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EsTiIMATING RECREATION DEMAND WITH
ON—sITE DATA: AN APPLICATION OF
TRUNCATED AND ENDOGENOUSLY
STRATIFIED CouNnT DATA MODELS

ViLLe OvAskAINEN, JARMO MikkoLA AND ElJA
Pouta”

ABSTRACT

In travel cost models of recreation demand the dependent variable is typically
the count of trips taken over the year, and data based on on-site surveys are
often used. The appropriate estimator must take into account the fact that the
dependent variable is a nonnegative integer from a truncated, endogenously
stratified sample and that real data frequently exhibit overdispersion. In this
paper truncated count data models are employed to estimate recreation de-
mand and benefits per trip using on-site data from three adjacent forest rec-
reation sites near Helsinki, Finland. As the Poisson model was rejected due to
overdispersion in the data, the paper focuses on truncated negative binomial
models with special emphasis on endogenous stratification. Resulting in some-
what better fit and smaller standard errors, the truncated and endogenously
stratified Neghin model slightly outperformed the respective non-stratified
model. However, adjusting for endogenous stratification had little effect on
the estimated coefficients and related benefit estimates. In addition to the ba-
sic model, a specification with site specific price slopes is presented with av-
erage as well as site specific estimates for consumer surplus per predicted
trip.

Keywords: choice-based sampling, consumer surplus, count data, maximum
likelihood estimation, overdispersion, recreation demand, travel cost method,
truncation.

INTRODUCTION

In travel cost models of recreation demand the dependent
variable is typically the count of trips taken by the respond-
ent over the year, and for cost-efficiency the data are often
collected from an on-site sample of participants. The data
therefore exhibit several problems that must be taken into
account in the estimation. First, because the dependent
variable is the count of trips, the only values it can take on
are nonnegative integers. Second, all observed users must
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have taken at least one trip, since non-participants are not
observed. That is, the sample is truncated at the zero level.
Third, the on-site sampling plan is an example of what is
known as choice-based sampling. Because frequent visitors
are more likely to be sampled than occasional visitors, on-
site data will be endogenously stratified. Fourth, the data
frequently exhibit overdispersion, which is defined as vari-
ance greater than the mean.

Truncated count data models based on the discrete
Poisson and negative binomial distributions have been
found to be attractive tools for recreation demand
modeling. Shaw (1988) introduced truncated, endogenously
stratified normal and Poisson models and MLE methods
with Monte Carlo experiments. Grogger & Carson (1991)
provided non-stratified standard and truncated Poisson
and negative binomial models with an application to real
data. An empirical application of truncated Poisson and
negative binomial models, with confidence intervals for the
welfare measures, was provided by Creel & Loomis (1990,
1991). In Hellerstein & Mendelsohn (1993) count data mod-
els were discussed from the perspective of economic theory.
Englin & Shonkwiler (1995a) completed the set of models
by developing a truncated, endogenously stratified nega-
tive binomial model with applications. Recently, Englin et
al. (1998) developed a Poisson system of demand equations.

Basically, truncated count data models allow the unbi-
ased estimation of the unconditional demand curve and
expected benefits (e.g., consumer surplus) per trip, hence
the computation of aggregate social benefits of a recrea-
tion site, using non-normal count data from truncated and
possibly stratified samples (Creel & Loomis, 1990; Dobbs,
1993). Furthermore, it has been suggested (Grogger &
Carson, 1991; Englin & Shonkwiler, 1995a) that by correct-
ing for both truncation and endogenous stratification one
can even use data from a choice-based, on-site sample of
users to infer the latent demand by the general population
and estimate the use value of the site, not only for current
users but for the general population.

In this paper truncated count data models are employed
to estimate the demand curve for trips and consumer sur-
plus per predicted trip using data from an on-site survey
of visitors to three adjacent forest recreation sites managed
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by the City of Helsinki, Finland. The paper has twin objec-
tives. First, empirical benefit estimates are provided for an
important recreational resource, the Nuuksio Lake Plain,
located near Finland’s most densely populated area. Besides
the basic ‘pooled’ model, we test for site specific differences
in the price slope of the demand curve to allow the value
of a site to vary with differences in per trip benefits. Sec-
ond, the paper considers the relative performance of alter-
native truncated count data models. As our data are
strongly overdispersed, we focus on truncated negative
binomial (Negbin) models with special emphasis on the role
of endogenous stratification.

Several papers have shown that overdispersion in the
data invalidates the Poisson model and have suggested
Negbin models instead. However, endogenous stratifica-
tion, which is always present in an on-site sample, has re-
ceived relatively little attention. Englin & Shonkwiler
(1995a) developed the truncated, endogenously stratified
Negbin model and applied it along with the respective
Poisson, but so far the model has had few other applica-
tions. We therefore examine the empirical importance of
the adjustment by comparing the results of stratified and
non-stratified models (for a similar consideration in the
continuous context, see Dobbs, 1993).

