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ABSTRACT

We discuss the theoretical results from the use of Adaptive Management
when stumpage prices are formed by a first-order autoregressive process.
Random walks and random draws are analyzed as endpoints of a continuum
of first-order autoregressive stumpage price process. Building on previous
studies, we find that reservation prices exist and are optimal, and that the
expected NPV of land and stumpage under Adaptive Management varies
directly with the size of the spread of the stumpage price distribution. A key
new result is that the size of the gains in the expected NPV of both land and
stumpage from the use of Adaptive Management vary directly with the level
of reversion to the mean. Using time series analysis, we examine a hard-
wood stumpage price and a pine stumpage price series in Virginia, USA.
We find the series are autocorrelated.

Keywords: Adaptive Management, random draw, random walk, reservation
prices, stumpage prices.

INTRODUCTION

The inclusion of stumpage price risk in the modeling of
harvesting decisions has been an active area of research
since the late 1980’s. A rationale for including stumpage
price risk is the magnitude of observed stumpage price fluc-
tuations over time, which are quite large for some com-
mercial species in some regions.! Landowners decide to
harvest or not to harvest at time t after they learn the
stumpage price at time t, but before they know future
stumpage prices. This process is known as Adaptive Man-
agement, and is modeled as a closed-loop, dynamic pro-
gram or stopping rule problem.

! Stumpage price variations can be separated into deterministic, long-term
trends, and short-run, random fluctuations.
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An important question is the size of the potential gains
in expected net present value (NPV) from using Adaptive
Management in response to stumpage price fluctuations.
Previous studies indicate that the key to answering the
question of potential gains is the underlying structure of
the stumpage price fluctuations. The two most common
distributional assumptions for stumpage price processes
are a random walk and a random draw. In random walk
models, the current stumpage price is assumed to fluctu-
ate randomly around last period’s or last instant’s
stumpage price. The potential gains from using Adaptive
Management are zero, because the current stumpage is the
best predictor of future stumpage prices; that is, the
stumpage market is weakly efficient. In random draw mod-
els, the current stumpage price is assumed to fluctuate ran-
domly around the mean stumpage price of a stationary dis-
tribution. The stumpage market is not efficient, and po-
tential gains for a single landowner using an Adaptive
Management strategy are potentially large and depend di-
rectly on the size of the fluctuations.?

Empirical evidence for stumpage price fluctuations is
mixed. For some stumpage price series, the hypothesis of
a random walk cannot be rejected (Washburn & Binkley,
1990; Thomson, 1992), while for other stumpage price se-
ries, the hypothesis of a random draw cannot be rejected
(Lohmander, 1987; Brazee & Mendelsohn, 1988; Haight,
1991; Haight & Smith, 1991; Hultzkrantz, 1995). There are
other stumpage price series in which prices are autocorre-
lated, and both the hypothesis of a random walk and the
hypothesis of a random draw may be rejected (Lohmander,
1987; Haight & Holmes, 1991).

In our view random draws or random walks are chosen
as null hypotheses because both are easier to work with
than autocorrelated stumpage prices. We suspect that some
of the series identified as random walks or random draws
are probably partially autocorrelated. We base this suspi-

2 Papers incorporating random walk models include Clarke & Reed (1989), Morck
et al. (1989), Reed & Clarke (1990), Washburn & Binkley (1990), Thomson (1992),
Hultkrantz (1993), Washburn & Binkley (1993) and Reed & Haight (1996). Papers
employing random draw models include Lohmander (1987, 1988, 1992), Brazee
& Mendelsohn (1988), Haight (1991), Haight & Smith (1991), Teeter & Caulfield
(1991), Hultzkrantz (1995) and Forboseh et al. (1996).
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cion on the presumption given to null hypotheses; that is,
the information available on some truly autocorrelated
stumpage price series is insufficient to reject a null hypoth-
esis of a random draw or a random walk. Identification
and analysis of autocorrelated stumpage prices are under-
represented in the literature. Norstrom (1976), Lohmander
(1987), Haight & Holmes (1991), Yin & Newman (1995),
Plantinga (1998) and Thorsen in this issue are notable ex-
ceptions.

