We present an analytical model for determination of the economically optimal harvest age of a forest stand considering timber value, and the value of carbon fluxes in living biomass, dead organic matter, and wood products pools. Through comparative statics analysis, we find that consideration of timber value and fluxes in biomass carbon increase harvest age relative to the timber only solution, and that the effect on optimal harvest age of incorporating fluxes in the dead organic matter and wood products pools is indeterminate.
We also present a numerical example to examine the magnitudes of these effects. In general, incorporating the dead organic matter and wood products pools have the effect of reducing rotation age. Perhaps more interestingly, when initial stocks of carbon in dead organic matter or wood products pool are relatively high, consideration of these pools can have a highly negative effect on net present value.