We begin with reviewing the count data models and their
estimation, and then we introduce the estimable model and
the data. In the following section the estimation results are
considered. We compare the truncated negative binomial
model with the respective truncated, stratified model in
terms of statistical performance and implications to ben-
efit estimates. Results from the OLS and Poisson models
are provided to confirm earlier findings. We end this pa-
per with our conclusions.

CouNT DATA MODELS AND THEIR ESTIMATION

This section outlines the count data models to be applied.
The reader is referred to Maddala (1983) and Cameron &
Trivedi (1986) for detailed presentations of the basic count
data models and their estimation, and to Shaw (1988),
Grogger & Carson (1991), and Creel & Loomis (1990) for
truncated models with applications to recreation demand.
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The simplest model for a random variable Y with only
nonnegative integer values is the Poisson model. The prob-
ability density function for the basic Poisson is

prob(Y =y)=F (y)=exp(-1)A' /y!, y=0,1,.. (1)

where A is the Poisson parameter. The model is extended
to a regression setting most easily by allowing for differ-
ent A, which vary according to 4, = exp(X;), where X, and 8
are the vectors of covariates and parameters to be estimated
(the exponential specification serves to restrict A, to be posi-
tive). The conditional mean of Y is E(Y ] X) = A = exp(Xp)
and the variance var(Y|X) = 4 = E(Y|X). Note that A is both
the mean and variance of Y, which is often a problem in
application to real data. A natural extension is the nega-
tive binomial model, which allows the variance to differ
from the mean. The model is

prob(Y =y)=
Fae (Y)= [F(y + 1/a)/F(y + 1)F(1/a):|(a,1)y (1 +(X/l)_(y+l/a) ’
y=0,1,... (2)

where I' indicates the gamma function and o denotes the
overdispersion parameter. The conditional mean and vari-
ance are E(Y|X) = 4 = exp(XB) and var(Y|X) = A(1 + al).

For data from an on-site sample, the model must account
for sample truncation. Since non-participants are not ob-
served, all observed users must have taken at least one trip.
The probability function for the zero level truncated
Poisson model is

prob(Y =y|Y >0)=[exp(-1) A" /y!][1-F> (0)]
y=12,.. (3)

with conditional mean E(Y|X, Y>0) = A [1 - F_(0)]"". The
parameters of the untruncated Poisson can be consistently
estimated even in the presence of overdispersion, although
the standard errors are downwardly biased (Gourieroux et
al., 1984b; Cameron & Trivedi, 1986). For the truncated
Poisson, however, overdispersion makes the estimates bi-
ased and inconsistent (Grogger & Carson, 1991). Overdis-
persion can be allowed for by using the truncated Negbin
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prob(Y =y|Y >0)=
[T(y+Yeo)/T(y +)T(Yer) [(ed) (1+04) ¥ [1-Rg(0)]
y=12,.. (4)
with conditional mean E(Y | X, Y>0) = A [1 — Fy(0)] %

Finally, there exist truncated count data models that also
correct for endogenous stratification. This problem is
present in on-site data, since the probability of being sam-
pled on-site depends on the frequency of visits. The trun-
cated, endogenously stratified Poisson (Shaw, 1988) is

prob(Y =y|Y >0)=Fg (y)=exp(-2)A" " /(y - 1)1,
y=12,.. (5)

with the conditional mean E(Y|X, Y>0) =1 + 1 =exp(Xf) +
1 and variance var(Y|X) = A. Note that if we define w; =y; -
1, the Poisson case (5) coincides with the standard Poisson
(1). Consequently, standard Poisson routines can be used
to estimate model (5) by maximizing exp(-4) A" /w!, w =
0,1,... (Englin & Shonkwiler, 1995a). The respective trun-
cated, stratified negative binomial model (Englin &
Shonkwiler, 1995a) is

prOb(Y =y|Y >O):FTSNB (y)=
y[l"(y + 1/a)/F(y + 1)F(1/Oc)]ocyly‘l (1+Odv)f(y+l/a) ,
y=12,.. ()

with E(Y|X, Y>0)=A+1+ adand var(Y|X)=A(1+ a+ oA +
a?l).

Except for (6), the models can be readily estimated us-
ing the LIMDEP econometric software package (Greene,
1998). For standard count data estimators, the statistical
models fitted are Y ~ Pois(A = exp(Xp)) and Y ~ NB(4 =
exp(Xp), o), where «is the overdispersion parameter, while
for truncated models, Y is observed only if Y > 0. For OLS
the semilog form was used with the model Y ~ N(exp(Xp),
o’ 1). The Poisson was corrected for endogenous stratifica-
tion and truncation by using w; = y; — 1 as the dependent
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variable in a standard Poisson regression. Because of
overdispersion, which is a form of heteroskedasticity, the
standard errors for the Poisson were corrected by using
White’s (1980) covariance matrix estimator.