The purpose of this paper is to extend understanding of
autocorrelated stumpage prices by presenting an intuitive,
non-technical approach to the simplest autocorrelation
structure, a first-order autoregressive process. Due to space
limitations and a desire for a simple presentation, we dis-
cuss and sketch proofs rather than offering formal proofs
for propositions.® Key propositions are the existence of op-
timal reservation prices, potential gains from Adaptive
Management from varying the spread of the stumpage price
distribution, and potential gains from Adaptive Manage-
ment from varying the degree of “autoregressiveness”. To
supplement existing analyses of autocorrelated stumpage
series, we present two autocorrelated stumpage price se-
ries from the State of Virginia, USA. The structure of these
series identifies a need for further research on stumpage
prices with more complicated autocorrelation structures.

MoDEL

The standard formulation of a first-order autogressive price
process is (Hamilton, 1994):

P,=A+BP,, +¢, (1)

where A and B are parameters, P,and P, , are stumpage
prices at time t and ¢-1, and ¢, is an i.i.d., random distur-
bance with mean zero. Current stumpage price at time t
depends on a constant, the previous price stumpage price,
and the stochastic disturbance. Define a = A/E(P), where
E(P) is the mean price. Equation (1) becomes:

P,=aE(P) + BP, , +¢, ()

3 Formal proofs are available on request from the authors.
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Equation (2) demonstrates the influence of both the mean
price and the previous price on the current stumpage price,
and illustrates both the random walk and the random draw
models. If 0 <a, and B <1, then stumpage prices are formed
by a “proper” first-order regressive process. If 2 = 0 and B
=1, stumpage prices are formed by a random walk. For a
random walk, the mean price has no influence on current
stumpage price, and the previous price is the best predic-
tor of the current stumpage price. If 2 =1 and B = 0,
stumpage prices are formed by a random draw. For a ran-
dom walk, the previous price has no influence on the cur-
rent stumpage price, and the mean price is the best predic-
tor of the current price. If 4 and B are both positive and
sum to 1, then prices form a stationary series, and there is
reversion to the mean. This reversion is shown by substi-
tuting for previous prices from the current stumpage price,
P,, back to the initial stumpage price, P:*

P,|p, =2[aE(P)+£i]Bt’i +B'P, (3)
i=1

First-order autoregressive stumpage prices are conven-
ient to analyze, because if the distribution of the random
disturbance is known, all information about unknown
stumpage price P, is represented by E(P), P, ,, parameters
a and B, and the distribution of the random disturbance.
The probability density function and cumulate density func-
tion for P, is conditional only on P, ;, i.e., the p.d.f. and
c.d.f. are f(P/|P,,) and F(P,|P,_,), respectively.

Landowners are assumed to maximize the expected net
present value (NPV) from timber production. For simplic-
ity, we will follow most previous studies and assume the
landowner starts with bare land. To determine the expected
NPV of bare land, it is necessary to predict future prices.
Taking the expectations for Equation (3) and modifying
subscripts, given P,, we can predict future stumpage prices
P.,s>0:

t+s

P)= tz [aE(P)+E(e)]B™" +B°D,. (4)

i=t+1

E(P,

* For more information on first-order autoregressive prices, see Hamilton (1994).

204

*

[T T 111 ||



| NN T 1 -0

JourNAL oF FOREST EcoNomics 5:2 1999 OPTIMAL HARVESTING WITH ...

Since E(g,) equals zero, the expected stumpage price at time
t+s given stumpage price t equals a weighted sum of price,
P, and the mean price, E(P).

