This is published under the terms of the Creative Commons Attribution licence.
Downloaded: 1160 times
The development of colorization algorithms through deep learning has become the current research trend. These algorithms colorize grayscale images automatically and quickly, but the colors produced are usually subdued and have low saturation. This research addresses this issue of existing algorithms by presenting a two-stage convolutional neural network (CNN) structure with the first and second stages being a chroma map generation network and a refinement network, respectively. To begin, we convert the color space of an image from RGB to HSV to predict its low-resolution chroma components and therefore reduce the computational complexity. Following that, the first-stage output is zoomed in and its detail is enhanced with a pyramidal CNN, resulting in a colorized image. Experiments show that, while using fewer parameters, our methodology produces results with more realistic color and higher saturation than existing methods.
Companion
APSIPA Transactions on Signal and Information Processing Deep Neural Networks: Representation, Interpretation, and Applications: Articles Overview
See the other articles that are part of this special issue.