The truncated, stratified Negbin model (6) was estimated
using the User defined optimization in Limdep and the two-
step QGPML estimation procedure (Gourieroux et al., 1984a,
1984b; Cameron & Trivedi, 1986). The reported results are
based on the parameterization o, = « for which the condi-
tional mean and variance are given below (6). This formu-
lation (a counterpart of Negbin Il in Cameron & Trivedi) is
consistent with the Negbin estimators in Limdep and gave
the best results. Taking logarithms of (6) yields the log like-
lihood function used,

InL=1In[T(y; + ) |- In[T(y; +1)] - In[T(1/ex) ]+
yiIn(ed))—(y; + /o) In(L+ak )+ In(y;)—In(4). (7)

While maximizing (7) the nuisance parameter o was held
as a constant, the value of which was first estimated from a
separate regression using nonlinear least squares.

EstimaBLE MODEL AND THE DATA

The data used comprised 656 observations from an on-site
survey of visitors (Pouta, 1990) conducted on the adjacent
recreation sites of Luukkaa (n=327), Salmi (n=205) and
Pirttimaki (n=124) in the Nuuksio Lake Plain, Finland. The
sites are located at a distance of 25-35 kilometers from the
center of Helsinki, managed by the City of Helsinki, and
mainly used by day visitors from Helsinki (50-60%) and
the neighboring towns. The sample mean of time spent on-
site was 8.1 hours with a median of 3 hours.

The dependent variable is the count of trips taken to the
site during the last 12 months. As the wording of the ques-
tion, ‘How many times did you visit this site during the last
year?’, did not explicitly specify whether the current trip
should be included in or excluded from the reported
number, the responses contained a non-negligible amount
of zeros. This suggests that people excluded the current trip,
so one trip was added to all reported numbers of less than
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20 trips.! The sample mean of the dependent variable is 6.88
trips per year. While the median of 3 trips indicates that
the distribution is skewed, the mean is not particularly low.
The variance is 73.6, as much as 10.7 times the mean, which
strongly suggests that overdispersion is present.

Even though the data include visitors to three recrea-
tion sites, the choice of modeling approach was restricted
by limitations in the data. Separate demand equations were
initially estimated for each individual site, but the results
were rather poor with large standard errors. Therefore, we
chose to pool the observations across the sites and estimate
asingle demand equation. This amounts to treating the sites
as one destination (cf. Creel & Loomis, 1990, p. 437) with
the individual sites interpreted as multiple entry points to
the area. Potential differences between visitor groups us-
ing particular entry points were tested for (see below).

Treating the three sites as one destination is justified,
first, because the sites are located adjacently so that a ma-
jority of visitors face roughly the same travel cost to any
individual site. All the sites also provide similar basic fa-
cilities and recreational activities (walking, hiking, camp-
ing, swimming, and fishing). Second, a system of count
demand equations (Englin et al., 1998) could not be esti-
mated in the lack of key information. For this, the respond-
ents’ trips to each site in the system should be known, but
the data only contained the number of trips to one site. The
inclusion of substitute prices in the single demand equa-
tion was also hampered by data limitations.? While the
omission of substitutes can bias the consumer surplus up-
ward if substitute prices are correlated with the own-site
price (e.g., Bockstael, 1995), the empirical importance of this
aspect depends on other considerations related to the travel

! The sensitivity of the results with respect to this assumption was tested by
using an opposite solution, whereby only the zeros were corrected to one. The
results were not significantly affected. While the absolute value of the travel
cost coefficient slightly increased (consistently for all models), the difference
of the point estimates was only slightly greater than one standard error.

2 If site specific demand equations were to be estimated, the substitute prices
could be represented by the travel costs to the other two sites in the data. How-
ever, this is hampered by the apparent multicolinearity between the own and
substitute prices due to the proximity of the sites. For the present pooled, sin-
gle-equation approach, the substitutes would be destinations other than
Nuuksio. However, the truly relevant substitute sites are difficult to identify in
the presence of a common right of access to private lands since at least “imper-
fect substitutes” abound, and there was no respondent based information such
as self-reported closest substitutes.
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cost variable.