With predictions for future stumpage prices possible,
and assuming the existence of an optimal set of reserva-
tion prices, alandowner’s objective is to maximize the value
of bare land conditional on the current stumpage price:

t+N 1 k-1 )
v(o[p)=-C+ > ——T]F(a(s

Sm(+r)y o foi ))X

u

J f(PHk|Pt+k—1)|:Pt+kY(k)+V(O|Pt+k )]dPHk/ (5)

A(k‘PH-k—l)

where A(k|P,,,_,) is the reservation price for age k stumpage
given the price at time t+k—1, C is regeneration costs, N is
an arbitrarily large, maximum harvest age, r is the discount
rate, U is the upper endpoint of the stumpage price distri-
bution, V(0|P,) is the expected NPV of bare land given the
stumpage price in period t, and Y(k) is stumpage volume
at age k.

The expected NPV of bare land equals the discounted
value of timber harvests and future values of bare land at
harvest minus regeneration costs. Note that stumpage
prices are conditional on the previous stumpage price, and
expected land values are conditional on the stumpage price
at the time of harvest. For analytical convenience, we as-
sume that N is the maximum harvest age. Since N may be
arbitrarily large, the assumption of a maximum harvest age
is made without loss.

Similar to previous studies, an easy way to solve for the
optimal reservation price for each combination of age and
previous stumpage price is to form functional equations
for stumpage of every possible age and previous stumpage
price:

u

V(kR)= [ f(BIP)[RY(K)+V(0[R)]dP,+

A(KP)

1
o F[AKRL) [V (k+1]R), (6)
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where V(k|P,) is the expected NPV of land with age k
stumpage given a stumpage price in period t. In each func-
tional equation the value of land with stumpage age k at
time t equals the value of timber harvests and bare land at
time + when harvest occurs at time t plus the discounted
value of timber harvests and bare land when harvest oc-
curs in the future. In previous random draw studies, the
stumpage price distribution is unconditional, and there are
N-1 functional equations. Here with the stumpage price
distribution conditional on the previous stumpage price,
there are N-1 x M functional equations, where M is the
number of discreet stumpage prices.

N-1 x M first-order necessary conditions follow from dif-
ferentiating the functional equations with respect to reser-
vation price:

PtY(k)+V(O|Pt):ﬁV(k+1|Pt). )

Harvest is optimal when the harvest revenue of age k
stumpage plus the expected NPV of bare land conditional
on the current stumpage price equals the discounted ex-
pected NPV of land with stumpage age k+1 conditional on
current stumpage price. Except for the conditionality on
current and previous stumpage prices, these conditions are
identical to conditions for random draw results.

For the reservation prices of Equation (7) to be optimal,
the expected NPV of bare land must be maximized for every
stumpage price. That is, the following M conditions must
hold for every price, P;:

. t+N 1 k-1 e
v (0|13)=—C+S§1(1+r)s gF(A ([P0 ))x
J f(Pt+k|Pt+k—1)[Pt+kY(k)+V* (O|Pt+k ):IdPH-k’ (8)

A(k‘Pkal)

where ”s represent optimal levels. This contrasts with pre-
vious random draw studies in which only one condition
for an unconditionally optimal expected NPV of bare land
must hold.
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DiscussioN OF THEORETICAL RESULTS

For both random walk and random draw models, the ex-
istence of optimal reservation prices have been previously
demonstrated. The only differences in the proofs of the
existence of first-order autoregressive prices and randomly
drawn prices is the conditionality of the current stumpage
price on the previous stumpage price, and the condi-
tionality of the value of land with stumpage age 0 through
N on the current stumpage prices. Rather than present a
proof of the existence of optimal reservation prices, when
stumpage prices are formed by a proper first-order
autoregressive process, we refer interested readers to pre-
vious proofs of the existence of optimal reservation prices
for random draw models. These proofs hold for a first-or-
der autoregressive process, when f(P|P, ,) is substituted for
the probability density function for stumpage prices, F(P P, )
is substituted for the cumulative distribution function for
stumpage prices, and V(k|P,) is substituted for the expected
NPV of bare land. A relatively accessible proof of the
optimality of reservation prices is found in Forboseh et al.,
p.66, Equations (19) through (23). Once the existence of an
optimal reservation price strategy has been established,
then optimal reservation prices can be calculated as pre-
sented in Equations (7) and (8).

