transition probabilities were esti-
mated using the base case price model (p0). The solution
shows that at each age it is optimal to harvest the stand
when the observed price is equal to or higher than a reser-
vation price associated to that age. This is consistent with
the numerical results from previous studies (see, e.g.,
Lohmander, 1987; Haight & Holmes, 1991). It is also con-
sistent with the analytical results from this study. Given
the numerical assumptions, the condition ( ) ( )δβ> + 1V t V t
is satisfied at all ages 25 ≤ t < 65, and therefore, the optimal
decision policy is to harvest the stand when the observed
price is equal to or higher than the reservation price at each
age. The stochastic dynamic programming solution shows
that the reservation price decreases as stand age increases.
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The expected gain of waiting at a lower age is greater partly
because the stand is growing faster and partly because one
can wait for a longer time to get a high price. Therefore,
the optimal reservation price at a lower age is higher.

To examine the performance of the simulation method,
problem (12) was solved using 6 different numbers of price
scenarios (100, 500, 1000, 2000, 5000, and 10000) to estimate
the EPV of the stand. The results show that the solution is
robust when the number of price scenarios is 500 or greater.
The optimal reservation prices determined using the simu-
lation method (the average of five solutions to problem (12)
with 1000 price scenarios) are similar to those obtained
using stochastic dynamic programming method, but de-
crease more smoothly with age (Figure 2). This indicates
that the simulation method works very well with a rela-
tively small number of price scenarios.

Figures 3A and 3B presents the optimal reservation prices
determined using different price models. With price models
(p1)−(p5) and a discount rate of 3%, ( ) ( )1V t V tδβ> + at all
permissible harvest ages. This implies that, at each age t,
the net revenue from harvesting increases more quickly
than the EPV of the stand at age t+1 when the observed
price at age t increases. Therefore, an optimal reservation
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price exists for each age t and the optimal decision rule is
to harvest the stand if and only if the observed price is equal
to or greater than the reservation price. It should pointed
out that when the price autocorrelation coefficient β = 0.95,
i.e. with price model (p5), the optimal reservation prices at
ages 25−27 years are higher than the maximum possible
prices3.  With pr ice  model  (p6) ,  the  inequal i ty

( ) ( )δβ> + 1V t V t holds at ages t ≥ 33 years. The reservation
price strategy (i.e., to harvest when observed price is equal
to or higher than the reservation price) is optimal at ages
t ≥ 33. However, the optimal reservation prices at ages 33−
35 years (not shown in Figures 3A and 3B) are higher than
the maximum possible prices. At ages lower than 33 years,
the expected gain of harvesting is always negative. There-
fore, the stand should not be harvested before it has reached
36 years. When timber price follows a random walk proc-
ess (p7), the reservation price strategy is optimal at ages t

FIGURE 3A. EFFECTS OF PRICE AUTOCORRELATION

ON THE OPTIMAL RESERVATION PRICES.

3 It is assumed that the price at age 0 is 349.82 SEK/m3, which is the long-run
average price.
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≥ 45 and the stand should not be harvested before it has
reached 45 years4.

The results show that price autocorrelation has signifi-
cant impacts on the optimal harvest policy. When price
autocorrelation coefficient β is relatively small, the reser-
vation price strategy remains optimal over the entire range
of permissible harvest ages, but the optimal reservation
prices are lower compared with the case in which prices in
different periods are independent and identically distrib-
uted (Figure 3A). When β is large, the optimal reservation
prices are higher at low ages and much lower at high ages
than in the case in which prices in different periods are
independent and identically distributed (Figure 3B). With
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FIGURE 3B. EFFECTS OF PRICE AUTOCORRELATION

ON THE OPTIMAL RESERVATION PRICES.

4 Haight & Holmes (1991) found that with a random walk price model the op-
timal policy is to harvest when the observed price is less than the age-depend-
ent reservation price. It should be noted that the random walk model used by
Haight and Holmes was for logarithm prices. In the original unit ($/Mbf), their
price model is ε−= 1t t tp p , which differs from the price model used in this study
( ε−= +1t t tp p ).
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the way the alternative price models were constructed, a
larger β value implies less unpredicted variations of tim-
ber price. Meanwhile, a large β value implies that if the
current price is high (low), then the expected prices in the
future will be high (low). Therefore, with autocorrelated
prices the optimal reservation price may be higher (lower)
than with iid prices when stand age is low (high). When
the price autocorrelation coefficient is sufficiently large, it
is no longer optimal to follow the reservation price strat-
egy at very low ages. In general, a larger price autocor-re-
lation coefficient implies that the optimal reservation price
decreases more quickly when stand age increases.