The travel cost variable, denoted TC, is the round-trip
vehicle cost at FIM 1.00 per kilometer. The sample mean
was FIM 49.25 per trip. The unit cost was chosen so as to
approximate the variable cost of using the car, which was
the mode of transportation for all observations used. In ef-
fect, the travel cost variable equals the round-trip distance
and allows the resulting benefit estimates to be simply ad-
justed to any desired level of vehicle cost.® Even though
omission of the cost of travel time tends to bias the con-
sumer surplus downward (e.g., Cesario & Knetsch, 1970),
there is no generally valid and practicable way to measure
the time cost (cf. Fletcher et al., 1990; Bockstael, 1995;
Feather & Shaw, 1999). The complexities related to substi-
tutes and time cost are beyond the scope of this paper.
Empirically, the results can be considered fairly realistic,
because the two effects work in the opposite direction.

Potential differences between the groups visiting par-
ticular parts of the Lake Plain were tested for by using site
specific dummy variables, denoted DPIRT and DSALMI
(Luukkaa is the reference case). Further, besides differences
in the frequency of visits the visitors to different sites could
react differently to increases in travel cost. To test for site-
specific price slopes, we tried the variables TCxDPIRT and
TCxDSALMI which interact the travel cost and the site
dummy.* Other independent variables are: AGE, the re-
spondent’s age; INC, after-tax income per year; GEND, re-
spondent’s gender (0 = male, 1 = female); EQUIP, the
number of recreational equipment possessed by the family
out of a list of 12 alternatives; and MONEY, annual expendi-
ture on outdoor recreation.

3 We also tried a travel cost variable defined as the sum of vehicle-related,
out-of-pocket cost divided by the party’s number of persons plus the opportu-
nity cost of travel time evaluated at one third of hourly earnings. However, the
simple round-trip vehicle cost was chosen due to its superior statistical per-
formance, i.e., better fit and smaller standard errors. This choice follows sev-
eral similar individual travel cost models (e.g., Englin & Shonkwiler, 1995a,b).
An implication of using the undivided travel cost per vehicle is that the esti-
mated per-trip consumer surplus will be for the average party.

4 Our main concern is reliably estimating the average consumer surplus for
the recreational resource as a whole. While the group specific slopes also pro-
vide site-specific benefit estimates, the present trip frequency model does not
really allow us to examine whether the differences relate to differences in site
characteristics, because the site choice stage is not considered and the quality
effects are constant.
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EsTIMATION RESULTS

An Outline

The following section presents the estimation results and
considers the relative performance of several estimators.
Because OLS has been much used earlier despite the viola-
tion of its assumptions, OLS results are reported to illus-
trate the magnitude of the bias. The truncated and trun-
cated, stratified versions of the Poisson model (TPOIS,
TSPOIS) are considered next. As overdispersion proves to
be present, we then focus on the non-stratified and strati-
fied versions of the truncated negative binomial model
(TNB, TSNB) to consider the importance of correcting for
endogenous stratification. A discussion of the empirical
per-trip benefit estimates then follows. While the TSNB fits
slightly better, the TNB differs little in terms of consumer
surplus estimates. We also test for site-specific price slopes
and per-trip benefits.

The Relative Performance of Different Models

The estimation results are presented in Table 1. For the com-
parison of estimators, the same regressors are used in each
model. The coefficients have the expected signs and, based
mainly on the TNB and TSNB models, most of them are
statistically significant at the 5% level. The price variable
in particular has a significant negative coefficient in all
models. The number of trips also depends significantly on
the age, equipment possessed, and amount of money spent
on outdoor recreation annually. The negative coefficient of
income is a common empirical finding in recreation stud-
ies (e.g., Creel & Loomis, 1990), but the effect is insignifi-
cant.

The dummy variable DPIRT as well as the price-site in-
teraction TCxDPIRT had significant coefficients, suggest-
ing that both the average frequency of visits and the slope
of the demand curve for Pirttimaki differ from the refer-
ence case (Luukkaa and Salmi). A likelihood ratio test
against a model with no site-specific variables supported
the inclusion of each variable in turn but due to strong
multicolinearity, they could not be included simultane-
ously. Two alternative specifications are therefore reported
for the TNB and TSNB models. These have identical good-
ness-of-fit measures and t-statistics but differ in terms of
interpretation (see below). For Salmi, both site-specific vari-
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TaBLE 1. EsTIMATED RecrReATION DEMAND CuRVEs AND CONSUMER
SUurRPLUS PER TRIP BASED ON ALTERNATIVE MODELS (t-STATISTICS IN
PARENTHESES).