Note that in some cases with the use of conditional dis-
tributions, it is possible to optimally separate stumpage
prices into more than two regions. In a random draw model
without autocorrelation, optimally there are only two re-
gions of stumpage prices; that is, harvest should never oc-
cur below a reservation price, and should always occur
above a reservation price. In a random walk model,
Thomson (1992) describes three regions; that is, harvest
should occur at both low prices and high prices. The ra-
tionale of harvesting at the high prices is the common rea-
son, sell high. The rationale of harvesting at low prices is
driven by an exogenous value of land; the landowner
should harvest and receive an exogenous land value.
Thorsen’s paper in this issue also presents a model in which
harvest should occur at low and at high prices. The intui-
tion underlying these results is to harvest when farm in-
come is low to avoid a higher tax rate on harvest revenues,
and to harvest when farm income is high and likely to re-

207

*

[T 111 |



| T T T ] o

R.]. BRAZEE ET.AL JourNAL o FOResT EcoNomics 5:2 1999

main so to maximize harvest revenues. It is possible for
the model presented here to show that with positive dis-
counting that there are only two regions of stumpage prices.
That is, harvest should never occur below a optimal reser-
vation price, and should always occur above a reservation
price.

Similar to random draw models, it can be demonstrated
when stumpage prices are generated by a first-order
autogressive process, that the expected NPV of bare land
and the expected NPV of land occupied by stumpage in-
crease with the spread of the random disturbance term.
Although algebraically more complex, similar to random
draw models a comparative statics approach is used. The
additional complexity arises from the need to include M
expected values of bare land conditional on the stumpage
price at harvest, rather than one unconditional expected
value of bare land.

It is possible to more fully answer the question of the
size of the potential gains in expected NPV from using
Adaptive Management in response to stumpage price fluc-
tuations. Formally, this question is addressed through the
use of comparative statics similar to the spread results dis-
cussed in the previous paragraph. After much algebra, it
can be shown that, for a given stationary distribution of
stochastic disturbances, with a + B =1, the gains in expected
NPV using Adaptive Management vary directly with the
size of a and inversely with the size of B. Heuristically, this
result follows directly from Equation (2). When a is small
and B is relatively large, then the stumpage price series is
almost a random walk, and the gains in expected NPV from
Adaptive Management are small.> When a is large and B is
relatively small, then the stumpage price series is almost a
random draw, and the gains in expected NPV from Adap-
tive Management are potentially large. Random walk and
random draw stumpage price processes are effectively the
endpoints of a continuum of autoregressive stumpage price
processes. This continuum also helps frame a range for
market efficiency from weakly efficient for a random walk
to highly inefficient for a random draw process.

> Note that optimal reservation prices can be derived even when the stumpage
price series is a random walk. This is usually not done because there are no gains
from mean-reversion under a random walk.
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EmpriricAL EVIDENCE

We have discussed Adaptive Management when stumpage
prices are partially autocorrelated. Two ways to detect
autocorrelation in real price data are to verify that prices
follow an autoregressive process through time, or show that
the process describing prices is not consistent with a ran-
dom walk.® We now investigate the time dependence of
prices using quarterly data reported for pine and hardwood
stumpage prices in two regions in Virginia. The pine se-
ries is from the Piedmont region, where loblolly plantations
are more prevalent, while the hardwood series is from the
western part of the state.

