This is published under the terms of the Creative Commons Attribution licence.
Downloaded: 1804 times
In this paper, a multiple feature regularized kernel is proposed for hyperspectral imagery classification. To exploit the label information, a regularized kernel is used to refine the original kernel in the Support Vector Machine classifier. Furthermore, since spatial features have been widely investigated for hyperspectral imagery classification, different types of spatial features including spectral feature, local feature (i.e. local binary pattern), global feature (i.e. Gabor feature), and shape feature (i.e. extended multiattribute profiles) are included to provide distinguish discriminative information. Finally, a majority voting-based ensemble approach, which combines different types of features, is adopted to further increase the classification performance. Combining different discriminative feature information can improve the classification performance since one type of feature may result in poor performance, especially when the number of training samples is limited. Experimental results demonstrated that the proposed approach has superior performance compared with the state-of-the-art classifiers.