OoLS TPOIS TSPOIS TNB TNB with TSNB TSNB with
(semilog) with TCxDPIRT with TCxDPIRT
a a a DPIRT ¢ DPIRT be
a ab
Constant 0.9134 1.5499 1.3321 1.0372 0.9966 0.2419 0.2007
(4.922) (6.018) (4.442) (3.758) (3.645) (1.354) (1.129)
TC -0.01103 -0.01253 -0.01448 -0.01484 -0.01401  -0.01398  —0.01316
(-5.990)  (-4.488) (-4.504)  (-5.415) (-5.263) (-7.882) (-7.572)
TCXDPIRT - - - - —0.00885 - -0.00844
(-3.219) (-3.937)
DPIRT -0.3035  -0.3379  -0.3904 -0.3907 - —-0.3700 -
(-3.114)  (-2.400) (-2.378)  (-3.192) (-3.943)
MONEY 0.0536 0.0517 0.0600 0.0727 0.0699 0.0671 0.0642
(2.203) (1.432)  (1.441) (2.331) (2.221) (2.865) (2.745)
INC 0.0065 -0.0093  -0.0106 -0.0366 -0.0382 -0.0305 —-0.0313
(0.250)  (-0.248) (-0.2490)  (-~1.126) (-1.141)  (-1.221) (-1.252)
AGE 0.0208 0.0176 0.0202 0.0241 0.0245 0.0221 0.0225
(6.086) (4.248) (4.256) (4.402) (4.450) (6.723) (6.818)
EQUIP 0.0178 0.0414 0.0477 0.0557 0.0546 0.0510 0.0501
(0.898) (1.388) (1.393) (2.246) (2.199) (2.680) (2.633)
o n/a n/a n/a 1.8626 1.8653 1.8008 1.8008
(6.548) (6.533) (3.807) (3.807)
Log L -888.74  -3240.87 -3501.03 -1821.70  -1821.79  -1890.91  -1891.15

Restricted -923.06  —3454.17 -3747.27 -3240.87 —3243.17  -3501.03  -3503.38
log L

Pseudo- 0.037 0.062 0.066 0.473 0.473 0.495 0.495
RZ
CS/Y, FIM 90.66 79.82 69.05 67.38 66.16 71.55 70.37

® For models with one common slope CS/Y = —1/B, is for the representative case with
Be = Brc:

® Estimated using the QGPML procedure.

¢ For models with site specific slopes the reported CS/Y is the weighted average of CS/
Y measures for the reference case (Luukkaa & Salmi) with B, = B;c and for Pirttimaki
with S, = fBrc + BrcxDPIRT.

ables were excluded as DSALMI was insignificant and
TCxDSALMI was too strongly correlated with the price
variable.

Goodness-of-fit of the Models

In addition to the basic log-likelihood statistic, we report
the pseudo-R?(or likelihood ratio index) R’ ;=1 —In L/In
L, (e.g., Greene, 1993; 1997). This is based on testing the
improvement of the fit over a restricted model with only a
constant term (i.e., with the restriction p=0). As an analog
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to the standard R? the R? , summarizes the maximized and
restricted log-likelihood values in a single figure bounded
by zero and 1.°

As OLS and truncated count estimators are compared,
the Negbin models have R? _ values of 0.47-0.50 while OLS
falls short of 0.04. On the other hand, the R? _ values for
the Poisson models are below 0.07, indicating that the
Poisson performs only slightly, if at all, better than OLS
(R? measures for OLS and Poisson are 0.091 and 0.089, re-
spectively). Accordingly, both log-likelihood statistics and
R? ., suggest that all the Negbin models clearly outperform
OLS as well as the Poisson. While there is less difference
between various Negbin models, the endogenously strati-

fied TSNB seems to fit slightly better than the simple TNB.

Poisson vs. Negative Binomial Models: the Role of
Overdispersion

Based on a parametric restriction on the overdispersion
parameter «, the Poisson model can be tested against the
Negbin using the likelihood ratio test statistic LR=-2(In L,
—In L), where the subscripts R and U stand for restricted
and unrestricted models (e.g., Cameron & Trivedi, 1986;
Greene, 1998). Further, testing the significance of « in the
Negbin model provides a simple test for overdispersion.

The LR test statistics for TPOIS vs TNB and TSPOIS vs
TSNB (with DPIRT) obtain values as high as 2,838.3 and
3,220.2, respectively. The t-statistics for all Negbin models
indicate that « is significantly different from zero, so the
data are obviously overdispersed. That is, both LR and
overdispersion tests strongly reject the Poisson. This con-
firms earlier findings (Cameron & Trivedi, 1986; Grogger
& Carson, 1991) that violation of the mean-variance equal-
ity is most serious to the performance of the Poisson. Con-
sequently, we focus on the truncated Negbin models, which
are strongly favored over the Poisson for this data.