Previous work has established, albeit with mixed results,
that price series of aggregate finished product markets (e.g.,
lumber) are not stable and may contain unit roots. Given
the presence of unit roots, this work has determined that
prices in different regional markets may be cointegrated.
The discovery of cointegration suggests that the law of one
price/market is a valid assumption for forest markets, and,
more importantly, that price series should not be disag-
gregated into individual regions if they are not stable (Jung
& Doroodian, 1994; Uri & Boyd, 1990; Murray & Wear,
1998).” The consensus from this literature is that only ag-
gregated price series should be used to examine the im-
pacts of policies or shifts in production across sectors.

Understanding the underlying error-generating process
for disaggregated, regional, price series should not be aban-
doned, however. It is more likely that landowners make
decisions using information about prices in their region
instead of aggregated price series or linear combinations
of (cointegrated) regional series. This is especially true for

¢ Of course, even if prices are not autoregressive through time, if the landowner
forms adaptive expectations of future prices, then the distribution of prices used
by the landowner to compute reservation prices will have autoregressive char-
acteristics.

7 Others have examined regional prices series. This work has focused on identi-
fying nonstationarity through testing for unit roots. Haight & Holmes (1991) ar-
gue that unit roots may be a virtue of quarterly averaging of monthly series.
However, Yin & Newman (1996) reject the presence of unit roots for some quar-
terly price series in the southern U.S. stumpage market. They go further and es-
timate autoregressive models with several lags to determine if markets are
informationally efficient. In this section, we build upon this work to identify
appropriate orders for stable price processes, and we determine the appropriate
mix of autoregressive and moving average error components.
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landowners who do not receive assistance from consult-
ants. For these landowners, understanding and establish-
ing whether independence of prices fails to hold in a
disaggregated price series is not only legitimate, but con-
sistent with the analysis here and most previous analyses
of stumpage price risk.

To investigate empirical error processes, we use real
stumpage price series obtained for two regions of Virginia,
the predominantly pine piedmont region in the eastern part
of the state, and the predominantly hardwood mountain
region in the western part of the state. The series were con-
structed with the help of the Virginia Tech Extension pro-
gram, and consist of TimberMart South (TMS) quarterly,
seasonally unadjusted, prices for the periods 1975-1995.
The series do not suffer from the statewide averaging
present in published TMS data after 1993. The procedure
to analyze each series involved assessing the stability and
testing for the presence of unit roots, making the neces-
sary transformations to ensure stability if unit roots were
not discovered, and identifying appropriate moving aver-

@ age or autoregressive orders within the errors of the trans- @
formed series.

Pine Series

Initial plots of the data indicated both nonstationarity in
the mean and variance. The series was log-transformed, and
the sample autocorrelation function (ACF) and partial
autocorrelation function (PACF) were obtained. Table 1

TaBLE 1. SAMPLE AUTOCORRELATION FuncTioNs (ACF) AND PARTIAL
AUTOCORRELATION FuNcTiONs (PACEF).

The table presents sample ACF and PACF for pine and hardwood sawtimber prices (pine,
hw) and for the first differenced series (Dpine,Dhw). All prices are in log form. ACF
and PACF are presented for the first four consecutive lags (standard errors are presented
in parenthesis).

Series ACF PACF

pine 0.91,0.86,0.80,0.74,0.69 0.91,0.14,0.00,-0.03,-0.01
(0.11) (0.11)

Dpine -0.18,-0.20,-0.09,0.01,0.13 -0.18,-0.30,-0.23,-0.17,-.01,-0.10
(0.12) (0.12)

hw 0.90,0.85,0.83,0.81 0.90,0.16,0.23,0.07
(0.11) (0.11)

Dhw -0.18,-0.27,-0.08,0.35, -0.19,-0.17 -0.18,-0.32,-0.24,0.22,-0.16,0.13
(0.11) (0.11)
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TABLE 2. AUGMENTED DIcKEY-FULLER UNIT ROOT TEST STATISTIC VALUES.
The table presents augmented Dickey-Fuller unit root test statistic values for pine
sawtimber prices in Virginia (pine), first differences (Dpine), hardwood sawtimber prices
in Virginia (hw), and first differences (Dhw)). Pine tests include trend term, and the

critical value is adjusted. All prices are log-transformed.

