APSIPA Transactions on Signal and Information Processing > Vol 9 > Issue 1

Fully-automatic inverse tone mapping algorithm based on dynamic mid-level tone mapping

Gonzalo Luzardo, Ghent University, Belgium AND ESPOL Polytechnic University, Ecuador, GonzaloRaimundo.LuzardoMorocho@UGent.be , Jan Aelterman, Ghent University, Belgium, Hiep Luong, Ghent University, Belgium, Sven Rousseaux, Vlaamse Radio -en Televisieomroeporganisatie, Belgium, Daniel Ochoa, ESPOL Polytechnic University, Ecuador, Wilfried Philips, Ghent University, Belgium
 
Suggested Citation
Gonzalo Luzardo, Jan Aelterman, Hiep Luong, Sven Rousseaux, Daniel Ochoa and Wilfried Philips (2020), "Fully-automatic inverse tone mapping algorithm based on dynamic mid-level tone mapping", APSIPA Transactions on Signal and Information Processing: Vol. 9: No. 1, e7. http://dx.doi.org/10.1017/ATSIP.2020.5

Publication Date: 24 Feb 2020
© 2020 Gonzalo Luzardo, Jan Aelterman, Hiep Luong, Sven Rousseaux, Daniel Ochoa and Wilfried Philips
 
Subjects
 
Keywords
High dynamic rangeInverse tone mappingHDRiTMO
 

Share

Open Access

This is published under the terms of the Creative Commons Attribution licence.

Downloaded: 3072 times

In this article:
I. INTRODUCTION 
II. RELATED WORK 
III. PROPOSED EXPANSION FUNCTION 
IV. FULLY-AUTOMATIC INVERSE TONE MAPPING 
V. RESULTS 
VI. CONCLUSIONS 
SUPPLEMENTARY MATERIAL 

Abstract

High Dynamic Range (HDR) displays can show images with higher color contrast levels and peak luminosities than the common Low Dynamic Range (LDR) displays. However, most existing video content is recorded and/or graded in LDR format. To show LDR content on HDR displays, it needs to be up-scaled using a so-called inverse tone mapping algorithm. Several techniques for inverse tone mapping have been proposed in the last years, going from simple approaches based on global and local operators to more advanced algorithms such as neural networks. Some of the drawbacks of existing techniques for inverse tone mapping are the need for human intervention, the high computation time for more advanced algorithms, limited low peak brightness, and the lack of the preservation of the artistic intentions. In this paper, we propose a fully-automatic inverse tone mapping operator based on mid-level mapping capable of real-time video processing. Our proposed algorithm allows expanding LDR images into HDR images with peak brightness over 1000 nits, preserving the artistic intentions inherent to the HDR domain. We assessed our results using the full-reference objective quality metrics HDR-VDP-2.2 and DRIM, and carrying out a subjective pair-wise comparison experiment. We compared our results with those obtained with the most recent methods found in the literature. Experimental results demonstrate that our proposed method outperforms the current state-of-the-art of simple inverse tone mapping methods and its performance is similar to other more complex and time-consuming advanced techniques.

DOI:10.1017/ATSIP.2020.5