5 For a common point of reference, and for the overall rather than incremental
fit for the Negbin, the restricted log L of the relevant Poisson (with restrictions
B=0, x=0) was used as the restricted log L for both the Poisson and Negbin when
computing the pseudo-R2 In contrast, the restricted log L values in Table | fol-
low the usual practice in Limdep (Greene, 1998), where the Negbin’s restricted
log L equals the log L of the respective full Poisson (with restriction a=0 only).
Thus, the Chi-squared statistic in Limdep output for the Negbin readily gives
the likelihood ratio (LR) statistic for testing the Negbin against the Poisson (e.g.,
Cameron & Trivedi, 1986).
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The Importance of Endogenous Stratification

Our data are drawn from a choice-based sampling scheme.
As frequent visitors are more likely than occasional visi-
tors to be sampled on-site, frequent visitors tend to be over-
represented in comparison to the visitor population. In
theory, the estimation problems associated with the data
can be addressed by using the truncated, endogenously
stratified Negbin model (Englin & Shonkwiler, 1995a).
However, this model has not become routinely applied so
far even though on-site data are frequently used. While this
kind of analysis for a model based on a continuous distri-
bution is found in Dobbs (1993), we do not know of pub-
lished results on the empirical importance of adjusting for
stratification in the count data context. From an applied
point of view, the stratified Negbin is more costly to esti-
mate than the non-stratified TNB for which routines already
exist. Therefore, it is interesting to compare the perform-
ance of the stratified and non-stratified versions of the trun-
cated Negbin model (TNB, TSNB).®

Based on the pseudo-R? the endogenously stratified
Negbin (TSNB) has a slightly better fit than the non-strati-
fied TNB. The t-statistics also indicate that the TSNB esti-
mates have smaller standard errors. However, although the
endogenous selection is a priori an apparent problem with
on-site data, the related adjustment had little effect on the
estimated parameters. No major differences can be found
between the respective TNB and TSNB models.

Since truncation and endogenous stratification are both
instances of choice-based sampling, an interpretation of the
small difference could be that “more complicated forms of
endogenous stratification” (Pudney, 1989, p. 76) have little
effect beyond sample truncation, which implies a zero sam-
pling probability to non-visitors. Considering probability
function (4), the TNB accounts for unobserved zeros by
multiplying the standard probability (2) by [1 — Fg(0)]™",

5 Reported non-stratified and stratified models are based on the same
parameterization o, = a. Estimation differed in that the non-stratified TNB was
estimated with Limdep’s ML estimator (Greene 1998), while for the TSNB the
two-step QGPML estimation procedure (Gourieroux et al. 1984a,b, Cameron &
Trivedi 1986) was used. Earlier results do not suggest that the ML and QGPML
estimators should systematically give different results, so the potential differ-
ence between TNB and TSNB can be assumed to reflect the impact of adjusting
for stratification.
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which is greater than 1 and inflates the probabilities by a
constant proportion. For the TSNB in (6) the standard prob-
ability is adjusted for truncation and endogenous selection
by the weighting factor y;/A. Since this is greater (less) than
1 as the observed value is greater (less) than the mean, the
probability is inflated (deflated) for y; above (below) mean.
Although both adjustments shift the probability mass in
the same direction, the way and extent they do so differs.
Consequently, the conditional means and variances also
differ in a way that apparently depends on the properties
of the actual data. The finding that the difference need not
have major effects on the estimated coefficients is similar
to the conclusion in Dobbs (1993, p. 339). According to
Dobbs, over-presentation of particular types of individu-
als in itself seems no reason to expect bias in slope coeffi-
cients.

In conclusion, the results support the truncated,
endogenously stratified Negbin as the best-suited model
for the present data. However, the TSNB fit only slightly
better than the non-stratified TNB and suggested minor
differences in the estimated coefficients. For the TSNB, we
also tried an alternative parameterization o, = o /A, imply-
ing E(Y|X,Y>0)=4+1+a, and var(Y|X) =21+ o, + o, A +
o (Englin & Shonkwiler, 1995a). However, the results
favored the ‘Negbin I’ type of model (Cameron & Trivedi,
1986) for the present data since this fit the data best and
gave more reasonable estimates for the overdispersion pa-
rameter in the first step of the estimation.

Estimated Consumer Surplus per Predicted Trip

From an applied point of view a central outcome of the
travel cost model is the estimated net economic value per
trip.” For the Marshallian measure, consumer surplus (will-
ingness-to-pay over and above the amount actually paid),
consider the exponential demand function or its semi-loga-
rithmic equivalent

" For the interpretation and use of the benefit measures and other results in the
context of truncated and possibly stratified models, see Creel & Loomis (1990),
Dobbs (1993), and Englin & Shonkwiler (1995a). Formulas for the Hicksian wel-
fare measures, compensating and equivalent variation, have been developed as
well (Bockstael et al., undated). However, simple consumer surplus will do,
since the Marshallian and Hicksian measures are very close when the income
coefficient is small (e.g., Creel & Loomis, 1991).
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Y =exp(By + BpP + B X, +...+ B Xy ) &
INY =By + BeP + B X, +...+ B X (8)

where P is the price variable (i.e., travel cost) and X,’s (k =
1,..., K) denote other independent variables. Total consumer
surplus is the integral of the demand function from the
beginning price Py to the choke price with zero trips, P..
Because