Series

Test Statistic

Critical Value (10%)

pine
hw
Dpine
Dhw

-3.13
-2.57
-3.13
-2.57

presents the ACF and PACEF for several lags, and for both
the undifferenced pine prices (pine) and first-differenced
pine prices (Dpine). For the undifferenced series, the sam-
ple ACF decays slowly, eventually becoming insignificant
within (e.g., within 1.5 standard errors of zero) only at lag
twelve. The PACF exhibits a spiked pattern characteristic
of an AR(1) model. However, the ACF clearly indicates that
@ differencing might be needed to achieve stationarity. @

To determine whether differencing is a valid procedure,
augmented Dickey-Fuller tests were conducted. The results
are presented in Table 2. These tests reject the presence of
a unit root (and thus a random walk) in the original series
when a deterministic trend variable is included (this is con-
sistent with the initial data plot for each series). Thus,
differencing of the original series is appropriate to remove
nonstationarity. For this differenced series (Dpine), unit root
tests all reject for the presence of a unit root at the 10%
level (for both models with and without a trend). Thus, we
can conclude that the differenced series is stationary. A plot
of the differenced series also indicates some seasonal vari-
ation of four-quarter length, which was verified with a
Ballot-Bays table (e.g., Wei, 1990, pp. 159)."

8 In fact, the seasonal pattern is not strong but appears to be quarterly-driven.
We did not expect a seasonal pattern in Virginia stumpage prices, given that
logging is usually possible year round. However, pine is typically found on
ridgetop locations in the mountains or sandy unstable soil in the coastal plane.
In these cases, logging in wet weather can be problematic. Also, logging can be
seasonal given that unobserved mill capacity decisions are seasonal. Thus, later
we examine both models that do and do not incorporate a seasonal specification.
These are compared using model selection tests appropriate for time series mod-

els.

*
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The pattern of the ACF/PACF and the series plot for the
differenced pine prices suggest two possible candidate
models, an ARIMA(1,1,1) or an ARIMA(1,1,2). The PACF
clearly decays to zero as lags increase, with no significant
correlates (i.e., >1.5 times the standard error) after the fifth
lag. This clearly indicates a moving average process. How-
ever, the ACF does not totally rule out autoregressiveness.
For example, while there are significant correlates at lags
1-2, 4-5, and 8 (which are consistent with a higher order
MA process), there also appears to be a sinusoidal decay
present in lags 4-7. Given the plots of the data, this AR
component may in fact be seasonal.

Estimation produced the following three candidate mod-
els for the differenced log-transformed pine series (P)
(standard errors are in parentheses):’

P’ = 0.90E-06 + 0.51 P, + 0.48 P, + ¢,— 0.971¢,, (9)
(21E-06)  (0.026) (0.030) (0.008)

(AIC = 37.11; adjR? = .98)

P’ = 0.10E-04 + 0.91P", + ¢ —1.3¢,_, —0.94¢,_, (10)
(13E-06)  (0.001) (0.04) (0.02)

(AIC = 36.72; adjR* = .99)

P’ = 0.17E-04 + 0.86 P, + &, — 1.1¢,, (11)
(0.76E-07)  (0.006) (0.007)

(AIC = 34.29; adjR* = .97)

The first model is an ARIMA(1,1,1), the second is an
ARIMA(1,1,2), and the third is an ARIMA(1,1,1) with sea-
sonal AR roots. We also checked the feasibility of higher
order AR processes, but as expected these resulted in lower
AIC indices and adjusted R?s. The residuals from each of
the regressions above appear to have only white noise vari-
ation over time, with residuals centered around a mean of
zero. The Akaike information criterion (AIC) and adjusted

