Currently, deep learning plays an indispensable role in many fields, including computer vision, natural language processing, and speech recognition. Convolutional Neural Networks (CNNs) have demonstrated excellent performance in computer vision tasks thanks to their powerful feature-extraction capability. However, as the larger models have shown higher accuracy, recent developments have led to state-of-the-art CNN models with increasing resource consumption. This paper investigates a conceptual approach to reduce the memory consumption of CNN inference. Our method consists of processing the input image in a sequence of carefully designed tiles within the lower subnetwork of the CNN, so as to minimize its peak memory consumption, while keeping the end-to-end computation unchanged. This method introduces a trade-off between memory consumption and computations, which is particularly suitable for high-resolution inputs. Our experimental results show that MobileNetV2 memory consumption can be reduced by up to 5.3 times with our proposed method. For ResNet50, one of the most commonly used CNN models in computer vision tasks, memory can be optimized by up to 2.3 times.