This is published under the terms of the Creative Commons Attribution licence.
Downloaded: 2319 times
Systems with hundreds of microphones for acoustic field acquisition, or hundreds of loudspeakers for rendering, have been proposed and built. To analyze, design, and apply such systems requires a framework that allows us to leverage the vast set of tools available in digital signal processing in order to achieve intuitive and efficient algorithms. We thus propose a discrete space–time framework, grounded in classical acoustics, which addresses the discrete nature of the spatial and temporal sampling. In particular, a short-space/time Fourier transform is introduced, which is the natural extension of the localized or short-time Fourier transform. Processing in this intuitive domain allows us to easily devise algorithms for beam-forming, source separation, and multi-channel compression, among other useful tasks. The essential space band-limitedness of the Fourier spectrum is also used to solve the spatial equalization task required for sound field rendering in a region of interest. Examples of applications are shown.