° Because it was unclear whether a deterministic trend (such as the above mod-
els with a constant) or a stochastic trend (with time as a regressor) was appro-
priate, a stochastic trend model was also estimated. Unfortunately, the stochastic
trend model did not work well, with the trend variable capturing most of the
variation in the prices over time (a common result, i.e., see Greene, 1997).
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R? (adjR?) are highest for the nonseasonal ARIMA(1,1,2)
model. The residuals of this model also have skewness and
kurtosis parameters that are more favorable than those of
the ARIMA(1,1,1) model. Thus, we conclude that the best
model is the ARIMA(1,1,2).

Hardwood Series

An identical procedure for identification and estimation
was conducted for the Virginia hardwood price series. The
process explaining hardwood prices is most likely consist-
ent with a random walk. Table 1 shows the sample ACF for
both the differenced and undifferenced series in log form.
Table 2 presents augmented Dickey-Fuller test statistics for
log-transformed prices. The sample ACF of the undiffe-
renced series, hw, persists for several lag lengths, indicat-
ing some type of nonstationarity. The spiked PACF of the
undifferenced series seems to indicate either an AR or some
type of ARMA process,'” since there are spikes at early lags,
some significant spikes at higher lags, and alternating signs
across some lags.

Plots of the data, like the pine series, exhibited
nonstationarity in both the mean and the variance indicat-
ing that log transformation and differencing are both re-
quired to remove nonstationarity. However, differencing
may not be a valid procedure for hardwood prices; Dickey-
Fuller tests indicate the presence of a unit root for the
undifferenced series at the 10% level of significance. How-
ever, unit roots can be rejected for the differenced series at
the 10% level in both models with and without a trend term.

Given that the differenced series appears to be stable,
we estimate models applied to the differenced series de-
spite the presence of the unit root for the undifferenced
series. The PACF/ACF plots for the differenced series can
be explained by an IMA (1,2) or an ARIMA (1,1,2) process.
The PACF clearly damps and appears to be sinusoidal,
which is consistent with a moving average process. The
ACF has some significant and insignificant spikes at early
lags, but then starts to damp at lags greater than length

10 In cases where an ARMA model may be present, it is rare for the AR or MA
process to be greater than an order equal to 2 (e.g., see Wei, 1990, Chapter 6).
Although higher order ARMA estimates may appear significant, in fact they may
be capturing autoregressive or moving average behavior of a lesser order.
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four. The significant spikes in the ACF seem to point to a
IMA(1,2) process, but the fact that the ACF looks cyclical
after those spikes could indicate some autoregressive com-
ponent. Thus, we estimate both an IMA(1,2) and an
ARIMA(1,1,2) model, and we include a constant trend term.
Estimation yields the following results,

H = 0.12E-03 + ¢,-1.591¢,, — 0.94¢,, (12)
(.41E-07) (0.029) (0.018)

(AIC = 32.12; adjR? = .91)

H = 0.11E-04 + 0.90H, — ¢, — 1.31¢,, - 0.96¢,, (13)
(13E-06)  (0.001) (0.032)  (0.018)

(AIC = 36.80; adjR* = .99)

where H represents the log-transformed first-differenced
hardwood price series. Clearly the AIC is in favor of the
ARIMA model, which has a highly significant first-order
correlation. Residuals for this model also had better esti-
mated skewness and kurtosis sample parameters. A sea-
sonal model was not attempted, primarily because of the
unit root problem that existed with the data and the lack
of strong evidence against an autoregressive process in the
sample ACF/PACEF estimates. Moreover, for the differenced
series, the residuals for both models above appeared to
represent white noise, and the ACF/PACF did not indicate
a pattern of seasonality. Seasonal moving average models
were not attempted due to the difficulty in interpretation,
and because the ACF/PACEF did not exhibit significant (>1.5
times the standard error) spikes at four quarter intervals.
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