PC
Cs =], Y(p)dp=-Y/B,
the formula for consumer surplus per predicted trip is

CS/Y =-1/f;. (9)

Models with the dummy variable DPIRT impose a com-
mon slope for the demand curve, so CS/Y for the representa-
tive trip is directly obtained by using formula (9) and the
travel cost coefficient. On the other hand, a representative
case does not exist for the model including the interaction
TCxDPIRT, once the slope differs between the sites. How-
ever, an average per trip consumer surplus measure can be
computed to characterize the average per trip benefits as-
sociated with the recreational resource as a whole and to
compare the specifications.®

Average Consumer Surplus Estimates

According to the best-fit model, the TSNB, the average con-
sumer surplus per predicted trip (the lowermost line of
Table 1) is on the order of FIM 70-72 per trip. The TNB
suggests only slightly lower estimates of FIM 66-67 per trip
(FIM 1.00 is roughly equivalent to USD 0.20 or EUR 0.17).
As expected due to the small difference in estimated coef-
ficients, there is little difference between the consumer sur-
plus estimates from the respective stratified and non-strati-

8 The travel cost coefficient now represents the slope for the reference case,
Luukkaa and Salmi, while the interaction term indicates how the price coeffi-
cient for Pirttimaki differs from that. The case specific price slopes were the
basis for computing the respective CS/Y measures, and the weighted average of
the latter is used as the average CS/Y. Consider the TNB with TCxDPIRT, for
example. Using the shares of observations (0.811 and 0.189) as the weights, we
get CS/Y = 0.811(1/0.01401) + 0.189[1/(0.01401+0.00885)] = FIM 66.16.
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fied Negbin models. The average CS/Y estimates from mod-
els with site specific slopes are consistent with the models
imposing one common slope.

Besides the point estimates, it is useful to consider the
standard errors of the benefit estimates. Following Englin
and Shonkwiler (1995b), an approximation to the standard
error of the consumer surplus (1/8,) is obtained by using
the second-order Taylor series approximation of the vari-
ance of 1/8,. This is

Var(1/B,)=5"/Bs +2(S*/ Bz ), (10)

where S is the standard error of §,. Of most interest is the
comparison between the TNB and TSNB. For models with
common slope, the standard errors of CS/Y are FIM 12.86
or 19.1% of the point estimate for the TNB and FIM 9.22 or
12.9% for the TSNB. That is, the TSNB yields benefit esti-
mates with smaller standard errors than the other models,
including the TNB (for OLS, TPOIS and TSPOIS the rela-
tive standard errors are 17.2%, 23.4% and 23.3%). However,
the welfare measures arising from the TNB and TSNB do
not differ significantly: the point estimates (FIM 66-67 vs.
FIM 70-72) differ by far less than one standard error.

Even though the violation of the mean-variance equal-
ity resulted in a strikingly poorer fit for the Poisson, the
coefficient estimates are quite consistent with the Negbin
as regards the TSPOIS. This was expected since the TSPOIS
was estimated as a standard Poisson, which is consistent
despite overdispersion if sample size is large enough for
asymptotic unbiasedness. However, ignoring overdis-
persion could result in errors of inference (cf. Grogger &
Carson, 1991); the uncorrected t-values were drastically in-
flated in comparison to the corrected ones. In contrast, the
truncated Poisson differs from the Negbin suggesting that
there is a bias due to overdispersion. Finally, the OLS esti-
mates differ considerably from the count data models due
to a failure to take into account the properties of the data.
The average CS/Y from OLS, FIM 90.66, exceeds the TSNB
or TNB by roughly one third. This confirms earlier find-
ings (e.g., Creel & Loomis, 1990; 1991; Hellerstein, 1991;
Dobbs, 1993) that uncorrected estimators such as OLS could
result in substantial overestimation of the benefit measures.
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Site Specific Values

Besides the average figures considered above, models with
site specific slopes provide CS/Y estimates, on the one hand,
for the reference case (Luukkaa and Salmi) and, on the other
hand, for Pirttimaki. In the latter case the sum of the travel
cost and interaction coefficients is used. This allows the
value of the sites to vary with differences in benefits per
trip, not only with differences in the number of visits. Com-
paring these estimates with CS/Y measures computed from
the models estimated separately for Luukkaa and Salmi vs
Pirttimaki (see Appendix) can also give insight into the
reliability of the results.