The EPV of the stand at age 25 years (assuming that price
at age 0 equals the long-run average price) as well as the
expected gain of the adaptive harvest policy over the fixed
rotation age decreases when price autocorrelation coeffi-
cient increases (Table 2). A larger price autocorrelation co-
efficient implies a lower degree of price uncertainty in the
short-run, which in turn implies a smaller probability of
deviating from the optimal rotation age under the deter-
ministic assumption. Therefore, the expected gain of using
the adaptive harvest policy is smaller. Note that the ex-
pected gain is larger for the random walk model than for
the AR(1) model when β equals 0.98, due to the different
degrees of price uncertainty in the two models. In all the
cases, the price-adaptive harvest policy is superior to the
fixed rotation age. This is consistent with the results of
Haight & Holmes (1991).

Washburn & Binkley (1990, 1993) argued that the non-
stationarity of “suitably deflated” stumpage prices is a suf-
ficient condition for weak-form market efficiency, which
implies no net gain from price-responsive harvesting strat-
egies. According to their definition of weak-form efficiency
of stumpage market, the optimal harvest age is independ-
ent of price if the price process is random walk. However,
these authors neglected the fixed costs (e.g. land rent) of
postponing harvesting. If the fixed costs were recognized,
then the optimal harvest age would depend on the real-
ized price (Yin & Newman, 1995), and thus the price-re-
sponsive harvest policy would be superior to harvesting at
a fixed age. Therefore, the non-stationarity of stumpage
prices may not be a sufficient condition for an infor-
mationally efficient stumpage market. Even if the past
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stumpage (timber) prices are non-stationary, it does not
necessarily mean that the stumpage (timber) market is ef-
ficient and one should ignore future price uncertainty in
harvest decisions.

On the other hand, it was mentioned in the Introduction
section that timber price process interacts with the optimal
harvest policy. When every forest owner chooses a price-
adaptive harvest policy, the aggregate timber supply be-
comes more elastic and future price uncertainty may be
smaller than the past price variations. As a result, the ex-
pected gain from adaptive harvest decision making may
be smaller than what is estimated under the assumption
that the price model is constant over time.

CONCLUSIONS

This paper examines the optimal adaptive harvest policy
when timber price follows an AR(1) process and presents a
method for determining the optimal harvest policy using
continuous distributions of prices at different ages. The
analysis shows that the optimal decision rule depends on
the annual timber growth rate (which in turn depends on
tree species, site quality and stand age), price autocorre-
lation coefficient and discount rate. The reservation price
strategy is optimal when timber growth rate is lower than

TABLE 2. THE EXPECTED NET PRESENT VALUE AT THE AGE OF 25 YEARS

WITH DIFFERENT PRICE MODELS (PRICE AT AGE 0 EQUALS 349.82 SEK/M3).

Price β EPV  Expected Expected rotation
model (SEK/ha) gain (%) age (years)

p0 0.661 50463 26.4 46

p1 0 53231 33.3 45

p2 0.4 52592 31.7 46

p3 0.85 46435 16.3 47

p4 0.9 44467 11.4 47

p5 0.95 41708 4.5 47

p6 0.98 40153 0.6 46

p7 1 41091 2.9 45
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a critical level determined by the price autocorrelation co-
efficient and discount rate. If timber growth rate is higher
than this critical level, the optimal decision is either to wait
one more period or to harvest when the observed price falls
between two reservation prices. Thus, given a price model
and a discount rate, the optimal harvest strategy might
change as stand age increases. With respect to the harvest
decision rule, a random walk price model can be viewed as
a special case of an AR(1) model. The optimal harvest policy
for a random walk price model has similar properties as
the optimal policy for an AR(1) price model, although the
optimal harvest strategy changes at different ages. For a
random walk price model, the reservation price strategy is
optimal when stand age is sufficiently high so that the an-
nual timber growth rate is lower than the discount rate.

Like in situations in which prices in different periods
are independent and identically distributed, the optimal
harvest policy for an AR(1) or random walk price model
can be determined using continuous distributions of prices
at different ages. A major advantage of the simulation
method demonstrated in this paper is that the variance of
the present value of the stand at each age can be estimated,
and thus the method can be applied to situations in which
the forest owner is not risk-neutral. Numerical results show
that price autocorrelation affects the optimal harvest policy
and the expected present value of the stand. A larger price
autocorrelation coefficient leads to lower optimal reserva-
tion prices when stand age is high. When stand age is low,
the optimal reservation price (if exists) first decrease then
increase as price autocorrelation coefficient increases. The
expected present value of the stand and thus the expected
gain of using the adaptive harvest policy decreases when
price autocorrelation coefficient increases.
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