For Luukkaa and Salmi, the ‘pooled’” TNB and TSNB
models suggest per trip benefits of FIM 71 and FIM 76, re-
spectively (Appendix, last line). The site specific models
have the expected significant price coefficients and imply
estimates very similar to those from the pooled models, FIM
68 and FIM 72 per trip. For Pirttimaki, the pooled models
suggest a CS/Y of FIM 44-46 per trip, while the site specific
models yield somewhat higher benefits per trip, FIM 51-
56. Still the results from both modeling approaches seem
guite consistent.

DiscussioN

Truncated count data models were employed to estimate
recreation demand using on-site survey data. Generally,
estimators based on the truncated negative binomial dis-
tribution were found to be the best-suited models for the
data. Using OLS led to an overestimation of per trip ben-
efits by roughly one third. Results from the Poisson model
confirmed earlier findings on its poor fit in the presence of
overdispersion (note, however, that expanded Poisson
models have been developed that allow for under- as well
as overdispersion; e.g., Cameron & Johansson, 1997). The
paper’s main focus was on the properties of different esti-
mators. When using the results in computing the aggregate
recreation benefits of the sites, it should be noted that the
travel costs and consumer surplus per trip were for the
vehicle and average party, respectively. Thus, the total
number of annual visits should be adjusted for the average
party size to reflect the number of parties visiting annu-
ally. Also, the sensitivity of the empirical benefit estimates
to the level of vehicle cost could be considered.
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The paper focused on the truncated negative binomial
model, comparing its stratified and non-stratified versions
to consider the empirical importance of endogenous strati-
fication. According to the results, the endogenously strati-
fied TSNB resulted in a slightly better fit and smaller stand-
ard errors than the non-stratified TNB. An interesting re-
sult, however, was that although endogenous selection was
a priori an apparent problem with on-site data, the related
adjustment had little effect on the estimated coefficients
and consumer surplus per trip.

The latter finding may have convenient implications to
applied work. If the objective is simply to estimate the ag-
gregate benefits of a recreation site (consumer surplus per
predicted trip multiplied by the total number of annual vis-
its), the non-stratified truncated Negbin, which is easily
estimated using standard econometric software, can be an
acceptable tool even when on-site data are used. This may
not always be the case as the importance of stratification
can depend on the properties of the actual data, but addi-
tional support is given by similar findings based on a dif-
ferent type of distribution (Dobbs, 1993). On the other hand,
the adjustment for stratification cannot be omitted if the
model is to be used in simulating the expected number of
trips demanded to compute the benefits per individual or to
project future demands.
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APPENDIX. ESTIMATION RESULTS FROM SITE SPECIFIC MODELS, TRUNCATED
NecATIVE BinomiAL MobeLs (TNB, TSNB; t-sTATISTICS IN
PARENTHESES).

Luukkaa, Salmi, Luukkaa Pirttiméki, Luukkaa Pirttimaki,

TNB TNB and TNB and TSNB
Salmi, Salmi,
TNB TSNB
Constant 2.1157 —-0.7206 0.8584 1.6765 0.0842 0.7547
(6.008) (-0.916) (3.002) (2.093) (0.434) (1.690)
TC —-0.0337 —0.00506 —-0.01466 —0.01969 —0.01388 -0.01777
(-6.526)  (-0.850)  (-5.246) (-1.949) (-7.520) (—2.880)
MONEY 0.0192 0.1395 0.0751 0.0311 0.0695 0.0260
(0.481) (2.115) (2.215) (0.401) (2.664) (0.477)
INC 0.0251 -0.0217 0.0084 -0.1866 0.0099 —-0.1677
(0.467) (-0.288) (0.211) (-2.606) (0.354) (-2.917)
AGE 0.0144 0.0406 0.0233 0.0243 0.0217 0.0223
(2.253) (3.462) (4.117) (1.378) (6.053) (2.636)
EQUIP 0.0546 0.0687 0.0626 0.0276 0.0583 0.0210
(1.702) (1.227) (2.358) (0.387) (2.828) (0.420)
o 1.2561 2.0521 1.7423 2.1975 1.7009 2.2007
(5.854) (3.358) (6.216) (2.100) (3.299) (1.723)
Log L -929.77 -550.33  -1495.97 -322.42 —1551.29 -333.97
Restricted  —1540.08 -974.81  -2646.52 -569.14 —2856.54 —615.49
log L
Pseudo- 0.472 0.486 0.473 0.466 0.496 0.491
RZ
CS/Y, site 29.63 (197.63) 68.21 50.79 72.07 56.26
specific b
model
CS/Y, - - 71.38 43.74 75.98 46.30
pooled
model @

@ Computed from the results in Table I using CS/Y = -1/B,, where B, = B, for the
reference case (Luukkaa and Salmi) and B, = B, + Brcxppirr fOr Pirttimaki.

® Price coefficient not significantly different from zero.
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